Research article

Non-null slant ruled surfaces and tangent bundle of pseudo-sphere

  • Received: 19 April 2024 Revised: 02 July 2024 Accepted: 09 July 2024 Published: 24 July 2024
  • MSC : 53A25, 53C50, 14J26

  • A slant ruled surface is a unique type of ruled surface composed by Frenet vectors that form a constant angle with each other and with specific directions in space. In this paper, the non-null slant ruled surface, which is generated by the striction curve of the natural lift curve, was constructed with a novel approximation in $ E^{3}_{1} $. To establish the approximation, E. Study mapping was then applied to determine the relationship between pseudo-spheres and non-null slant ruled surfaces that are generated by the striction curves of the natural lift curves. Furthermore, $ \vec{\bar{q}}-, \vec{\bar{h}}-, \vec{\bar{a}}- $ spacelike (resp., timelike) slant ruled surfaces were classified by using the striction curves of the natural lift curves in $ E^{3}_{1} $. We also provided examples to illustrate the findings.

    Citation: Emel Karaca. Non-null slant ruled surfaces and tangent bundle of pseudo-sphere[J]. AIMS Mathematics, 2024, 9(8): 22842-22858. doi: 10.3934/math.20241111

    Related Papers:

  • A slant ruled surface is a unique type of ruled surface composed by Frenet vectors that form a constant angle with each other and with specific directions in space. In this paper, the non-null slant ruled surface, which is generated by the striction curve of the natural lift curve, was constructed with a novel approximation in $ E^{3}_{1} $. To establish the approximation, E. Study mapping was then applied to determine the relationship between pseudo-spheres and non-null slant ruled surfaces that are generated by the striction curves of the natural lift curves. Furthermore, $ \vec{\bar{q}}-, \vec{\bar{h}}-, \vec{\bar{a}}- $ spacelike (resp., timelike) slant ruled surfaces were classified by using the striction curves of the natural lift curves in $ E^{3}_{1} $. We also provided examples to illustrate the findings.



    加载中


    [1] B. O'Neill, Semi-Riemannian geometry with applications to relativity, New York: Academic Press, 1983. https://doi.org/10.1137/1028086
    [2] M. Do Carmo, Differential geometry of curves and surfaces, New Jersey: Englewood Cliffs, 1976. https://doi.org/10.1007/978-981-15-1739-6
    [3] M. Altın, A. Kazan, D. W. Yoon, 2-ruled hypersurfaces in Euclidean 4-space, J. Geomet. Phys., 166 (2021), 1–13. https://doi.org/10.1016/j.geomphys.2021.104236 doi: 10.1016/j.geomphys.2021.104236
    [4] A. T. Ali, Non-lightlike constant angle ruled surfaces in Minkowski 3-space, J. Geometry Phys., 157 (2020), 103833. https://doi.org/10.1016/j.geomphys.2020.103833 doi: 10.1016/j.geomphys.2020.103833
    [5] Y. Li, Z. Wang, T. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Algebras, 31 (2021), 1–19. https://doi.org/10.1007/s00006-020-01097-1 doi: 10.1007/s00006-020-01097-1
    [6] Y. Li, X. Jiang, Z. Wang, Singularity properties of Lorentzian Darboux surfaces in Lorentz–Minkowski spacetime, Res. Math Sci., 11 (2024), 1–7. https://doi.org/10.1007/s40687-023-00420-z doi: 10.1007/s40687-023-00420-z
    [7] Y. Li, Z. Chen, S. H. Nazra, R. A. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry, 15 (2023), 277. https://doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277
    [8] B. Y. Chen, Chapter 3-Riemannian submanifolds, Handbook of Differential Geometry, 2000. https://doi.org/10.1007/978-3-319-91755-9-8
    [9] Z. Wang, M. He, Singularities of dual hypersurfaces and hyperbolic focal surfaces along spacelike curves in light cone in Minkowski 5-space, Mediterr. J. Math., 16 (2019), 96. https://doi.org/10.1007/s00009-019-1355-5 doi: 10.1007/s00009-019-1355-5
    [10] Z. Wang, D. Pei, L. Chen, Geometry of 1-lightlike submanifolds in anti-de Sitter n-space, Proc. R. Soc. Edinb. Sect. A., 143 (2013), 1089–1113. https://doi.org/10.1017/S0308210512000558 doi: 10.1017/S0308210512000558
    [11] M. M. Ahmed, I. M. Eldesoky, A. G. Nasr, R. M. Abumandour, S. I. Abdelsalam, The profound effect of heat transfer on magnetic peristaltic flow of a couple stress fluid in an inclined annular tube, Modern Phys. Lett. B, 38 (2024). https://doi.org/10.1142/S0217984924502336
    [12] E. G. Ghania, S. I. Abdelsalam, A. M. Megahed, A. E. Hosni, A. Z. Zaher, Computational workflow to monitor the electroosmosis of nanofluidic flow in the vicinity of a bounding surface, Numer. Heat Tran. Part B, 2024, 1–15. https://doi.org/10.1080/10407790.2024.2364767 doi: 10.1080/10407790.2024.2364767
    [13] M. Magdy, A. G. Nasr, R. M. Abumandour, M. A. El-Shorbagy, The impact of heat transfer and a magnetic field on peristaltic transport with slipping through an asymmetrically inclined channel, Mathematics, 12 (2024). https://doi.org/10.3390/math12121827
    [14] M. Önder, Slant ruled surfaces, arXiv Preprint, 2013. Available from: https://api.semanticscholar.org/CorpusID: 119137669
    [15] E. Karaca, M. Çalışkan, Tangent bundle of unit 2-sphere and slant ruled surfaces, Filomat, 37 (2023), 491–503. https://doi.org/10.2298/FIL2302491K doi: 10.2298/FIL2302491K
    [16] O. Kaya, M. Önder, Characterizations of slant ruled surfaces in the Euclidean 3-space, Caspian J. Math. Sci., 6 (2017), 31–46. https://doi.org/10.22080/CJMS.2017.1637 doi: 10.22080/CJMS.2017.1637
    [17] M. Önder, Non-null slant ruled surfaces, AIMS Math., 4 (2019), 384–396. https://doi.org/10.3934/math.2019.3.384 doi: 10.3934/math.2019.3.384
    [18] M. M. Ahmed, I. M. Eldesoky, A. G. Nasr, R. M. Abumandour, S. I. Abdelsalam, The effects of endoscope and heat transfer on peristaltic flow of a second grade fluid in an inclined tube, J. Mechan. Medic. Biol., 16 (2016). https://doi.org/10.1142/S0219519416500573
    [19] P. K. Yadav, S. Jaiswal, Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar-Newtonian fluids in a porous medium, Canadian J. Phys., 96 (2018). https://doi.org/10.1139/cjp-2017-0998
    [20] I. S. Fischer, Dual-number methods in kinematics, statics and dynamics, New York: RC Press, 1999. https://doi.org/10.1201/9781315141473
    [21] E. Study, Geometry der dynamen, Monatsh. F. Mathemat. Physik, 14 (1903), A70–A75. https://doi.org/10.1007/BF01707030 doi: 10.1007/BF01707030
    [22] H. H. Uğurlu, A. Çalışkan, The study mapping for directed spacelike and timelike lines in Minkowski 3-space $\mathbb{R}^{3}_{1}$, Math. Comput. Appl., 1 (1996), 142–148. https://doi.org/10.3390/mca1020142 doi: 10.3390/mca1020142
    [23] B. Karakaş, H. Gündoğan, A relation among $DS^{2}$, $TS^{2}$ and non-cylindirical ruled surfaces, Math. Commun., 8 (2003), 9–14. Available from: https://hrcak.srce.hr/736
    [24] F. Hathout, M. Bekar, Y. Yaylı, Ruled surfaces and tangent bundle of unit 2-sphere, Int. J. Geometric Method. Modern Phys., 2 (2017). https://doi.org/10.1142/S0219887817501456 doi: 10.1142/S0219887817501456
    [25] M. Bekar, F. Hathout, Y. Yaylı, Tangent bundle of pseudo-sphere and ruled surfaces in Minkowski 3-space, Gener. Lett. Math., 5 (2018), 58–70. https://doi.org/10.31559/glm2018.5.2.1 doi: 10.31559/glm2018.5.2.1
    [26] E. Karaca, M. Çalışkan, Ruled surfaces and tangent bundle of pseudo-sphere of natural lift curves, J. Sci. Arts, 20 (2020), 583–586. https://doi.org/10.46939/J.Sci.Arts-20.3-a07 doi: 10.46939/J.Sci.Arts-20.3-a07
    [27] E. Peyghan, A. Naderifard, A. Tayebi, Almost paracontact structures on tangent sphere bundle, Int. J. Geometric Method. Modern Phys., 10 (2013). https://doi.org/10.1142/S0219887813200156 doi: 10.1142/S0219887813200156
    [28] N. Georgiou, B. Guilfoyle, A new geometric structure on tangent bundles, J. Geometry Phys., 172 (2022), 104415. https://doi.org/10.1016/j.geomphys.2021.104415 doi: 10.1016/j.geomphys.2021.104415
    [29] J. A. Thorpe, Elementary topics in differential geometry, New York: Heidelberg-Berlin, 1979. https://doi.org/10.1007/978-1-4612-6153-7
    [30] M. Önder, H. H. Uğurlu, Frenet frames and invariants of timelike ruled surfaces, Eng. Phys. Math., 4 (2013), 507–513. https://doi.org/10.1016/j.asej.2012.10.003 doi: 10.1016/j.asej.2012.10.003
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(579) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog