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Abstract: A slant ruled surface is a unique type of ruled surface composed by Frenet vectors that form
a constant angle with each other and with specific directions in space. In this paper, the non-null slant
ruled surface, which is generated by the striction curve of the natural lift curve, was constructed with
a novel approximation in E3

1. To establish the approximation, E. Study mapping was then applied to
determine the relationship between pseudo-spheres and non-null slant ruled surfaces that are generated
by the striction curves of the natural lift curves. Furthermore, ~̄q−, ~̄h−, ~̄a− spacelike (resp., timelike)
slant ruled surfaces were classified by using the striction curves of the natural lift curves in E3

1. We
also provided examples to illustrate the findings.
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1. Introduction

In mathematics, it is widely acknowledged in surface theory that a surface is considered as ruled
if a straight line passes through each point on the surface [1, 2]. Ruled surfaces are among the most
fascinating topics in surface theory since they are fundamental for geometric modeling and commonly
utilized in non-lightlike geometry [3, 4] and in submanifold theory with the view of singularity
properties [5–10]. They are also used in many other scientific fields, including mathematical physics
and biology. Considering the ruled surface as an inclined tube or asymmetrically inclined channel
contributes to a deeper understanding of the profound effect of heat transfer on magnetic peristaltic
flows [11–13]. Moreover, research led to an understanding of experimental tools such as magnetic
resonance imaging (MRI) and radiosurgery, the effects of endoscopes, fluid behavior especially in
non-Newtonian scenarios, and the behavior of electrocosmotic forces. Slant ruled surfaces, which are
special ruled surfaces, were defined in [14]. Different from a ruled surface, the Frenet vectors of these
surfaces make a constant angle with a fixed direction on a slant ruled surface. In the literature, the
theoretical and real-world applications of these surfaces take advantage of the geometric behavior of
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the slant ruled surface [15–19]. In [15–17], the differential geometric properties of these surfaces were
supported by significant remarks and theorems. Therefore, these results were used to construct the
Frenet frame for these surfaces. In [18], it was emphasized that velocity increases with an increase in
inclination angle, and the best pumping rate appears in the vertical tube as compared to the horizontal
tube. Hence, the results contributed to increasing the velocity of the fluid by using the heat generation
parameter. In [19], angles of inclination of the magnetic field affected two-phase fluid flow through a
horizontal porous channel in the presence of a uniformly inclined magnetic field.

On the other hand, dual numbers were defined by W. K. Clifford as a tool for geometrical research.
Moreover, these numbers were applied to screw systems, spatial mechanisms, iterative methods, among
others. Then, dual numbers were employed in line geometry and kinematics by E. Study in [20, 21].
Furthermore, E. Study discovered that there is one-to-one correspondence between oriented lines in
Euclidean 3-space and the dual points of the dual unit sphere in dual 3-space. The discovery was
adapted to Minkowski 3-space by constructing the relation between oriented lines in Minkowski 3-
space and the dual points of the pseudo-spheres in [22].

Combining the dual points of the unit dual sphere and the ruled surfaces in E3, an isomorphism
was constructed among the unit dual sphere, the tangent bundle of the unit 2-sphere, and the non-
cyclindirical ruled surface, as shown in [23]. In light of this study, each curve on the tangent bundles
of unit 2-spheres (or tangent bundles of pseudo-spheres) corresponds to a ruled surface, as discussed
in [24–26]. Furthermore, these concepts have extensive applications on tangent bundles in [27, 28]. In
these studies, the tangent bundles are defined to provide an almost metrical paracontact structure and
the conditions for a Lagrangian graph.

Overall, when studying slant ruled surfaces, the relation between non-null slant ruled surfaces
and tangent bundles of pseudo-spheres provides us with some feasible approaches to investigate
some geometric properties such as developability condition, convenience of physical applications,
determining geodesic or non-geodesic cases, or adapting the curve to the new ruled surface. However,
no literature exists regarding the non-null slant ruled surface generated by the natural lift curve and the
isomorphism between the pseudo-spheres and the subsets of the tangent bundles of pseudo-spheres.
Therefore, motivated by the definition of the natural lift curve, which is the endpoint of the unit tangent
vector of the main curve in [29], a new perspective of the non-null slant ruled surface is given by
using E. Study mapping and the correspondence between the subsets of the tangent bundles of pseudo-
spheres and the slant ruled surface in E3

1. For this aim, the striction curve of the natural lift curve on the
subsets of the tangent bundles of pseudo-spheres is related to non-null slant ruled surfaces by exploiting
the Frenet frame mentioned in [30]. Then, the classification of the slant ruled surface is denoted by
non-null q̄−, h̄−, and ā− slant ruled surfaces. Then, some notable theorems and remarks are mentioned
for these slant surfaces. The main result of the paper is Theorem 4.7, which gives the classification of
the canonical curvature for determining the non-null slant ruled surface.

The rest of this paper is organized as follows. Section 2 shows some basic definitions for
Minkowski 3-space, the natural lift curves, and the correspondence among the ruled surfaces and
pseudo-spheres. Section 3 describes the differential geometric properties of the ruled surface in E3

1.

Section 4 shows new results about non-null slant-ruled surfaces. In Section 5, some examples are given
to verify the consequences. Section 6 concludes the work and provides future research directions.
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2. Preliminaries

In this section, basic concepts are given about Minkowski 3-space, dual numbers, and the
correspondence between the tangent bundles of pseudo-spheres and non-null ruled surfaces.

Assume that E3
1 is a Minkowski 3-space with Lorentzian metric 〈, 〉L = x2

1 + x2
2 − x2

3, where
~x = (x1, x2, x3) is the vector in Minkowski 3-space. Then, there are three types of vectors in Minkowski
space: For ~x ∈ E3

1, ~x is called a spacelike, timelike, or lightlike vector if 〈~x, ~x〉L > 0, 〈~x, ~x〉L < 0 or
〈~x, ~x〉L = 0, ~x , 0, respectively.

In E3
1, the Lorentzian and the hyperbolic unit spheres are denoted, respectively, by

S2
1 = {~x = (x1, x2, x3) ∈ E3

1 :< ~x, ~x >L= 1},
H2 = {~x = (x1, x2, x3) ∈ E3

1 :< ~x, ~x >L= −1},

in [1]. S2
1 and H2 have tangent bundles that are given by

TS2
1 = {(γ, ϑ) ∈ S2

1 × E3
1 :< γ, ϑ >L= 0},

TH2 = {(γ, ϑ) ∈ H2 × E3
1 :< γ, ϑ >L= 0}.

Assume that TM̃ and TM̂ are the subsets of TS2
1 and TH2, given as follows:

TM̃ = {(γ̄, ϑ̄) ∈ S2
1 × E3

1 :< γ̄, ϑ̄ >L= 0},
TM̂ = {(γ̄, ϑ̄) ∈ H2 × E3

1 :< γ̄, ϑ̄ >L= 0},

where γ̄ and ϑ̄ denote the derivatives of γ and ϑ, respectively [26]. In E3
1, the ruled surface is

characterized by
φ(u, s) = β(u) + sγ(u); s ∈ R, u ∈ J ⊆ R, (2.1)

where β(u) = γ̄(u) ×L ϑ̄(u) and γ(u) are the base and the director curves, respectively in [25].
The set of dual numbers is represented by

D = {X = x + εx∗; (x, x∗) ∈ R × R, ε2 = 0}.

The set
D3 = {~X = (X1, X2, X3) : Xi = xi + x∗i ∈ D, 1 ≤ i ≤ 3},

is called D−Module, which is a module over D. Moreover, the elements of the set are defined as a dual
vector. The dual vector can be written as

~X = ~x + ε~x∗.

Here ~x = (x1, x2, x3) and ~x∗ = (x∗1, x
∗
2, x

∗
3) are real vectors. For ~X = ~x + ε~x∗ and ~Y = ~y + ε~y∗, the addition

and Lorentzian inner product are, respectively,

~X + ~Y = (~x + ~y) + ε(~x∗ + ~y∗),
〈~X, ~Y〉L = 〈~x, ~y〉L + ε(〈~x, ~y∗〉L + 〈~x∗, ~y〉L).
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The norm of ~X is denoted by |~X|L =

√
|〈~X, ~X〉L|. In terms of Lorentzian inner product, a dual Lorentzian

vector ~X = ~x + ε~x∗ is called a spacelike, timelike, or lightlike vector if ~x is spacelike, timelike, or
lightlike, respectively. The set of all dual Lorentzian vectors is represented by D3

1. For more detailed
descriptions, see [20, 21].

The sets

S 2
1 = {~X = ~x(u) + ε~x∗(u) ∈ D3

1 :< ~x, ~x >L= 1, < ~x, ~x∗ >L= 0},
H2 = {~X = ~x(u) + ε~x∗(u) ∈ D3

1 :< ~x, ~x >L= −1, < ~x, ~x∗ >L= 0},

are called dual hyperbolic and dual Lorentzian unit spheres, respectively [1].

Definition 2.1. For the smooth curve Γ, Γ̄ is called the natural lift on the subsets of the tangent bundles
(i.e., TM̃ or TM̂), and it fulfills the equation given in [16]:

Γ̄(u) = (γ̄(u), ϑ̄(u)). (2.2)

Proposition 2.2. In [16], there are the following isomorphisms:

TM̃ → S 2
1,

Γ̄ = (γ̄, ϑ̄) 7−→ ~̄Γ = ~̄γ + ε~̄ϑ,

and

TM̂ → H2,

Γ̄ = (γ̄, ϑ̄) 7−→ ~̄Γ = ~̄γ + ε~̄ϑ.

Theorem 2.3. (E. Study mapping) The directed timelike (resp., spacelike) lines in E3
1 and ordered pairs

of vectors on S 2
1 and H2 have a one-to-one correspondence [22].

In the literature, each curve on the tangent bundle of pseudo-spheres was corresponds to a non-
null ruled surface by using E. Study mapping in E3

1 [25]. In light of this correspondence, the relation
between the non-null ruled surface generated by the natural lift curve and the subsets of the tangent
bundles of pseudo-spheres was constructed in [26]:

TM̃ → S 2
1 → E3

1,

Γ̄(u) = (γ̄(u), ϑ̄(u)) 7−→ ~̄Γ(u) = ~̄γ(u) + ε~̄ϑ(u)→ φ̄(u, s) = γ̄(u) ×L ϑ̄(u) + sγ̄(u),

and

TM̂ → H2 → E3
1,

Γ̄(u) = (γ̄(u), ϑ̄(u)) 7−→ ~̄Γ(u) = ~̄γ(u) + ε~̄ϑ(u)→ φ̄(u, s) = γ̄(u) ×L ϑ̄(u) + sγ̄(u).
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3. On ruled surfaces in E3
1

In this section, some geometric properties are given about ruled surfaces in E3
1.

Assume that
~h(u, s) = ~k(u) + s~q(u), u ∈ I, v ∈ R, (3.1)

is the parametric representation of φ, where ~k(u) and ~q(u) represent the base curve and the generating
lines for ~h(u, s) in [30]. The unit normal vector ~m is

m =
~hu ×L ~hs

|~hu ×L ~hs|L

=
(~k
′

+ s~q
′

) ×L ~q√
|〈~k′ , ~q〉2L − 〈~q, ~q〉L〈~k

′
+ s~q,~k′ + s~q〉L|L

. (3.2)

Therefore, we have

~a = lim
s→∞

~m(u1, s) =
~q
′

×L ~q
|~q′ |L

, (3.3)

along a ruling u = u1. Exploiting the orthogonality of ~q, ~q
′

and relation Eq (3.3), the unit vector ~̄h is
obtained by

~h =
~q
′

|~q′ |L
. (3.4)

Additionally, the striction curve of the ruled surface is defined by

~c(u) = ~k(u) −
〈~q
′

(u),~k
′

(u)〉L
〈~q′(u), ~q′(u)〉L

~q(u). (3.5)

The orthonormal system {~c; ~q,~h, ~a} is referred to as the Frenet frame of φ with respect to the
striction curve. Furthermore, the ruling, central normal, and central tangent vectors are denoted as ~q,~h,
and ~a, respectively.

Definition 3.1. [17] Assume that φ is the ruled surface in E3
1. The ruled surface is classified in terms

of Frenet vectors as follows:
(i) If ~q and ~a are spacelike vectors, ~h is a timelike vector, and φ is called a spacelike ruled surface
in E3

1.

(ii) If ~q and ~h are spacelike vectors, ~a is a timelike vector, and φ is called a timelike ruled surface in E3
1.

(iii) If ~h and ~a are spacelike vectors, ~q is a timelike vector, and φ is called a timelike ruled surface
in E3

1.

The character φ is denoted according to Lorentzian characters of the ruling and central normal
vectors as follows [17]:
(i) If the central normal vector ~h is spacelike and the ruling ~q is spacelike, the ruled surface φ is the
type of φ+.

(ii) If the central normal vector ~h is spacelike and the ruling ~q is timelike, the ruled surface φ is the type
of φ−.
(iii) If the central normal vector ~h is timelike, the ruled surface φ is the type of φx.
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We observe that φ+ and φ− are timelike, and φx is a spacelike ruled surface. Hence, the
parametrization of φ is given as follows:

~h(u, s) = ~c(u) + s~q(u),

where 〈~q(u), ~q(u) = ±1〉 and 〈~h(u),~h(u) = ±1〉.
In the rest of the paper, the orthonormal system {~̄q, ~̄h, ~̄a} is referred to as the Frenet frame of φ̄

concerning the striction curve of the natural lift curve.

4. Non-null slant ruled surfaces and tangent bundle of pseudo-sphere

In this section, the relation between tangent bundles of pseudo-spheres and non-null slant ruled
surfaces is introduced. Then, some substantial theorems and remarks are proved using the relation.

Definition 4.1. A ruled surface φ̄(u, s) = ~̄q(u) ×L
~̄ϑ(u) + s~̄q(u) in E3

1 is called a non-null ~̄q− (resp.,
~̄h−, ~̄a−) slant ruled surface if three conditions are met:

First, the base curve is

β̄(u) = ~̄q(u) ×L
~̄ϑ∗(u)

= (~̄q(u) ×L
~̄ϑ(u)) −

〈(~̄q(u) ×L
~̄ϑ(u))

′~̄q
′

(u)〉L
〈~̄q′(u)~̄q′(u)〉L

~̄q(u), ~̄ϑ∗ ⊆ ~̄ϑ.

Second, the equations |~̄q(u)|L = 1 (meaning if ~̄q(u) is spacelike, then 〈~̄q(u), ~̄q(u)〉L = 1 and if ~̄q(u)
is timelike, then 〈~̄q(u), ~̄q(u)〉L = −1 ) and 〈~̄q(u), ~̄ϑ∗(u)〉L = 0 are satisfied.

Last, ~̄q − (resp., ~̄h−, ~̄a−) needs to have a fixed non-zero direction with a constant angle.

Let Γ̂(u) = ~̄q(u) + ε~̄ϑ∗(u) be a striction curve of the natural lift curve on S 2
1 (resp., H2) with

parameter u. In E3
1, the timelike (resp., spacelike) slant ruled surface generated by Γ̂(u) is denoted by

φ̂(u, s) = ~̄q(u) ×L
~̄ϑ∗(u) + s~̄q(u), (4.1)

where the base curve is
β̄(u) = ~̄q(u) ×L

~̄ϑ∗(u). (4.2)

As a result, we can give these isomorphisms:

TM̃ → S 2
1 → E3

1,

Γ̂(u) = (q̄(u), ϑ̄∗(u)) 7−→ ~̂Γ(u) = ~̄q(u) + ε~̄ϑ∗(u) 7−→ φ̂(u, s) = ~̄q(u) × ~̄ϑ∗(u) + s~̄q(u),

and

TM̂ → H2 → E3
1,

Γ̂(u) = (q̄(u), ϑ̄∗(u)) 7−→ ~̂Γ(u) = ~̄q(u) + ε~̄ϑ∗(u) 7−→ φ̂(u, s) = ~̄q(u) × ~̄ϑ∗(u) + s~̄q(u).
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Definition 4.2. Let φ̂(u, s) be a non-null slant ruled surface corresponding to Γ̂(u) in E3
1, represented

by the parametrization
φ̂(u, s) = β̄(u) + s~̄q(u), (4.3)

where β̄(u) is the striction curve of φ̂(u, s). Let {~̄q, ~̄h, ~̄a} be Frenet vectors of φ̂. For the canonical
curvature κ̄ , 0,

〈~̄q, ~u〉L = cos θ = constant; θ ,
π

2
,

if θ is the angle between the ruling and a fixed non-zero direction ~u in the space. φ̂ refers to a ~̄q−
timelike (resp., spacelike) slant ruled surface.

Theorem 4.3. Assume that φ̂ is a ~̄q− slant ruled surface acquired by the striction curve of the natural
lift curve with the Frenet vectors {~̄q, ~̄h, ~̄a} satisfying the conical curvature κ̄ , 0 in E3

1. Then, there are
the following conditions:
(i) If φ̂ is ~̄q− spacelike slant ruled surface, then

< ~̄a, ~u >L= −
1
κ̄
< ~̄q, ~u >L . (4.4)

(ii) If φ̂ is ~̄q− timelike slant ruled surface with spacelike ruling, then

< ~̄a, ~u >L=
1
κ̄
< ~̄q, ~u >L . (4.5)

(iii) If φ̂ is ~̄q− timelike slant ruled surface with timelike ruling, then

< ~̄a, ~u >L= −
1
κ̄
< ~̄q, ~u >L . (4.6)

Proof. By Definition 4.2, we examine three conditions as follows:
(i) Let φ̂ be ~̄q− spacelike slant ruled surface. We know that

< ~̄q, ~u >L= constant. (4.7)

From the derivative of Eq (4.7), we obtain

< ~̄q′, ~u >L + < ~̄q, ~u′ >L= 0. (4.8)

Since ~u is constant and ~̄q′ = ~̄h, we get
< ~̄h, ~u >L= 0. (4.9)

Taking the derivative of Eq (4.9) and using ~̄h′ = ~̄q + κ̄~̄a, we write

< ~̄q + κ̄~̄a, ~u >L= 0. (4.10)

After some calculations, we get the desired result. For the proofs of (ii) and (iii), we use the Frenet
formulas for ~̄q− timelike slant ruled surfaces. Therefore, it can be easily seen that the equalities are
satisfied by the same steps given above. �
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Theorem 4.4. Let φ̂ be ~̄q− slant ruled surface acquired by the striction curve of the natural lift curve
with the Frenet vectors {~̄q, ~̄h, ~̄a} satisfying κ , 0 in E3

1. Assuming < ~̄q, ~u >= λ, λ ∈ R, there are the
following conditions:
(i) If φ̂ is a ~̄q− spacelike slant ruled surface, then

~u = λ~̄q −
λ

κ̄
~̄a. (4.11)

(ii) If φ̂ is a ~̄q− timelike slant ruled surface with spacelike ruling, then

~u = λ~̄q −
λ

κ̄
~̄a. (4.12)

(iii) If φ̂ is a ~̄q− timelike slant ruled surface with timelike ruling, then

~u = −λ~̄q −
λ

κ̄
~̄a. (4.13)

Proof. Since φ̂ is ~̄q− slant ruled surface, ~̄h is orthogonal to ~u from Eq (4.9). Hence, ~u is written as
the linear combination of λ1 = λ1(u1) and λ2 = λ2(u1) with the arc-length parameter u1. Therefore,
we have

~u = λ1~̄q + λ2~̄a. (4.14)

(i) Let φ̂ be a ~̄q− spacelike slant ruled surface. Taking the inner product of ~̄q and Eq (4.14), we get

< ~̄q, ~u >L= λ1 = λ. (4.15)

Similarly, taking the inner product of ~̄a and Eq (4.14), we calculate λ2 = −λ
κ̄
. Substituting λ1 and λ2

into Eq (4.14), the proof is completed.
Exploiting the same steps mentioned above, it can be simply seen that < ~̄q, ~u >L= λ1 = λ and

λ2 = −λ
κ

for (ii).
(iii) Assume that φ̂ is ~̄q− timelike slant ruled surface with timelike ruling. Taking the inner product of
~̄q and Eq (4.14), we get

< ~̄q, ~u >L= −λ1 = λ. (4.16)

Similarly, from the inner product of ~̄a and Eq (4.14), we calculate λ2 = −λ
κ̄
. Substituting λ1 and λ2 into

Eq (4.14), we obtain Eq (4.13). �

Remark 4.5. Let φ̂ be a ruled surface with the Frenet vectors {~̄q, ~̄h, ~̄a} satisfying κ̄ , 0 in E3
1. Then, φ̂

is a non-null ~̄q− slant ruled surface acquired by the striction curve of the natural lift curve if and only
if κ̄ is constant.

Proof. (i) Assume that φ̂ is a non-null ~̄q− slant ruled surface acquired by the natural lift curve. From
Theorem 4.4,

~u = λ~̄q −
λ

κ̄
~̄a. (4.17)

Differentiating Eq (4.17), we have

~u′ = λ~̄h +
λκ̄′

κ̄2
~̄a −

λ

κ̄
κ̄~̄h. (4.18)
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Thus, we find that κ̄ is constant. Conversely, assume that κ̄ is constant. If ~u is chosen as λ~̄q − λ
κ̄
~̄a and

the derivative of ~u is considered, we obtain that ~u is constant. Therefore, it is concluded that φ̂ is a
non-null ~̄q− slant ruled surface. �

Definition 4.6. Let φ̂(u, s) be a non-null slant ruled surface corresponding to Γ̂(u) in E3
1, denoted by

the parametrization
φ̂(u, s) = β̄(u) + s~̄q(u), (4.19)

where β̄(u) is the striction curve of φ̂(u, s). Let {~̄q, ~̄h, ~̄a} be Frenet vectors of φ̂. For κ̄ , 0,

〈~̄h, ~u〉 = cosϕ = constant; ϕ ,
π

2
,

if ϕ is the angle between the central normal vector and a fixed non-zero direction ~u in the space. φ̂
refers to a ~̄h− timelike (resp., spacelike) slant ruled surface.

Theorem 4.7. φ̂ is a ~̄h− slant ruled surface under the assumptions given in Definition 4.6 if and only
if there are the following characterizations:
(i) Let φ̂ be a spacelike ruled surface. φ̂ refers to a ~̄h− slant ruled surface if and only if

κ̄′

(κ̄2 + 1)
3
2

= constant , 0. (4.20)

(ii) Let φ̂ be a timelike ruled surface with spacelike ruling. φ̂ refers to a ~̄h− slant ruled surface if and
only if

κ̄′

(κ̄2 − 1)
3
2

= constant , 0, κ̄ < −1 or κ̄ > 1, (4.21)

and
κ̄′

(κ̄2 − 1)
3
2

= constant , 0, −1 < κ̄ < 1. (4.22)

(iii) Let φ̂ be a timelike ruled surface with spacelike ruling. φ̂ refers to a ~̄h− slant ruled surface if and
only if

κ̄′

(κ̄2 − 1)
3
2

= constant , 0, κ̄ < −1 or κ̄ > 1, (4.23)

and
κ̄′

(1 − κ̄2)
3
2

= constant , 0, −1 < κ̄ < 1. (4.24)

Proof. (i) Let φ̂ be a spacelike ruled surface. Assume that φ̂ is a ~̄h− slant ruled surface. Using
Definition 4.6, we write

〈~̄h, ~u〉 = m = constant , 0, m ∈ R.

For b1 = b1(s1), b2 = b2(s1),
~u = b1(s1)~̄q + m~̄h + b2(s1)~̄a. (4.25)

From the derivative of ~u, we write

(b′1 + m)~̄q + (b1 + b2κ̄)~̄h + (mκ̄ + b′2)~̄a = 0. (4.26)
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Since the set {~̄q, ~̄h, ~̄a} is linear independent, we write

b′1 + m = 0,
b1 + b2κ̄ = 0,
mκ̄ + b′2 = 0,

from Eq (4.26). Since ~u is constant and b1 = −b2κ̄, we obtain

b2 = ±
n

√
κ + 1

. (4.27)

After some calculations, we get
κ̄′

(κ̄2 + 1)
3
2

= constant. (4.28)

Conversely, let
κ̄′

(κ̄2 + 1)
3
2

= p = constant (4.29)

and

~u = −
κ̄

√
κ̄2 + 1

~̄q + p~̄h +
1

√
κ̄2 + 1

~̄a. (4.30)

Taking the derivative of Eq (4.30) and using Eq (4.29), we obtain that ~u is constant. Since 〈~̄h, ~u〉 = −p,
φ̂ refers to a ~̄h− slant ruled surface. By using the same steps, similar proofs could be done for (ii)
and (iii). �

Theorem 4.8. Let φ̂ be the ruled surface acquired by the natural lift curve of the striction curve with
the Frenet vectors {~̄q, ~̄h, ~̄a} satisfying κ̄ , 0 in E3

1. The following assumptions are satisfied for the angle

θ, which is the angle between ~̄h and ~u:
(i) Let φ̂ be a spacelike ruled surface and ~u be a spacelike vector. φ̂ refers to a ~̄h− slant ruled surface
if and only if

κ̄ = ±
s1√

coth2 θ − s2
1

. (4.31)

(ii) Let φ̂ be a spacelike ruled surface and ~u be a timelike vector. φ̂ refers to a ~̄h− slant ruled surface if
and only if

κ̄ = ±
s1√

tanh2 θ − s2
1

. (4.32)

(iii) Let φ̂ be a timelike ruled surface with spacelike ruling and ~u be a timelike vector. Let the plane
spanned by the vectors ~̄h and ~u also be spacelike. φ̂ refers to a ~̄h− slant ruled surface if and only if

κ̄ = ±
s1√

s2
1 − tan2 θ

. (4.33)
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(iv) Let φ̂ be a timelike ruled surface with spacelike ruling and ~u be a timelike vector. Let the plane
spanned by the vectors ~̄h and ~u also be timelike. φ̂ refers to a ~̄h− slant ruled surface if and only if

κ̄ = ±
s1√

tanh2 θ + s2
1

. (4.34)

(v) Let φ̂ be a timelike ruled surface with spacelike ruling and ~u be a timelike vector. φ̂ refers to a ~̄h−
slant ruled surface if and only if

κ̄ = ±
s1√

coth2 θ + s2
1

. (4.35)

(vi) Let φ̂ be a timelike ruled surface with timelike ruling and ~u be a spacelike vector. Let the plane
spanned by the vectors ~̄h and ~u also be spacelike. φ̂ refers to a ~̄h− slant ruled surface if and only if

κ̄ = ±
s1√

s2
1 + tan2 θ

. (4.36)

(vii) Let φ̂ be a timelike ruled surface with timelike ruling and ~u be a spacelike vector. Let the plane
spanned by the vectors ~̄h and ~u also be timelike. φ̂ refers to a ~̄h− slant ruled surface if and only if

κ̄ = ±
s1√

s2
1 − tanh2 θ

. (4.37)

(viii) Let φ̂ be a timelike ruled surface with timelike ruling and ~u be a timelike vector. φ̂ refers to a ~̄h−
slant ruled surface if and only if

κ̄ = ±
s1√

s2
1 − coth2 θ

. (4.38)

Proof. (i) Assume that φ̂ is a spacelike ruled surface and ~u is a spacelike vector. Hence, we write

〈~̄h, ~u〉 = ± sinh θ. (4.39)

Taking the derivative of Eq (4.39), we get

〈~̄q + κ̄~̄a, ~u〉 = 0. (4.40)

If 〈~̄a, ~u〉 = x, then
~u = −κ̄x~̄q ± sinh θ~̄h + x~̄a. (4.41)

Since ~u is a unit vector, we find

x = ±
cosh θ
√
κ̄2 + 1

. (4.42)

Taking the second derivative of Eq (4.40), we also find

x = ±
(κ̄2 + 1) sinh θ

κ̄′
. (4.43)
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From Eqs (4.42) and (4.43), we have

±
κ̄′

(κ̄2 + 1)
3
2

= tanh θ. (4.44)

Integrating Eq (4.44), we calculate

±
κ̄

√
κ̄2 + 1

= ± tanh θ(s1 + c), c ∈ R. (4.45)

If the parameter change is done as s1 → s1 − c, we find Eq (4.31). Conversely, assume that Eq (4.31)

is satisfied and x = ± sinh θ
√

coth2 θ − s2
1. If

~u = −κ̄x~̄q − sinh θ~̄h + x~̄a, (4.46)

it can be easily seen that 〈~̄h, ~u〉 = − sinh θ. Thus,

~u = sinh θ(s1~̄q − ~̄h ±
√

coth2 θ − s2
1
~̄a). (4.47)

From the derivative of ~u, ~u is constant. Hence, φ̂ refers to a ~̄h− slant ruled surface.
(iv) Assume that φ̂ is a timelike ruled surface with spacelike ruling and ~u is a timelike vector. Assume
that the plane spanned by ~̄h and ~u is timelike. Then, we know that

〈~̄h, ~u〉 = ± cosh θ. (4.48)

Differentiating Eq (4.48), we obtain
〈−~̄q + κ̄~̄a, ~u〉 = 0. (4.49)

If 〈~̄a, ~u〉 = x, then
~u = κ̄x~̄q ± cosh θ~̄h − x~̄a. (4.50)

Since ~u is unit vector, we find

x = ±
sinh θ
√

1 − κ̄2
. (4.51)

Taking the second derivative of Eq (4.49), we also find

x = ±
(1 − κ̄2) cosh θ

κ̄′
. (4.52)

From Eqs (4.51) and (4.52), we have

±
κ̄′

(1 − κ̄2)
3
2

= ± coth θ. (4.53)

Integrating Eq (4.53), we calculate

±
κ̄

√
1 − κ̄2

= ± coth θ(s1 + c), c ∈ R. (4.54)
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If the parameter change is done as s1 → s1 − c, we find Eq (4.34). Conversely, assume that Eq (4.34)

is satisfied and x = ± cosh θ
√

tanh2 θ + s2
1. If

~u = κ̄x~̄q − cosh θ~̄h − x~̄a, (4.55)

it can be easily seen that 〈~̄h, ~u〉 = − cosh θ. Thus,

~u = cosh θ(−s1~̄q − ~̄h ±
√

tanh2 θ + s2
1
~̄a). (4.56)

From the derivative of ~u, ~u is constant. Hence, φ̂ refers to a ~̄h− slant ruled surface. Proofs of the other
assumptions can be done by using similar steps. �

Definition 4.9. Let φ̂(u, s) be a non-null slant ruled surface corresponding to Γ̂(u) in E3
1 denoted by the

parametrization
φ̂(u, s) = β̄(u) + s~̄q(u), (4.57)

where β̄(u) is the striction curve of φ̂(u, s). Let {~̄q, ~̄h, ~̄a} be Frenet vectors of φ̂. For the canonical
curvature κ̄ , 0,

〈~̄a, ~u〉 = cos µ = constant; µ ,
π

2
if µ is the angle between the central tangent vector and a fixed non-zero direction ~u in the space. φ̂
refers to a ~̄a− timelike (resp., spacelike) slant ruled surface.

From Theorem 4.4 and Remark 4.5, φ̂ is a ~̄q− slant ruled surface if and only if it denotes a
~̄a− slant ruled surface. Thus, all characterizations for ~̄q− slant ruled surfaces are valid for ~̄a− slant
ruled surfaces.

5. Examples

In this section, examples are given as applications and illustration of the main results.

Example 5.1. Let φ̂(u, s) be the timelike ruled surface with spacelike ruling acquired by the natural
lift curve.

φ̂(u, s) = (−
2
3

sinh(
√

3u),−
1
3
,−

2
3

cosh(
√

3u)) + s(
1
√

3
sinh(

√
3u),

2
√

3
,

1
√

3
cosh(

√
3u)),

where the base curve is
β̄(u) = (−

2
3

sinh(
√

3u),−
1
3
,−

2
3

cosh(
√

3u)).

For q̄(u) = ( 1
√

3
sinh(

√
3u), 2

√
3
, 1
√

3
cosh(

√
3u)) and ϑ̄∗(u) = ( 1

√
3

cosh(
√

3u), 0, 1
√

3
sinh(

√
3u)),

〈~̄q(u), ~̄ϑ∗(u)〉L = 0 and |~̄q(u)|L = 1. Therefore, Γ̂(u) = (q̄(u), ϑ̄∗(u)) ∈ TM̃. Then, the Frenet vectors
are computed by

~̄q = (
1
√

3
sinh(

√
3u),

2
√

3
,

1
√

3
cosh(

√
3u)), (5.1)
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~̄h = (cosh(
√

3u), 0, sinh(
√

3u)), (5.2)

~̄a = (−
2
√

3
sinh(

√
3u),−

1
√

3
,−

2
√

3
cosh(

√
3u)). (5.3)

Since κ̄ = −2, φ̂(u, s) is ~̄q− timelike slant ruled surface with spacelike ruling.
The following figure is Figure 1.

Figure 1. ~̄q− timelike slant ruled surface with spacelike ruling.

Example 5.2. Let φ̂(u, s) be the spacelike ruled surface acquired by the natural lift curve.

φ̂(u, s) = (−
1
2
,

1
2

cosh(u
√

2),
1
2

sinh(u
√

2)) + s(
1
√

2
,

1
√

2
cosh(u

√
2),

1
√

2
sinh(u

√
2)),

where the base curve is
β̄(u) = (−

1
2
,

1
2

cosh(u
√

2),
1
2

sinh(u
√

2)).

For q̄(u) = ( 1
√

2
, 1
√

2
cosh(u

√
2), 1

√
2

sinh(u
√

2)) and ϑ̄∗(u) = (0, 1
√

2
sinh(u

√
2), 1

√
2

cosh(u
√

2)),

〈~̄q(u), ~̄ϑ∗(u)〉L = 0 and |~̄q(u)|L = 1. Therefore, Γ̂(u) = (q̄(u), ϑ̄∗(u)) ∈ TM̃. Then, the Frenet vectors
are calculated by

~̄q = (
1
√

2
,

1
√

2
cosh(u

√
2),

1
√

2
sinh(u

√
2)), (5.4)

~̄h = (0, sinh(u
√

2), cosh(u
√

2)), (5.5)

~̄a = (−
1
√

2
,

1
√

2
cosh(u

√
2),

1
√

2
sinh(u

√
2)). (5.6)

Since κ̄ = −1, φ̂(u, s) is ~̄q− slant ruled surface.
The following figure is Figure 2.
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Figure 2. ~̄q− spacelike slant ruled surface.

6. Conclusions

Slant ruled surfaces, defined in [14], are special ruled surfaces where the Frenet vectors make
a constant angle with some fixed directions in the space. In this study, taking the definition of slant-
ruled surfaces in literature into consideration, we obtain some considerable consequences, summarized
as follows:
(1) We give the new definition for non-null slant ruled surfaces acquired by the striction curve of the
natural lift curve in E3

1. In order to perform the definition, we exploit the E. Study mapping and the
relation between the subsets of the tangent bundles of pseudo-spheres and non-null ruled surfaces.
(2) Considering the definition, we examine the q̄−, h̄−, ā− spacelike and timelike slant ruled surfaces
acquired by the striction curves of the natural lift curves in E3

1.
(3) By using the examinations of these non-slant ruled surfaces, the conditions to be q̄−, h̄−, ā−
spacelike (resp., timelike) are investigated.
(4) With the help of Theorem 4.7, the effect of the canonical curvature of the non-null slant ruled
surface is highlighted.

The implications of the findings extend beyond theoretical interest in Minkowski geometry,
offering experimental applications for physical and biological problems in solving heat transfer
problems, the application of electrocosmotic forces applied to surfaces, the impact of magnetic fields,
etc. Future research could further investigate the numerical implementation of axial velocity, pressure
gradient, and flow streamlines within this framework in real-world applications. Overall, the paper
provides a means to study singularity and submanifold theories for ruled surfaces and opens avenues
for further investigation into their applications in various mathematical contexts.
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