Research article Special Issues

Unit compound Rayleigh model: Statistical characteristics, estimation and application

  • Received: 16 May 2024 Revised: 09 July 2024 Accepted: 18 July 2024 Published: 23 July 2024
  • MSC : 62E10, 62F10

  • In this paper, we proposed a novel probability distribution model known as the unit compound Rayleigh distribution, which possesses the distinctive characteristic of defining the range within the bounded interval (0, 1). Through an in-depth investigation of this distribution, we analyzed various statistical and structural characteristics including reliability function, risk function, quantile function, moment analysis, order statistics, and entropy measurement. To estimate the unknown parameters of our proposed distribution model, we employed maximum likelihood (ML) estimation and Bayesian estimation. Furthermore, we derived several entropy measures based on ML estimation under the unit compound Rayleigh distribution. To comprehensively evaluate the performance of these entropies, we employed the Monte Carlo simulation method to calculate the average entropy estimate, average entropy bias, corresponding mean square error, and mean relative estimate for assessing the performance of various entropies within the unit compound Rayleigh distribution model. Finally, in order to validate its potential for practical applications, two sets of real data were selected for empirical analysis where fitting and parameter estimation were conducted to demonstrate the advantages of utilizing the unit compound Rayleigh distribution in describing and predicting actual data. This study not only introduces a new probability theory and statistics framework by proposing a novel distribution model but also provides researchers and practitioners in related fields with a powerful analytical tool.

    Citation: Qin Gong, Laijun Luo, Haiping Ren. Unit compound Rayleigh model: Statistical characteristics, estimation and application[J]. AIMS Mathematics, 2024, 9(8): 22813-22841. doi: 10.3934/math.20241110

    Related Papers:

  • In this paper, we proposed a novel probability distribution model known as the unit compound Rayleigh distribution, which possesses the distinctive characteristic of defining the range within the bounded interval (0, 1). Through an in-depth investigation of this distribution, we analyzed various statistical and structural characteristics including reliability function, risk function, quantile function, moment analysis, order statistics, and entropy measurement. To estimate the unknown parameters of our proposed distribution model, we employed maximum likelihood (ML) estimation and Bayesian estimation. Furthermore, we derived several entropy measures based on ML estimation under the unit compound Rayleigh distribution. To comprehensively evaluate the performance of these entropies, we employed the Monte Carlo simulation method to calculate the average entropy estimate, average entropy bias, corresponding mean square error, and mean relative estimate for assessing the performance of various entropies within the unit compound Rayleigh distribution model. Finally, in order to validate its potential for practical applications, two sets of real data were selected for empirical analysis where fitting and parameter estimation were conducted to demonstrate the advantages of utilizing the unit compound Rayleigh distribution in describing and predicting actual data. This study not only introduces a new probability theory and statistics framework by proposing a novel distribution model but also provides researchers and practitioners in related fields with a powerful analytical tool.



    加载中


    [1] P. I. Alvarez, H. Varela, I. E. Cortés, O. Venegas, H. W. Gómez, Modified unit-half-normal distribution with applications, Mathematics, 12 (2024), 136. https://doi.org/10.3390/math12010136 doi: 10.3390/math12010136
    [2] J. Mazucheli, B. Alves, M. C. Korkmaz, The unit-Gompertz quantile regression model for the bounded responses, Math. Slovaca, 73 (2023), 1039−1054. https://doi.org/10.1515/ms-2023-0077 doi: 10.1515/ms-2023-0077
    [3] I. E. Okorie, E. Afuecheta, H. S. Bakouch, Unit upper truncated Weibull distribution with extension to 0 and 1 inflated model-Theory and applications, Heliyon, 9 (2023), e22260. https://doi.org/10.1016/j.heliyon.2023.e22260 doi: 10.1016/j.heliyon.2023.e22260
    [4] M. K. Shakhatreh, M. A. Aljarrah, Bayesian analysis of unit log-logistic distribution using non-informative priors, Mathematics, 11 (2023), 4947. https://doi.org/10.3390/math11244947 doi: 10.3390/math11244947
    [5] Y. Y. Shao, J. Y. Zhou, C. L. Dong, Bayes estimation of compound Rayleigh distribution parameters under progressively type-Ⅱ censored, J. Shandong Normal Univ. (Nat. Sci.), 35 (2020), 318−323.
    [6] Q. Wang, H. Y. Lan, G. Xu, Bayesian reliability analysis of compound Rayleigh distribution model parameters, J. Jiangxi Normal Univ. (Nat. Sci. Ed.), 1 (2023), 20−22.
    [7] M. M. Badr, Goodness-of-fit tests for the compound Rayleigh distribution with application to real data, Heliyon, 5 (2019), e02225. https://doi.org/10.1016/j.heliyon.2019.e02225 doi: 10.1016/j.heliyon.2019.e02225
    [8] D. R. Barot, M. N. Patel, Posterior analysis of the compound Rayleigh distribution under balanced loss functions for censored data, Commun. Stat.-Theor. M., 46 (2017), 1317−1336. https://doi.org/10.1080/03610926.2015.1019140 doi: 10.1080/03610926.2015.1019140
    [9] S. Kashyap, B. Paradowski, N. Gandotra, N. Saini, W. Salabun, A novel trigonometric entropy measure based on the complex proportional assessment technique for Pythagorean fuzzy sets, Energies, 17 (2024), 431. https://doi.org/10.3390/en17020431 doi: 10.3390/en17020431
    [10] Y. Sayyari, H. Barsam, New inequalities related to entropy and relative entropy with respect to Hermite-Hadamard inequality, Filomat, 38 (2024), 1265−1277. https://doi.org/10.2298/FIL2404265S doi: 10.2298/FIL2404265S
    [11] M. M. Abd El-Raouf, M. AbaOud, A novel extension of generalized Rayleigh model with engineering applications, Alex. Eng. J., 73 (2023), 269−283. https://doi.org/10.1016/j.aej.2023.04.063 doi: 10.1016/j.aej.2023.04.063
    [12] D. H. Wang, X. Liu, B. H. Chu, G. Zhao, S. F. Zhang, Combined effects of temperature and confinement on the Shannon entropy of two-dimensional hydrogenic impurity states in the GaAs semiconductor quantum well, Micro. Nanostructures, 186 (2024), 207752. https://doi.org/10.1016/j.micrna.2024.207752 doi: 10.1016/j.micrna.2024.207752
    [13] W. S. Nascimento, A. M. Maniero, F. V. Prudente, C. R. de Carvalho, G. Jalbert, Electron confinement study in a double quantum dot by means of Shannon entropy information, Physica B, 677 (2024), 415692. https://doi.org/10.1016/j.physb.2024.415692 doi: 10.1016/j.physb.2024.415692
    [14] A. Piga, L. Font-Pomarol, M. Sales-Pardo, R. Guimera, Bayesian estimation of information-theoretic metrics for sparsely sampled distributions, Chaos Soliton. Fract., 180 (2024), 114564. https://doi.org/10.1016/j.chaos.2024.114564 doi: 10.1016/j.chaos.2024.114564
    [15] M. Formentin, R. Chignola, M. Favretti, Optimal entropic properties of SARS-CoV-2 RNA sequences, Roy. Soc. Open Sci., 11 (2024), 231369. https://doi.org/10.1098/rsos.231369 doi: 10.1098/rsos.231369
    [16] V. Ignatenko, A. Surkov, S. Koltcov, Random forests with parametric entropy-based information gains for classification and regression problems, PeerJ Comput. Sci., 10 (2024), e1775. https://doi.org/10.7717/peerj-cs.1775 doi: 10.7717/peerj-cs.1775
    [17] Y. Zhong, Thermal corrections to Rényi entropy in BMS field theory, J. High Energy Phys., 2024 (2024), 1−19. https://doi.org/10.1007/JHEP03(2024)086 doi: 10.1007/JHEP03(2024)086
    [18] L. A. Baharith, New generalized Weibull inverse Gompertz distribution: Properties and applications, Symmetry, 16 (2024), 197. https://doi.org/10.3390/sym16020197 doi: 10.3390/sym16020197
    [19] Y. T. Shi, Y. Wu, P. J. Shang, Research on weighted Havrda-Charvat's entropy in financial time series, Physica A, 572 (2021), 125914. https://doi.org/10.1016/j.physa.2021.125914 doi: 10.1016/j.physa.2021.125914
    [20] T. Brochet, J. Lapuyade-Lahorgue, A. Huat, S. Thureau, D. Pasquier, I. Gardin, et al., A quantitative comparison between Shannon and Tsallis-Havrda-Charvat entropies applied to cancer outcome prediction, Entropy, 24 (2022), 436. https://doi.org/10.3390/e24040436 doi: 10.3390/e24040436
    [21] Z. Wang, P. J. Shang, Analysis of the dispersion Havrda-Charvat entropy plane in financial time series, Int. J. Bifurcat. Chaos, 32 (2022), 2250234. https://doi.org/10.1142/S0218127422502340 doi: 10.1142/S0218127422502340
    [22] T. Brochet, J. Lapuyade-Lahorgue, S. Bougleux, M. Salaün, S. Ruan, Deep learning using Havrda-Charvat entropy for classification of pulmonary optical endomicroscopy, IRBM, 42 (2021), 400−406. https://doi.org/10.1016/j.irbm.2021.06.006 doi: 10.1016/j.irbm.2021.06.006
    [23] B. C. Li, R. C. Li, Z. F. Liu, C. L. Li, Z. M. Wang, An objective non-reference metric based on Arimoto entropy for assessing the quality of fused images, Entropy, 21 (2019), 879. https://doi.org/10.3390/e21090879 doi: 10.3390/e21090879
    [24] B. C. Li; H. Z. Shu, Z. F. Liu, Z. H. Shao; C. L. Li, M. Huang, et al., Nonrigid medical image registration using an information theoretic measure based on Arimoto entropy with gradient distributions, Entropy, 21 (2019), 189. https://doi.org/10.3390/e21020189 doi: 10.3390/e21020189
    [25] A. M. Almarashi, Sine power Lindley distribution with applications, Intell. Autom. Soft Co., 31 (2022), 373−386. https://doi.org/10.32604/iasc.2022.018043 doi: 10.32604/iasc.2022.018043
    [26] M. M. Abd El-Raouf, M. AbaOud, A novel extension of generalized Rayleigh model with engineering applications, Alex. Eng. J., 73 (2023), 269−283. https://doi.org/10.1016/j.aej.2023.04.063 doi: 10.1016/j.aej.2023.04.063
    [27] I. M. Almanjahie, J. G. Dar, A. I. Al-Omari, A. Mir, Quantile version of Mathai-Haubold entropy of order statistics, CMES-Comp. Model. Eng., 128 (2021), 907−925. https://doi.org/10.32604/cmes.2021.014896 doi: 10.32604/cmes.2021.014896
    [28] A. Asgharzadeh, H. S. Bakouch, S. Nadarajah, F. Sharafi, A new weighted Lindley distribution with application, Braz J. Probab. Stat., 30 (2016), 1−27. https://doi.org/10.1214/14-BJPS253 doi: 10.1214/14-BJPS253
    [29] M. Nagy, Expected Bayesian estimation based on generalized progressive hybrid censored data for Burr-XⅡ distribution with applications, AIP Adv., 14 (2024), 015357. https://doi.org/10.1063/5.0184910 doi: 10.1063/5.0184910
    [30] R. A. Attwa, S. W. Sadk, T. Radwan, Estimation of Marshall-Olkin extended generalized extreme value distribution parameters under progressive type-Ⅱ censoring by using a genetic algorithm, Symmetry-Bassel, 16 (2024), 669. https://doi.org/10.3390/sym16060669 doi: 10.3390/sym16060669
    [31] T. Bjerkedal, Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli, Am. J. Epidemiol, 72 (1960), 130−148. https://doi.org/10.1093/oxfordjournals.aje.a120129 doi: 10.1093/oxfordjournals.aje.a120129
    [32] J. P. Klein, M. L. Moeschberger, Survival analysis: Techniques for censored and truncated data, Biometrics, 62 (2006), 631. https://doi.org/10.1111/j.1541-0420.2006.00589_9.x doi: 10.1111/j.1541-0420.2006.00589_9.x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(578) PDF downloads(54) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog