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Abstract: This study investigated the concepts of (0, 2)-involute and (1, 3)-evolute curves associated
with quaternionic Bertrand curves within the context of four-dimensional Euclidean space. Using
a type-2 quaternionic frame, we derived mathematical expressions that define these interacting and
evolute curves. The (0, 2)-involute curve is characterized by tangents orthogonal to points on the
original quaternionic Bertrand curve, while the (1, 3)-evolute curve is constructed using specific normal
vectors related to curvature properties. We presented a comprehensive framework that clarifies the
interrelationships between the curvature functions of involute and evolute pairs and their connections
to the Frenet frame. This framework provides a geometric basis for analyzing curves in higher-
dimensional spaces. The findings enhance the understanding of quaternionic curves and their geometric
properties, contributing to the broader field of differential geometry.
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1. Introduction

The study of curves in classical differential geometry is one of the most fascinating topics. The
concept of the involute-evolute curve pair was introduced by Huygens in 1968 in [1]. If the tangents
of the first curve are normal to the second curve, we classify the second curve as an involute and the
first curve as an evolute. In 1850, Bertrand first introduced the Bertrand curve [2]. When two curves
share a common normal vector at corresponding points, they are referred to as Bertrand curves. We
refer to the first curve as the Bertrand curve, and the second as the Bertrand mate. One significant
characteristic of three-dimensional Euclidean space is that the distance between the corresponding
points of the Bertrand curves remains constant. Bertrand curves were extended from Euclidean 3
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space to Riemannian n space by L. R. Pears [3] who gave generalized results of the Bertrand curves.
For n ≥ 4, no special Frenet curve in En is a Bertrand curve. Matsuda and Yorozu [4] gave a new
definition of the Bertrand curve called the (1, 3)-Bertrand curve and a characterization of the (1, 3)-
Bertrand curves. After that, many researchers have studied (1, 3)-Bertrand curve [5–7]. Furthermore,
some studies of characterizations of curves in different spaces and with different frames can be found
in [8–11].

The study of involutes and evolutes has also been extended to Minkowski space, a
pseudo-Euclidean space with an indefinite metric. In Minkowski space, the geometric properties of
curves differ significantly from those in Euclidean space due to the presence of timelike, spacelike,
and lightlike vectors. The concept of involute-evolute pairs in Minkowski space has been explored by
several authors [12, 13].

In 1843, Hamilton introduced the concept of a quaternion, a type of number system that exists
in a four-dimensional vector space and can take on different forms, such as real, complex, dual, and
split varieties. According to Clifford [14], in 1871, the quaternion was generalized to biquaternions.
In 1987, Bharathi and Nagaraj [15] studied the quaternionic curves (Qu-curves) in both E3 and E4

and provided the Frenet formula for Qu-curves. For other results of Qu-curves, we refer to [16–21].
Aksoyak in [22] defined the quaternionic frame Qu-frame for (Qu-curves) in E4, which is called type-2
Qu-frame. For more results see [23–28]. If a (Qu − B)-curve exists in E4, then its torsion or bi-torsion
vanishes, so we can say that there is no (Qu− B)-curve whose torsion or bi-torsion is non-zero. Hence,
we use the method given by Matsuda and Yorozu [4] to define the (Qu − B)-curve according to the
type-2 Qu-frame. For other results regarding involutes and evolutes, we refer to the papers [29–31].

In this context, we determine the involute and evolute with the (Qu − B)-curve using a type-2 Qu-
frame. We also deduce a relation between the Frenet frame and curvature functions.

2. Preliminaries

A real quaternion is defined as:
u = a + bî + c ĵ + dk̂,

where î, ĵ, k̂ are unit vectors in three-dimensional vector space and a, b, c, d ∈ R. Any quaternion u
consists of two parts: one is the scalar part denoted as S u and the second is a vector part which is
denoted as Vu, where

S u = a

and
Vu = bî + c ĵ + dk̂.

We also present any real quaternion as
u = S u + Vu.

Let us consider two quaternions, i.e.,
u = S u + Vu

and
u′ = S ′u + V ′u.
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Then their addition and multiplication by a scalar c and conjugate will be represented as

u + u′ = (S u + S ′u) + (Vu + V ′u),
cu = cS u − cVu,

ū = S u − Vu.

Let us denote the four-dimensional real vector space, in which addition and multiplication by a
scalar c are defined as described by Q, and refer to its elements as quaternions. The basis of this vector
space is {1, î, ĵ, k̂}, and satisfies

(î)2 = ( ĵ)2 = (k̂)2 = î ĵk̂ = −1.

Any quaternion u can be considered as an element (a, b, c, d) of R4. When the scalar part is zero, we
refer to the quaternion as spatial. In this case, it can be considered as an ordered triple (b, c, d) of
R3 [15].

Multiplication of quaternions can be defined as

u × u′ = S uS ′u − ⟨Vu,V ′u⟩ + S uV ′u + S ′uVu + Vu ∧ V ′u,

for every u, u′ ∈ Q, where ⟨, ⟩ and ∧ denote the scalar product and cross product in R3. The quaternion
multiplication is associative and distributive but non-commutative. Hence, Q is a real algebra, referred
to as a quaternion algebra. Moving forward, we define a symmetric and non-degenerate bilinear h on
Q as

h : Q × Q 7→ R,

h(u, u′) =
1
2

(u × ū′ + u′ × ū),

for u, u′ ∈ Q and the norm of u is defined as

||u||2 = h(u, u) = u × ū = S 2
u + ⟨Vu,Vu⟩ .

Therefore, the mapping denoted by h is referred to as the quaternion scalar product. The Qu-curve in
R4 is represented by γ4 and the spatial Qu-curve in R3 associated by γ4 ∈ R4 is denoted by γ.

Theorem 2.1. ([15]) Let
J = [0, 1] ⊂ R

and S be the set of spatial Qu-curves. Suppose that

γ : J ⊂ R 7→ S ,

s 7→ γ(s) = γ1(s)î + γ2(s) ĵ + γ3(s)k̂

is a curve parameterized by the arc length s. Then, the Frenet equations of γ are given as

t′ = kn,

n′ = −kt + rb,

b′ = −rn,

AIMS Mathematics Volume 10, Issue 3, 4598–4619.



4601

where t represents the unit tangent vector, denoted by γ′, n is the normal vector, and b is the binormal
vector, which is calculated as the cross product of t and n. The principle curvature is denoted by k
and is equal to the norm of the derivative of the unit tangent vector, while the torsion of the curve γ is
represented by −r. Moreover, these Frenet vectors hold the following equations:

h(t, t) = h(n, n) = h(b, b) = 1,
h(t, n) = h(t, b) = h(n, b) = 0.

Theorem 2.2. Suppose that
J = [0, 1] ⊂ R

and
γ4 = J ⊂ R 7→ Q,

s 7→ γ4(s) = γ4
0(s) + γ4

1(s)î + γ4
2(s) ĵ + γ4

3(s)k̂

is an arc-length parameterized curve in R4. Then Frenet equations of γ4 are given as

T ′ = KN1,

N′1 = −KT − rN2,

N′2 = rN1 + (K − k)N3,

N′3 = −(K − k)N2,

(2.1)

where
T = dγ4/ds,

N1–N3 represent the Frenet vectors of the curve γ4,

K = ||T ′||

is the principle curvature, −r is the torsion and (K − k) is the bitorsion of the curve γ4. These Frenet
vectors of the above theorems satisfy the following equations:

h(T,T ) = h(N1,N1) = h(N2,N2) = h(N3,N3) = 1,

h(T,N1) = h(T,N2) = h(T,N3) = h(N1,N2) = h(N1,N3) = h(N2,N3) = 0.

In four-dimensional Euclidean space, the product of two vectors is defined using the wedge product
(or exterior product). For two vectors u and v in E4, the wedge product is given by

u ∧ v = u ⊗ v − v ⊗ u,

where ⊗ denotes the tensor product. The result is a bivector, which represents the plane spanned by u
and v.

In the context of the Frenet frame, the first normal vector N1 is constructed as a vector orthogonal
to the tangent vector T (s) and the binormal vector b(s). This is achieved by taking the wedge product
of b(s) and T (s) and normalizing the result:

N1 =
b(s) ∧ T (s)
∥b(s) ∧ T (s)∥

.
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Here, ∥b(s) ∧ T (s)∥ is the norm of the bivector b(s) ∧ T (s), and N1 is a unit vector orthogonal to both
b(s) and T (s).

The vector product of x⃗, y⃗, z⃗ is given by the determinant as follows:

x⃗ × y⃗ × z⃗ =

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3 e4

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

∣∣∣∣∣∣∣∣∣∣∣ ,
where [32, 33]

e1 × e2 × e3 = e4, e2 × e3 × e4 = e1, e3 × e4 × e1 = e2,

and

e4 × e1 × e2 = e3.

After establishing the fundamental properties of quaternionic curves and their Frenet frames in four-
dimensional Euclidean space, we now focus on the geometric relationships between these curves and
their associated involute and evolute pairs. The concepts of involutes and evolutes, which describe
the relationship between two curves where the tangents of one curve are normal to the other, have
been extensively studied in classical differential geometry. In the context of quaternionic Bertrand
curves, these relationships take on a more intricate form due to the additional dimensions and the
non-commutative nature of quaternion algebra. Using the type-2 quaternionic frame, we can derive
explicit expressions for the (0,2)-involute and (1,3)-evolute curves, providing deeper insights into the
geometric structure of these curves and their curvature properties.

This analysis not only extends classical results to higher dimensions, but also lays the groundwork
for applications in fields such as robotics, computer graphics, and theoretical physics.

Definition 2.1. Let
γ4(s) : J ⊂ R→ R4

and
β4(s) : J̄ ⊂ R→ R4

be two Qu-curves. If each point of γ4(s) corresponds to points on β4(s) for all s ∈ J via a regular C∞

function, and the normal plane spanned by the normal vectors at each point γ4(s) coincides with the
normal plane spanned by the normal vectors of

β4(s̄) = β4( f (s)),

then γ4(s) is called a (Qu − B)-curve in E4, and β4(s) is called the (Qu − B)-mate of γ4(s).

Definition 2.2. Let
γ4 : J ⊂ R→ R4

and
β4 : J̄ ⊂ R→ R4

be two Qu-curves. If the tangent vectors of γ4 are normal to β4, then γ4 is called a (1, 3)-evolute when
it is spanned by the first and third normal vectors, and β4 is called a (0, 2)-involute when it is spanned
by the first tangent and the third normal vector.
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3. The (0, 2)-involute of a Qu − B curve via a type-2 quaternionic frame in E4

Suppose that
γ4 : J = [0, 1]→ R4

is a regular Qu-B curve whose curvature functions are K, −r, and K − k. Let β4(s̄) be a Qu − B (0, 2)-
mate of γ4 with the Qu-frame {T ∗,N∗1 ,N

∗
2 ,N

∗
3} and curvature functions K∗, −r∗, and (K − k)∗. If the

inner product condition
h(T,T ∗) = 0

holds, then the pair (γ4, β4(s̄)) is called a real quaternion Bertrand involute-evolute curve pair.
The relationship between these vector fields is given by

span{N1,N3} = span{T ∗,N∗2}, span{T,N2} = span{N∗1 ,N
∗
3}. (3.1)

Also, β4(s̄) is called the (0, 2)-involute of γ4. Thus, we can write β4(s̄) as

β4(s̄) = β4( f (s)) = γ4(s) + ξ(s)T (s) + η(s)N2(s), (3.2)

where ξ(s) and η(s) are C∞ functions on [0, 1]. By differentiating (3.2) with respect to s using Eq (2.1),
we obtain

T ∗ f ′ = (1 + ξ′)T + (ξk + ηr)N1 + η
′N2 + η(K − k)N3. (3.3)

Taking the scalar product by vectors T and N2 on both sides of Eq (3.3), we obtain

(1 + ξ′) = 0 and η′ = 0.

So, Eq (3.3) can be rewritten as

T ∗ f ′ = (ξk + ηr)N1 + η(K − k)N3. (3.4)

Taking the substitution for some differentiable functions Γ and Θ as

Γ =
ξk + ηr

f ′
and Θ =

η(K − k)
f ′

. (3.5)

Then Eq (3.4) becomes

T ∗ = ΓN1 + ΘN3, (3.6)

where
Γ2 + Θ2 = 1,

because N1 ⊥ N2.

Case 1. Suppose ξ , 0. In this case, η , 0. Denoting

Γ

Θ
= x1,
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then,

ξK + ηr = ηx1(K − k),
f ′ = ηΘ−1(K − k),

and

Θ2 =
1

1 + x2
1

. (3.7)

Differentiating Eq (3.6), and using Eq (2.1), we obtain

f ′K∗N1 = Γ
′N1 − ΓKT − (Γr + Θ(K − k))N2 + Θ

′N3. (3.8)

Taking the scalar product of Eq (3.8) with N1 and N3, we find that Γ′ = 0 and Θ′ = 0 which implies
that Γ and Θ are constants.

Now, we rewrite Eq (3.8) as

f ′K∗N∗1 = −ΓKT − (Γr + Θ(K − k))N2. (3.9)

Taking the substitution for some differentiable functions Φ and Ψ as

Φ =
−ΓK
f ′K∗

and Ψ =
−(Γr + Θ(K − k))

f ′K∗
, (3.10)

then Eq (3.9) becomes

N∗1 = ΦT + ΨN2, Φ2 + Ψ2 = 1. (3.11)

Denote
Ψ

Φ
= x2.

This implies that
Ψ = Φx2

and
x1(x2K − r) = (K − k), (3.12)

and then
Φ2 =

1
1 + x2

2

.

From Eqs (3.7) and (3.12), we have

τ =
−r
K
=

(
ξ/η − x2

1x2

1 − x2
1

)
,

(K − k)
K

= x1(τ + x2). (3.13)

Denote
Θ

Φ
= x3.
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This implies that
Θ = x3Φ.

Using Eq (3.10), we obtain

f ′K∗ = −x1x3K and x2
3 =

1 + x2
2

1 + x2
1

. (3.14)

Differentiating (3.11) with respect to s using Eq (2.1), we obtain

− f ′K∗T ∗ − f ′r∗N∗2 = Φ
′T + (ΦK + Ψr)N1 + Ψ

′N2 + Ψ(K − k)N3. (3.15)

Taking the scalar product on both sides of Eq (3.15) with T and N2, we find that

Φ′ = 0 and Ψ′ = 0,

which implies that Φ and Ψ are constants.
Thus, we can write

− f ′r∗N∗2 = f ′K∗T ∗ + Φx2(K + x2r)N1 + Φ(K − k)N3. (3.16)

Substituting Eqs (3.6) and (3.14) into (3.16), we obtain

− f ′r∗N∗2 = Φk(x2τ + x2
2 − x2

3)(N1 + x1N3). (3.17)

From Eq (3.17), we can choose

N∗2 = −ΘN1 + ΓN3, f ′K∗ = −x−1
3 K(x2τ + x2

2 − x2
3), (3.18)

for some differentiable functions Θ and Γ. Differentiating (3.18) with respect to to s using Eq (2.1), we
obtain

f ′r∗N∗1 + f ′(K − k)∗N∗3 = ΘKT + (Θr − Γ(K − k))N2.

From this, we obtain

f ′(K − k)∗N∗2 = (ΘK − ϕ f ′r∗)T + (ΘK − ψ f ′r∗ − Γ(K − k))N2. (3.19)

Also, we can write

f ′(K − k)∗N∗3 = (−ϕ f ′r∗ + ΘK)T + (−ψ f ′r∗ + Θr − Γ(K − k))N2

= −x−1
3 K(τ + x2)(−ΨT + ΦN2). (3.20)

Equation (3.20) becomes

N∗3 = −ψT + ϕN2, f ′(K − k) = −x−1
3 K(τ + x2). (3.21)

Theorem 3.1. Let
γ4 : I ⊂ R 7→ E4

be a unit speed (Qu − B)-curve with non-zero curvatures K, −r, and (K − k). Then γ4 has the (0, 2)-
involute of quaternionic Bertrand curve.
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Proof. Let β4(s̄) be the (0, 2)-involute curve of γ4(s). Then the equation for β4(s̄) can be written as:

β4(s̄) = γ4(s) + (ξ0 − s)T (s) + ηN2,

with η , 0.
Then, the curvatures satisfy

τ =
−r
K
=
ξ0 − s − ηx2

1x2

η(1 + x2
1)

,
(K − k)

K
= x1(τ + x2), (3.22)

where ξ0, η, x1, and x2 are constants.
Furthermore, the curvatures of β(s̄) are given by

K∗ =
Φx2

3

η(τ + x2)
,

−r∗ =
Φ(x2τ + x2

2 − x2
3)

ητ1(τ + x2)
,

(K − k)∗ = x1(τ + x2),

where Φ , 0, the related frame is given by

T ∗ = Φx3 (x1N1 + N3) ,
N∗1 = ψ (T + x2N2) ,
N∗2 = Φ (−N1 + x1N3) ,
N∗3 = Φ (−x2T + N2) .

This completes the proof. □

Corollary 3.1. If −r
R or (K−k)

K is constant, then the (Qu − B)-curve γ4 does not have a (0, 2)-involute of
(Qu − B)-curve in the form

β4(s̄) = γ4(s) + (ξ0 − s)T + ηN2(s), η , 0.

Case 2. Suppose η , 0. Thus, Eq (3.21) reads as

β4(s̄) = γ4(s) + (ξ0 − s)T (s). (3.23)

Differentiating (3.23) with respect to s using Eq (2.1), we obtain

f ′T ∗ = (1 + ξ0 − s)T (s) + (ξ0 − s)KN1,

taking the scalar product, we have
f ′T ∗ = (ξ0 − s)KN1. (3.24)

This implies that

f ′ = (s − ξ0)K, T ∗ = −N1. (3.25)
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By differentiating (3.25) with respect to s using Eq (2.1), we obtain:

f ′K∗N∗1 = KT + rN2. (3.26)

Let

υ =

(
K

f ′K∗

)
and ν =

(
r

f ′K∗

)
.

Then
N∗1 = υT + νN2, υ2 + ν2 = 1. (3.27)

This implies that
r
K
=
ν

υ
. (3.28)

Differentiating (3.27) with respect to s using Eq (2.1), we deduce that υ and ν are constants. Hence,

− f ′r∗N∗2 = f ′K∗T ∗ + (υk + νr)N1 + (K − k)N3

= −ν(
ν

υ
K − r∗)N1 + ν(K − k)N3

= ν(K − k)N3. (3.29)

We assume that

N∗2 = −N3, − f ′r∗ = −ν(K − k). (3.30)

By differentiating the Eq (3.31) with respect to s using Eq (2.1), we obtain

f ′(K − k)N∗3 = − f ′r∗N1 + (K − k)N2

= −(K − k)[υνT − (1 − ν2)N2].

Thus, we have

N∗3 = νT + υN2, f ′(K − k)∗ = υ(K − k). (3.31)

Corollary 3.2. Let
γ4 : I 7→ E4

be a unit speed (Qu− B)-curve with non-zero curvatures K, −r, and (K − k). If γ4 have a (0, 2)-involute
of the (Qu − B)-curve

β4(s) = γ4 + (ξ − s),

then curvature K and −r satisfy the equality

νK − υr = 0, (3.32)

where ξ0, υ, and ν are constants and the curvatures of β4(s̄) are given as

K∗ =
1

υ(s − ξ0)
, −r∗ =

−ν(K − k)
(s − ξ0)K

, (K − k)∗ =
υ(K − k)
K(s − ξ0)

.
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The required Qu-frame is given by

T ∗ = −N1,

N∗1 = υT + νN2,

N∗2 = −N3,

N∗3 = −νT + υN2.

4. The (1, 3)-evolute of a (Qu − B)-curve via a type-2 quaternionic frame in E4

Definition 4.1. Let
γ4, β4(s̄) : J ⊂ [0, 1]→ E4

be two unit-speed (Qu − B)-curves. Suppose that γ4 has nonzero curvatures K, −r, and (K − k).
Additionally, assume that β4(s̄) has a Frenet frame {T ∗,N∗1 ,N

∗
2 ,N

∗
3} with nonzero curvatures K∗, −r∗,

and (K − k)∗.
Then, β4(s̄) is called a (1, 3)-evolute if the following conditions hold:

span{T,N2} = span{N∗1 ,N
∗
3}, span{N1,N3} = span{T ∗,N∗2}. (4.1)

In other words, β4(s̄) has the parametric representation

β4(s̄) = γ4(s) + λN1 + µN3, (4.2)

where λ and µ are smooth functions defined on the closed unit interval J.
Differentiating (4.2) with respect to s, we obtain

f ′T ∗ = (1 − λK)T + λ′N1 + (λr − µ(K − k))N2 + µ
′N3. (4.3)

Also,
f ′T ∗ = λ′N1 + µ

′N3. (4.4)

If we denote
c =

λ′

f ′
, d =

µ′

f ′
, (4.5)

then Eq (4.4) becomes
T ∗ = cN1 + dN3, where c2 + d2 = 1. (4.6)

Differentiating (4.4) with respect to s and using Eq (2.1), we obtain

f ′K∗N1 = −cKT + c′N1 − (cr + d(K − k))N2 + d′N3. (4.7)

From Eq (4.5), we obtain

λ = c f + λ0 =
1
K
, µ = d f + µ0 =

−r
K(K − k)

. (4.8)

Consequently, c and d are constants. Hence, Eq (4.7) becomes

f ′K∗N∗1 = −cKT − (cr + d(K − k))N2. (4.9)
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Let
m = −

cK
f ′K∗

and n = −
cr + d(K − k)

f ′K∗
. (4.10)

Then Eq (4.9) becomes

N∗1 = mT + nN2, f ′K∗ = −m−1cK, m2 + n2 = 1. (4.11)

Differentiating Eq (4.11) with respect to s using (2.1), we obtain

− f ′K∗T ∗ − f ′r∗N∗2 = m′T + (mK + nr)N1 + n′N2 + n(K − k)N3. (4.12)

So, from Eq (4.1), we have m′ = 0 and n′ = 0, which implies that m and n are constants. Thus,
Eq (4.12) takes the form

− f ′r∗N∗2 =
(
m2 − c2

m
K + nr

)
N1 +

(
n(K − k) −

cd
m

K
)

N3. (4.13)

Let

ϑ = (− f ′r∗)−1
(
m2 − c2

m
K + nr

)
and ϱ = − f ′r∗)−1(n(K − k) −

cd
m

K. (4.14)

Equation (4.13) becomes
N∗2 = ϑN1 + ϱN3, ϑ2 + ϱ2 = 1. (4.15)

Since T ∗ ⊥ N∗2 , from Eqs (4.6) and (4.15), we have

ϑ

ϱ
= −

d
c
.

Then Eq (4.14) becomes

N∗2 = −dN1 +CN3,− f ′r∗ = −
d
m

K +
n
c

(K − k). (4.16)

Differentiating Eq (4.16) with respect to s using Eq (2.1), we obtain

f ′r∗N1 + f ′(K − k)∗N∗3 = dKT + (dr − c(K − k))N2,

from which we obtain

f ′(K − k)N∗3 =
mn
c

(K − k)T +
[
n2 − c2

c
(K − k) − dK

m + n
m

]
N2. (4.17)

From Eq (4.17), we have

N∗3 = −nT + mN2, f ′(K − k)∗ = −
m
c

(K − k). (4.18)

Theorem 4.1. If
γ4(s) : I 7→ E4

is a unit speed (Qu − B)-curve with non-zero curvatures K, −r, and (K − k). Then γ4(s) possesses
the (1, 3)-evolute of the Qu − B-curve.
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Proof. Suppose that

β4(s̄) = γ4 +
1

K(s)
N1(s) +

−r
K(K − k)

N3(s).

Then curvatures of β4(s̄) are obtained as

K∗ = −
cK
m f ′

, −r∗ =
n
c (K − k) − d

m K
f ′

, (K − k)∗ = −
−m

c (K − k)
f ′

, (4.19)

where
f ′ = (

1
cK′

).

The Qu-frame of the curve β4(s̄) is given by

T ∗ = cN1 + dN3,

N∗1 = mT + nN2,

N2 = −dN1 + cN3,

N3 = −nT + mN2,

where m, n, c, and d are constants.
In the following theorem, we provide both necessary and sufficient conditions for a (Qu − B)-curve

to possess a (1, 3)-(Qu − B)-evolute curve.
This completes the proof. □

Theorem 4.2. Let
γ4(s), β4(s̄) : J ⊂ [0, 1] 7→ R

be two (Qu − B)-curves with non-zero curvatures. Then, β4(s̄) is a (1, 3)-evolute of (Qu − B)-curve of
γ4(s), if and only if there exist Φ and Ψ differentiable of s and constants ∆ , ±1 and µ satisfying:

Φ′ = ∆Ψ′, (4.20)
µ∆K = − (∆r + (K − k)) , (4.21)

∆
[
(K − k)2 − K2 + r2

]
+ r(K − k)(∆2 − 1) , 0. (4.22)

Proof. The curve β4(s̄) can be written as:

β4(s̄) = γ4(s) + Φ(s)N1(s) + Ψ(s)N3(s), (4.23)

for all s̄, s ∈ I, where Φ(s) and Ψ(s) are C∞ functions on the unit interval J. Differentiating (4.23) with
respect to s using Eq (2.1), we have

f ′T ∗ = (1 − ΦK)T (s) + Φ′(s)N1(s) − (Φ(s)r + Ψ(s)(K − k))N2 + Ψ
′(s)N3. (4.24)

Since
{T ∗,N∗2} ⊥ {T,N2},

so
1 − ΦK = 0
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and
−(Φr + Ψ(K − k) = 0,

and from this, we obtain

Φ =
1
K
, Ψ =

−r
K(K − k)

.

Therefore, Eq (4.25) becomes
f ′T ∗ = Φ′(s)N1 + Ψ

′(s)N3. (4.25)

By squaring Eq (4.25), we obtain

( f ′)2 = (Φ′)2 + (Ψ′)2. (4.26)

If we denote

ϵ =
Φ′

f ′
, ε =

Ψ′

f ′
, (4.27)

then from Eqs (4.25) and (4.27), we have

T ∗ = ϵN1 + εN3. (4.28)

Differentiating (4.28), with respect to s using Eq (2.1), we obtain

f ′K∗N∗1 = −ϵKT + ϵ′N1 − (ϵr + ε(K − k))N2 + ε
′N3. (4.29)

Since
{N∗1 ,N

∗
3} ⊥ {N1,N3},

we have
ϵ′ = 0, ε′ = 0. (4.30)

This means that ϵ and ε are constants. Then,

f ′K∗N∗1 = ϵKT − (ϵr + ε(K − k))N2. (4.31)

Squaring Eq (4.31), we have

( f ′)2(K∗)2 = ϵ2K2 − (ϵr + ε(K − k)). (4.32)

From Eq (4.27), we have
Φ′ε = ϵΨ′

and
Φ′ = ∆Ψ′, (4.33)

where
∆ =

ϵ

ε

for ε , 0.
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By Eqs (4.27) and (4.32), we obtain

( f ′)2(K∗)2 =

(
Ψ′

f ′

)2

[∆2K2 − (∆r + (K − k))2]. (4.34)

Also,
f ′2 = (Ψ′)2(∆2 + 1). (4.35)

From (4.34) and (4.35), we get

( f ′)2(K∗)2 =
1

∆2 + 1
[∆2K2 − (∆r + (K − k)2]. (4.36)

Denote

δ1 = −
ϵK
f ′K∗

= −

(
Ψ′∆

f ′2K∗

)
K, (4.37)

δ2 = −
(ϵr + ε(K − k)

f ′K∗
= −

(
Ψ′

f ′2K∗

)
[∆r + (K − k)]. (4.38)

Thus, we can write
µ∆K = −(∆r + (K − k)),

where
µ = −

δ2

δ1
,

for δ1 , 0. Using values of δ1, δ2 in Eq (4.31), we obtain

N∗1 = δ1T + δ2N2. (4.39)

Taking the derivative of (4.39), with respect to s using Eq (2.1), we obtain

− f ′K∗T ∗ − f ′r∗N∗2 = δ
′
1T + (δ1K + δ2r)N1 + δ

′
2N2 + δ2(K − k)N3. (4.40)

Since
{T ∗,N∗2} ⊥ {T,N2},

we get
δ′1 = 0, δ′2 = 0. (4.41)

From (4.28) and (4.37)–(4.40), we obtain

− f ′r∗N∗2 = P(s)N1 + Q(s)N3, (4.42)

where
P(s) =

Ψ′

f ′2(∆2 + 1)K∗
[∆((k − K)2 − K2 + r2) + r(K − k)(∆2 − 1)], (4.43)

Q(s) = −
∆Ψ′

f ′2(∆2 + 1)K∗
[∆((K − k) − K2 + r) + r(K − k)(∆2 − 1)]. (4.44)

Since
− f ′r∗N∗2 , 0,

AIMS Mathematics Volume 10, Issue 3, 4598–4619.



4613

we get the result (4.22):
r(K − k)(∆2 − 1) + ∆[(K − k)2 − K2 + r2]. (4.45)

Conversely, let γ4(s) be an evolute curve satisfying (4.42)–(4.44). Then, we can write

β4(s̄) = γ4(s) + Φ(s)N1(s) + Ψ(s)N3(s). (4.46)

Differentiating (4.46) with respect to s using Eq (2.1), we get

dβ4(s̄)
ds

= Φ′(s)N1 + Ψ
′(s)N3. (4.47)

Using Eqs (4.47) and (4.20), we obtain

dβ4(s̄)
ds

= Ψ′[∆N1 + N3]. (4.48)

From this,

f ′ = ||
β4(s̄)

ds
|| = Ψ′[∆2 + 1] > 0, (4.49)

since Ψ′ > 0. Then Eq (4.48) becomes

f ′T ∗ = Ψ′[∆N1 + N3]. (4.50)

Substituting from Eq (4.49) into (4.50), we obtain

T ∗ =
1

√
∆2 + 1

[∆N1 + N3]. (4.51)

Differentiating (4.51), with respect to s using Eq (2.1), we obtain

dT ∗

ds
=

1

f ′
√
∆2 + 1

[−∆KT − (∆r + (K − k))N2]. (4.52)

By using Eq (4.52), we obtain

K∗ = ||
dT ∗

ds
|| =

√
(∆K)2 − (∆r + (K − k))

f ′
√
∆2 + 1

> 0. (4.53)

From Eqs (4.52) and (4.53), we get

N∗1 =
1

K∗
dT ∗

ds
=

1√
(∆K)2 − (∆r + (K − k))2

[−(∆K)T − (∆r + (K − k))N2]. (4.54)

Let
∆1 =

−∆K√
(∆K)2 − (∆r + (K − k))2

, ∆2 =
−(∆r + (K − k))√

(∆K)2 − (∆r + (K − k))2
. (4.55)

Then, we have
N∗1 = ∆1T + ∆2N2. (4.56)
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Taking the derivative of Eq (4.56), with respect to s using Eq (2.1), we obtain

f ′
dN∗1
ds
= ∆′1T + (∆1K + ∆2r)N1 + ∆

′
2N2 + ∆2(K − k)N3. (4.57)

Differentiating (4.21), we have

−(∆r′ + (K − k))∆K + (∆r + (K − k))∆K′ = 0. (4.58)

From Eq (4.1), we deduce
N′∗ ∈ span{N1,N3},

because N′∗ ⊥ N∗.
∆′1 = 0, ∆′2 = 0. (4.59)

Using Eqs (4.54) and (4.59) in Eq (4.57), we get

dN∗

ds
=
−(∆K)K + (∆r + (K − k))r

f ′
√

(∆K)2 − (∆r + (K − k))2
N1 −

(∆r + (K − k))(K − k)

f ′
√

(∆K)2 − (∆r + (K − k))
N3. (4.60)

From (4.51) and (4.53), we have

K∗T ∗ =

√
(∆K)2 − (∆r + (K − k))2

f ′(∆2 + 1)
[∆N1 + N3]. (4.61)

By Eqs (4.60) and (4.61), we obtain:

dN∗

ds
+ K∗T ∗ =

−r(K − k)(1 − ∆2) + ∆(r2 − K2 + (K − k)2)

f ′(∆2 + 1)
√

(∆K)2 − (∆r + (K − k))2
[N1 − ∆N3], (4.62)

and from Eq (4.62),

−r∗ =
| − r(K − k)(1 − ∆2) + ∆(r2 − K2 + (K − k)2)|

f ′
√

(∆K)2 − (∆r + (K − k))2
> 0. (4.63)

Combining Eqs (4.62) and (4.63), we obtain

N∗2 = −
1
r∗

[
dN∗1
ds∗
+ K∗T ∗

]
=

1
∆2 + 1

[N1 − ∆N3]. (4.64)

Also, N∗3 can be stated as
N∗3 = −∆2T + ∆1B1;

that is
N∗3 =

1√
(∆K)2 − (∆r + (K − k))2

[(∆r + (K − k))T − ∆KN2]. (4.65)

In the end, we find (K − k)∗

(K − k)∗ = h
(
dN∗2
ds

,N∗3

)
=

−K(K − k)

f ′
√

(∆K)2 − (∆r + (K − k))2
, 0. (4.66)

Hence, we find that β4(s̄) is the (1, 3)-evolute curve of the (Qu − B)-curve γ4(s). Therefore,

span{T,N2} = span{N∗1 ,N
∗
3}, span{N1,N3} = span{T ∗,N∗2}.

□
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5. Examples

Consider the following quaternionic Bertrand curve γ4(s) in E4 parameterized by arc length s

γ4(s) = (cos(s), sin(s), cos(s), sin(s)) .

This curve lies on a Clifford torus in E4. The tangent vector T (s) is given by

T (s) =
dγ4

ds

∥
dγ4

ds ∥
=

1
√

2
(− sin(s), cos(s),− sin(s), cos(s)) .

The principal curvature K(s) is the norm of T ′(s)

K(s) = 1.

Thus, the first normal vector is

N1(s) =
1
√

2
(− cos(s),− sin(s),− cos(s),− sin(s)) .

The torsion −r(s) is
−r(s) =

√
2.

Thus, the second normal vector is

N2(s) =
1
√

2
(sin(s),− cos(s), sin(s),− cos(s)) .

The bitorsion K(s) − k(s) is the norm of N′2(s)

K(s) − k(s) =
√

2.

Thus, the third normal vector is

N3(s) =
N′2(s)

K(s) − k(s)
=

1
√

2
(cos(s), sin(s), cos(s), sin(s)) .

5.1. The (0, 2)-involute curve of the curve γ4(s)

The (0, 2)-involute curve β4(s̄) is given by

β4(s̄) = γ4(s) + (ξ0 − s)T (s) + ηN2(s),

where ξ0 and η are constants. Substituting the expressions for γ4(s), T (s), and N2(s), we get:

β4(s̄) = (cos(s), sin(s), cos(s), sin(s))

+ (ξ0 − s) (− sin(s), cos(s),− sin(s), cos(s))

+ η
1
√

2
(sin(s),− cos(s), sin(s),− cos(s)) .

Simplifying, the (0, 2)-involute curve is

β4(s̄) = (cos(s) − (ξ0 − s) sin(s) +
η
√

2
sin(s), sin(s) + (ξ0 − s) cos(s) −

η
√

2
cos(s),

cos(s) − (ξ0 − s) sin(s) +
η
√

2
sin(s), sin(s) + (ξ0 − s) cos(s) −

η
√

2
cos(s)).

AIMS Mathematics Volume 10, Issue 3, 4598–4619.



4616

5.2. The (1, 3)-evolute curve of the curve γ4(s)

The (1, 3)-evolute curve β4(s̄) is given by

β4(s̄) = γ4(s) +
1

K(s)
N1(s) +

−r
K(K − k)

N3(s).

Substituting the curvature functions

K(s) =
√

2, −r(s) =
√

2, and K(s) − k(s) =
√

2,

we get

β4(s̄) = γ4(s) +
1
√

2
N1(s) +

√
2

√
2 ·
√

2
N3(s).

Substituting the expressions for γ4(s), N1(s), and N3(s), we get

β4(s̄) = (cos(s), sin(s), cos(s), sin(s)) .

6. Conclusions

This study has established a comprehensive framework for analyzing the properties
of (0, 2)-involute and (1, 3)-evolute curves associated with quaternionic Bertrand curves in
four-dimensional Euclidean space. By employing a type-2 quaternionic frame, we derived explicit
mathematical expressions for these curves and elucidated their relationships with curvature functions
and Frenet frames. These results deepen our understanding of the geometric structure of quaternionic
curves and their involute-evolute pairs, contributing to the broader field of differential geometry.

The findings of this study have significant potential applications in both theoretical and applied
mathematics. For instance, in robotics and motion planning, the geometric properties of quaternionic
curves and their involute-evolute pairs can be utilized to design motion trajectories for robotic systems
operating in higher-dimensional spaces. In computer graphics and animation, the explicit formulas
derived in this work can be applied to model complex curves and surfaces, particularly in the rendering
of four-dimensional objects.

Looking ahead, several promising directions for future research emerge. First, the results of this
study could be generalized to n-dimensional Euclidean space (En) for n > 4, providing a more
comprehensive understanding of the geometric properties of curves in higher-dimensional spaces.
Second, investigating the properties of quaternionic curves and their involute-evolute pairs in
Minkowski space could yield insights into the behavior of curves in pseudo-Riemannian manifolds,
with potential applications in relativity and cosmology. Finally, exploring the connection between
quaternionic curves and physical systems, such as rigid body dynamics or quantum mechanics, could
lead to new insights into the geometric structure of these systems.
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