A slant ruled surface is a unique type of ruled surface composed by Frenet vectors that form a constant angle with each other and with specific directions in space. In this paper, the non-null slant ruled surface, which is generated by the striction curve of the natural lift curve, was constructed with a novel approximation in $ E^{3}_{1} $. To establish the approximation, E. Study mapping was then applied to determine the relationship between pseudo-spheres and non-null slant ruled surfaces that are generated by the striction curves of the natural lift curves. Furthermore, $ \vec{\bar{q}}-, \vec{\bar{h}}-, \vec{\bar{a}}- $ spacelike (resp., timelike) slant ruled surfaces were classified by using the striction curves of the natural lift curves in $ E^{3}_{1} $. We also provided examples to illustrate the findings.
Citation: Emel Karaca. Non-null slant ruled surfaces and tangent bundle of pseudo-sphere[J]. AIMS Mathematics, 2024, 9(8): 22842-22858. doi: 10.3934/math.20241111
A slant ruled surface is a unique type of ruled surface composed by Frenet vectors that form a constant angle with each other and with specific directions in space. In this paper, the non-null slant ruled surface, which is generated by the striction curve of the natural lift curve, was constructed with a novel approximation in $ E^{3}_{1} $. To establish the approximation, E. Study mapping was then applied to determine the relationship between pseudo-spheres and non-null slant ruled surfaces that are generated by the striction curves of the natural lift curves. Furthermore, $ \vec{\bar{q}}-, \vec{\bar{h}}-, \vec{\bar{a}}- $ spacelike (resp., timelike) slant ruled surfaces were classified by using the striction curves of the natural lift curves in $ E^{3}_{1} $. We also provided examples to illustrate the findings.
[1] | B. O'Neill, Semi-Riemannian geometry with applications to relativity, New York: Academic Press, 1983. https://doi.org/10.1137/1028086 |
[2] | M. Do Carmo, Differential geometry of curves and surfaces, New Jersey: Englewood Cliffs, 1976. https://doi.org/10.1007/978-981-15-1739-6 |
[3] | M. Altın, A. Kazan, D. W. Yoon, 2-ruled hypersurfaces in Euclidean 4-space, J. Geomet. Phys., 166 (2021), 1–13. https://doi.org/10.1016/j.geomphys.2021.104236 doi: 10.1016/j.geomphys.2021.104236 |
[4] | A. T. Ali, Non-lightlike constant angle ruled surfaces in Minkowski 3-space, J. Geometry Phys., 157 (2020), 103833. https://doi.org/10.1016/j.geomphys.2020.103833 doi: 10.1016/j.geomphys.2020.103833 |
[5] | Y. Li, Z. Wang, T. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Algebras, 31 (2021), 1–19. https://doi.org/10.1007/s00006-020-01097-1 doi: 10.1007/s00006-020-01097-1 |
[6] | Y. Li, X. Jiang, Z. Wang, Singularity properties of Lorentzian Darboux surfaces in Lorentz–Minkowski spacetime, Res. Math Sci., 11 (2024), 1–7. https://doi.org/10.1007/s40687-023-00420-z doi: 10.1007/s40687-023-00420-z |
[7] | Y. Li, Z. Chen, S. H. Nazra, R. A. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry, 15 (2023), 277. https://doi.org/10.3390/sym15020277 doi: 10.3390/sym15020277 |
[8] | B. Y. Chen, Chapter 3-Riemannian submanifolds, Handbook of Differential Geometry, 2000. https://doi.org/10.1007/978-3-319-91755-9-8 |
[9] | Z. Wang, M. He, Singularities of dual hypersurfaces and hyperbolic focal surfaces along spacelike curves in light cone in Minkowski 5-space, Mediterr. J. Math., 16 (2019), 96. https://doi.org/10.1007/s00009-019-1355-5 doi: 10.1007/s00009-019-1355-5 |
[10] | Z. Wang, D. Pei, L. Chen, Geometry of 1-lightlike submanifolds in anti-de Sitter n-space, Proc. R. Soc. Edinb. Sect. A., 143 (2013), 1089–1113. https://doi.org/10.1017/S0308210512000558 doi: 10.1017/S0308210512000558 |
[11] | M. M. Ahmed, I. M. Eldesoky, A. G. Nasr, R. M. Abumandour, S. I. Abdelsalam, The profound effect of heat transfer on magnetic peristaltic flow of a couple stress fluid in an inclined annular tube, Modern Phys. Lett. B, 38 (2024). https://doi.org/10.1142/S0217984924502336 |
[12] | E. G. Ghania, S. I. Abdelsalam, A. M. Megahed, A. E. Hosni, A. Z. Zaher, Computational workflow to monitor the electroosmosis of nanofluidic flow in the vicinity of a bounding surface, Numer. Heat Tran. Part B, 2024, 1–15. https://doi.org/10.1080/10407790.2024.2364767 doi: 10.1080/10407790.2024.2364767 |
[13] | M. Magdy, A. G. Nasr, R. M. Abumandour, M. A. El-Shorbagy, The impact of heat transfer and a magnetic field on peristaltic transport with slipping through an asymmetrically inclined channel, Mathematics, 12 (2024). https://doi.org/10.3390/math12121827 |
[14] | M. Önder, Slant ruled surfaces, arXiv Preprint, 2013. Available from: https://api.semanticscholar.org/CorpusID: 119137669 |
[15] | E. Karaca, M. Çalışkan, Tangent bundle of unit 2-sphere and slant ruled surfaces, Filomat, 37 (2023), 491–503. https://doi.org/10.2298/FIL2302491K doi: 10.2298/FIL2302491K |
[16] | O. Kaya, M. Önder, Characterizations of slant ruled surfaces in the Euclidean 3-space, Caspian J. Math. Sci., 6 (2017), 31–46. https://doi.org/10.22080/CJMS.2017.1637 doi: 10.22080/CJMS.2017.1637 |
[17] | M. Önder, Non-null slant ruled surfaces, AIMS Math., 4 (2019), 384–396. https://doi.org/10.3934/math.2019.3.384 doi: 10.3934/math.2019.3.384 |
[18] | M. M. Ahmed, I. M. Eldesoky, A. G. Nasr, R. M. Abumandour, S. I. Abdelsalam, The effects of endoscope and heat transfer on peristaltic flow of a second grade fluid in an inclined tube, J. Mechan. Medic. Biol., 16 (2016). https://doi.org/10.1142/S0219519416500573 |
[19] | P. K. Yadav, S. Jaiswal, Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar-Newtonian fluids in a porous medium, Canadian J. Phys., 96 (2018). https://doi.org/10.1139/cjp-2017-0998 |
[20] | I. S. Fischer, Dual-number methods in kinematics, statics and dynamics, New York: RC Press, 1999. https://doi.org/10.1201/9781315141473 |
[21] | E. Study, Geometry der dynamen, Monatsh. F. Mathemat. Physik, 14 (1903), A70–A75. https://doi.org/10.1007/BF01707030 doi: 10.1007/BF01707030 |
[22] | H. H. Uğurlu, A. Çalışkan, The study mapping for directed spacelike and timelike lines in Minkowski 3-space $\mathbb{R}^{3}_{1}$, Math. Comput. Appl., 1 (1996), 142–148. https://doi.org/10.3390/mca1020142 doi: 10.3390/mca1020142 |
[23] | B. Karakaş, H. Gündoğan, A relation among $DS^{2}$, $TS^{2}$ and non-cylindirical ruled surfaces, Math. Commun., 8 (2003), 9–14. Available from: https://hrcak.srce.hr/736 |
[24] | F. Hathout, M. Bekar, Y. Yaylı, Ruled surfaces and tangent bundle of unit 2-sphere, Int. J. Geometric Method. Modern Phys., 2 (2017). https://doi.org/10.1142/S0219887817501456 doi: 10.1142/S0219887817501456 |
[25] | M. Bekar, F. Hathout, Y. Yaylı, Tangent bundle of pseudo-sphere and ruled surfaces in Minkowski 3-space, Gener. Lett. Math., 5 (2018), 58–70. https://doi.org/10.31559/glm2018.5.2.1 doi: 10.31559/glm2018.5.2.1 |
[26] | E. Karaca, M. Çalışkan, Ruled surfaces and tangent bundle of pseudo-sphere of natural lift curves, J. Sci. Arts, 20 (2020), 583–586. https://doi.org/10.46939/J.Sci.Arts-20.3-a07 doi: 10.46939/J.Sci.Arts-20.3-a07 |
[27] | E. Peyghan, A. Naderifard, A. Tayebi, Almost paracontact structures on tangent sphere bundle, Int. J. Geometric Method. Modern Phys., 10 (2013). https://doi.org/10.1142/S0219887813200156 doi: 10.1142/S0219887813200156 |
[28] | N. Georgiou, B. Guilfoyle, A new geometric structure on tangent bundles, J. Geometry Phys., 172 (2022), 104415. https://doi.org/10.1016/j.geomphys.2021.104415 doi: 10.1016/j.geomphys.2021.104415 |
[29] | J. A. Thorpe, Elementary topics in differential geometry, New York: Heidelberg-Berlin, 1979. https://doi.org/10.1007/978-1-4612-6153-7 |
[30] | M. Önder, H. H. Uğurlu, Frenet frames and invariants of timelike ruled surfaces, Eng. Phys. Math., 4 (2013), 507–513. https://doi.org/10.1016/j.asej.2012.10.003 doi: 10.1016/j.asej.2012.10.003 |