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Abstract: In this paper, we proposed a novel probability distribution model known as the unit 

compound Rayleigh distribution, which possesses the distinctive characteristic of defining the range 

within the bounded interval (0,1). Through an in-depth investigation of this distribution, we analyzed 

various statistical and structural characteristics including reliability function, risk function, quantile 

function, moment analysis, order statistics, and entropy measurement. To estimate the unknown 

parameters of our proposed distribution model, we employed maximum likelihood (ML) estimation 

and Bayesian estimation. Furthermore, we derived several entropy measures based on ML estimation 

under the unit compound Rayleigh distribution. To comprehensively evaluate the performance of these 

entropies, we employed the Monte Carlo simulation method to calculate the average entropy estimate, 

average entropy bias, corresponding mean square error, and mean relative estimate for assessing the 

performance of various entropies within the unit compound Rayleigh distribution model. Finally, in 

order to validate its potential for practical applications, two sets of real data were selected for empirical 

analysis where fitting and parameter estimation were conducted to demonstrate the advantages of 

utilizing the unit compound Rayleigh distribution in describing and predicting actual data. This study 

not only introduces a new probability theory and statistics framework by proposing a novel distribution 

model but also provides researchers and practitioners in related fields with a powerful analytical tool. 
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1. Introduction  

Classical probability distribution models play a pivotal role in statistics, providing essential 

theoretical tools for data modeling, parameter estimation, hypothesis testing, and statistical inference. 

They facilitate a comprehensive understanding and analysis of random variables and uncertain 

phenomena. However, when dealing with bounded random variables within the range (0,1), such as 

proportions, probabilities, and percentages, classical probability distribution models encounter 

limitations in accurately describing and predicting data. To address this issue, we introduce the concept 

of unit distribution to generate novel models that enhance the flexibility of existing approaches for 

better adaptation to real-world data. The unit distribution is typically derived by redefining traditional 

analytical methods or transforming classical continuous distributions. By avoiding the introduction of 

new parameters while effectively translating the flexibility inherent to classical distributions into unit 

intervals, it offers improved efficiency compared to baseline methods. In recent years, research on unit 

distribution has made significant progress across various fields. For instance, Alvarez et al. [1] 

investigated the correlation properties and statistical characteristics of a novel distribution in the unit 

interval derived from transforming random variables with a semi-normal distribution. They employed 

maximum likelihood (ML) estimation to simulate correlation statistics and validate the superiority of 

this new distribution over other distributions defined within the unit interval. Mazucheli et al. [2] 

proposed a unit-Gompertz distribution model based on the unit interval, which can replace existing 

models such as unit-Birnbaum-Saunders, unit-Weibull, L-Logistic, Kumaraswamy, and Johnson SB 

distributions. The authors reparametrized the unit-Gompertz model to incorporate covariate effects 

across the response distribution. Okorie et al. [3] examined the regression model for the upper truncated 

Weibull distribution in the unit interval and extended it to include 0-1 inflation. They estimated 

parameters using ML estimation and demonstrated improved fitting performance of their proposed 

distribution using real data analysis. Shakhatreh et al. [4] explored Bayesian estimation (BE) for the 

logarithmic logical distribution in the unit interval by considering non-informative priors for parameter 

estimation and employing Monte Carlo simulations to evaluate Bayesian estimates’ performance. 

The compound Rayleigh distribution (CRD), being a significant probability distribution model in 

statistics, finds extensive applications in reliability testing, survival analysis, communication systems, 

and various other fields. It represents a novel type of distribution derived by fixing one parameter of 

the three-parameter Burr-XII distributions. Hence, studying the CRD holds immense significance. 

Currently, considerable progress has been made in statistical inference research on the CRD. For 

instance, Shao et al. [5] investigated the BE of CRD parameters using progressively type II censored 

data. Wang et al. [6] obtained ML estimates of CRD parameters based on complete samples and 

employed pivot parameter construction to derive inverse moment estimates for shape and scale 

parameters while utilizing Monte Carlo simulation for obtaining corresponding statistics. Badr [7] 

utilized the modified Kolmogorov-Smirnov test, Cramer-Von Mises test, and Anderson-Darling test to 

assess the goodness of fit of the CRD model under complete samples as well as type II censored samples. 

Barot and Patel [8] analyzed the BE of CRD based on progressively type II censored data. 

The probability density function (PDF) and cumulative distribution function (CDF) of the CRD 

are respectively represented as follows: 
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Here,   is the shape parameter, and   is the scale parameter.  

In order to address the limitations of the conventional distribution model in describing bounded 

random variables within the interval (0,1), this study proposes a novel probability distribution model 

known as the unit compound Rayleigh distribution (UCRD). The objective of this research is to analyze 

the mathematical and statistical properties of UCRD and explore its potential applications. This paper 

initially derives fundamental mathematical properties of UCRD, including PDF, CDF, survival 

function (SF), and hazard function (HF). Furthermore, it analyzes quantile function, moments, and 

order statistics of UCRD. Additionally, detailed expressions for five entropy measures under UCRD 

are derived. These entropy measures effectively quantify uncertainty in random variables and hold 

significant importance for data analysis and model selection. To accurately estimate parameters in the 

UCRD model, ML estimation and BE are employed due to their wide adaptability range, solid 

theoretical foundation, excellent properties, and practical value in statistics. Through Monte Carlo 

simulation experiments, this study evaluates the performance of different entropy measures based on 

ML estimation to verify their validity and reliability. Although some progress has been made regarding 

unit distribution models in existing literature, the research on CRD within a unit interval remains 

relatively scarce. The UCRD model proposed in this study possesses the advantages of flexibility, 

excellent fitting performance, easy implementation, and a solid theoretical foundation, thereby 

rendering it highly promising for extensive applications across various fields. In comparison with other 

models, UCRD exhibits superior capability in describing and predicting random variables within the 

interval (0,1), thus not only enriching the theory of related models in probability theory and statistics 

but also providing a potent analytical tool for researchers and practitioners in relevant domains. 

Moreover, the UCRD model holds great potential for application in reliability analysis, survival 

analysis, and communication systems, among others. This study aims to introduce novel research ideas 

and methodologies to these fields to foster their further advancement. 

The rest of this article is described below. In Section 2, we introduce the PDF, CDF, survival 

function, and HF of the UCRD. In Section 3, we derive the quantile function, moment-generating 

function, K-order incomplete moment, and other mathematical properties of UCRD. In Section 4, five 

entropy expressions of UCRD are derived. In Section 5, two methods of ML estimation and BE are 

used to obtain the parameter estimates of UCRD. In Section 6, the parameters of the UCRD model are 

estimated by Monte Carlo simulation combined with the estimation method used, and the estimated 

values, average bias (AB), corresponding mean square error (MSE), and mean relative estimate (MRE) 

of the parameters are obtained. Based on ML estimation, the average entropy estimate (AEE), average 

entropy bias (AEB), MSE, and MRE of each entropy are obtained to evaluate the performance of each 

entropy. In Section 7, two sets of real data are presented to test the validity of the UCRD model and 

various entropy measures. Section 8 provides relevant conclusions and future prospects. 

2. Related models of UCRD 

Assuming T follows a CRD distribution with parameters    and   , the new UCRD can be 

obtained by transforming T to / (1 )T X X= −  using Eqs (1) and (2), resulting in the following PDF and 

CDF, respectively: 
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When one parameter is held constant, the PDF plot of UCRD exhibits distinct variations as the 

value of another parameter undergoes transformation. Specifically, when the   value remains fixed, 

altering the   value leads to an increasing trend within the range of (0, 0.5), followed by a decreasing 

trend within the range of (0.5, 1). Notably, this PDF plot demonstrates unimodality and overall 

symmetry throughout, as depicted in Figure 1. 

  
(a) (b) 

  
(c) (d) 

Figure 1. PDF curves of the UCRD. 

The SF and HF are crucial analytical tools in the field of reliability analysis and survival analysis, 

utilized for examining the system's reliability, lifetime distribution, and event occurrence probability. 

Analyzing SF and HF enables us to assess system reliability and conduct risk assessment, among other 

applications. The expressions for SF and HF of UCRD are as follows: 
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As the   and   values change, it is evident from Figure 2 that the HF curve of UCRD always 

shows a clear upward trend, thus demonstrating the remarkable flexibility of UCRD. 

 

Figure 2. HF curves of the UCRD. 

The cumulative HF and the reverse HF are two important concepts in the fields of reliability 

engineering and survival analysis. They provide assessments and predictions of the probability of 

system failure and failure times, which aid in optimizing system design, maintenance, and decision-

making processes. Below, we present the CDF and the reverse HF for the UCRD, respectively: 
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3. Mathematical properties of UCRD 

In this section, we present various statistical properties of UCRD, including the quantile function, 

K-order moment, mean value, variance, etc. Through analyzing these statistics, we can gain a deeper 

understanding of the characteristics and properties of the dataset and evaluate the performance of the 

UCRD model. These statistical properties have significant applications in data analysis, modeling, and 

inference fields; they provide us with robust tools and guidance for interpreting and utilizing data more 

effectively. 
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3.1. Quantile function of UCRD 

In the field of statistics and probability theory, the quantile function is extensively utilized to 

assess the distribution pattern, central tendency, and dispersion of data. It serves as a crucial tool in 

characterizing positional information within a probability distribution, enabling us to determine the 

values taken by a random variable at a given probability. The quantile function plays an integral role 

in data analysis by facilitating our understanding of dataset distribution patterns, identifying outliers, 

and executing statistical inference and prediction operations. By analyzing the quantile function, we 

can extract vital insights regarding data location and distribution. The derivation process for obtaining 

the quantile function pertaining to UCRD involves employing Eq (4) as outlined below: 

 

1 1

1 12( ) [ ( ; , )] 1 {1 [ (1 ) ] } ,0 1,R w G x w w   
−

− −= = − + − − ＜ ＜  (9) 

where w represents the probability value, which is within the range of (0,1). The first quantile, median, 

and third quantile represent the quantiles corresponding to 
1 1 3

, ,
4 2 4

w = , respectively. 

Skewness and kurtosis play a crucial role in data analysis, providing valuable insights into the 

shape of the data distribution. They are utilized to assess the degree of asymmetry, peakedness, and 

deviation from theoretical distributions. Moreover, they serve as indicators for testing the normality 

assumption of the data distribution and selecting appropriate statistical models to gain a comprehensive 

understanding of its distributional characteristics. Let CSk represent skewness and CKu represent 

kurtosis in the UCRD. 
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3.2. Moments and moment-generating function 

Assuming the random variable X is distributed with UCRD, the k-th moment of X can be 

expressed as: 

 

1

0

1
2 ( 1)

30

[ ] ( ; , )

2 1
    [1 ( ) ] .

(1 ) 1

k k

k

k

E X x g x dx

x x
x dx

x x



  



 

− +

= =

= +
− −




 (10) 

Let 
1

x
z

x
=

−
, then 

1
1 .

1 1

z
x

z z
= = −

+ +
 Hence 

0

1
(1 ) ( 1) (1 ) .

1

k
k k i i

i

k
x z

iz

−

=

 
= − = − + 

+  
   

Thus 



22819 

AIMS Mathematics  Volume 9, Issue 8, 22813–22841. 

 

1

0
2

( 1)

0

2
( 1)

0
0

2
( 1)

0
0

0

[ ] ( ; , )

1 2
    (1 ) (1 )

1
2

    ( 1) (1 ) (1 )

2
    ( 1) (1 ) (1 )

2
    ( 1) ( ; , ).

k k

k

k

k
i i

i

k
i i

i

k
i

i

i

E X x g x dx

z z
dz

z
k z z

z dz
i

k z
z z dz

i

k
z

i







  



 


 



 


  




− +


− − +

=


− − +

=

=

= =

= − +
+

 
= − + + 

 
 

= − + + 
 
 

= −  
 







 



 (11) 

Here, 
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of X are: 
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Therefore, the coefficient of variation (CV) for Z is 
1

CV



=  . The expression for the moment-

generating function of X is as indicated below: 
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Table 1 presents the measured values of different statistical properties of the UCRD for various 

parameter values, and Figure 3 provides a 3D image of the statistical properties of the UCRD. 
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Table 1. Partial statistical properties of the UCRD for different parameter values. 

    1  2  CV CSk Cku 

0.2 

0.5 

0.7359 0.0583 0.3281 −0.1962 0.9496 

0.5 0.5566 0.0515 0.4079 0.0447 1.1493 

0.9 0.4445 0.0369 0.4322 0.0482 1.2148 

1.3 0.3831 0.0282 0.4380 0.0401 1.2202 

0.2 

1 

0.7811 0.0465 0.2759 −0.2559 1.0234 

0.5 0.6232 0.0464 0.3457 −0.0139 1.1506 

0.9 0.5180 0.0373 0.3728 0.0004 1.2073 

1.3 0.4571 0.0307 0.3836 −0.0018 1.2138 

0.2 

1.5 

0.8056 0.0400 0.2481 −0.2848 1.0685 

0.5 0.6608 0.0427 0.3126 −0.0460 1.1603 

0.9 0.5608 0.0364 0.3404 −0.0274 1.2103 

1.3 0.5013 0.0313 0.3531 −0.0270 1.2158 

0.2 

2 

0.8220 0.0356 0.2296 −0.3028 1.1005 

0.5 0.6864 0.0397 0.2904 −0.0674 1.1705 

0.9 0.5908 0.0354 0.3184 −0.0468 1.2155 

1.3 0.5327 0.0313 0.3322 −0.0449 1.2200 

  
(a) (b) 

  
(c) (d) 

Figure 3. Plots of various statistical properties of the UCRD under different parameter values. 
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3.3. Incomplete moments 

The computation of moments for a random variable in the field of statistics and probability theory 

considers only a subset of possible values, rather than encompassing all potential values. This is 

particularly relevant when dealing with random variables that have an extensive or infinite range. 

However, practical applications often face limitations in data collection or computational complexity, 

making it impractical to calculate or estimate moments of all orders. Consequently, incomplete 

moments are sometimes considered for random variables to simplify the problem and reduce 

computational complexity. The k-th incomplete moment of the random variable X can be defined using 

the following formula: 

0
( ) ( ; , ) .

x
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Therefore, the k-th incomplete moment of X is： 
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3.4. Lorentz curve 

The Lorenz curve is a graphical tool commonly used in economics and statistics to describe the 

degree of inequality in the distribution of income or wealth. Proposed by the American economist 

Lorenz in 1905, it is widely used in the fields of economics, sociology, and policy analysis to study 

and compare the income or wealth distribution of different groups, countries, or regions, and to assess 

the severity of inequality. The Lorenz curve can provide quantitative information and intuitive 

graphical presentations to help researchers and policymakers better understand and deal with inequality. 

The Lorenz curve for X with UCRD is given below: 
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3.5. Bonferroni curve 

The Bonferroni curve is also a relative index reflecting income inequality, and it is a slight 

modification of the Lorenz curve. Its definition is the ratio of the Lorenz curve to the CDF, that is: 
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3.6. Order statistics 

Let 
1 2( , , , )nX X X  be a random sample drawn from the population X and denote 

1 2( , , , )nx x x  

as the observed values of the sample. When the sample is arranged in ascending order from smallest 

to largest, we obtain (1) (2) ( )( , , , )nX X X  , and (1) (2) ( )( , , , )nx x x   are the observed values of 

(1) (2) ( )( , , , )nX X X . These are referred to as the order statistics of the sample 
1 2( , , , )nX X X , where 

( )kX  is the k-th order statistic of the random sample. Consequently, the PDF for the k-th order statistic 

( )kX  of the UCRD is given by: 
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The CDF for the k-th order statistic ( )kX  of the UCRD is given by: 
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However, ( ) 1 2max{ , , , }n nX x x x=  , thus the PDF of ( )nX  is: 
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Due to (1) 1 2min{ , , , }nX x x x= , the PDF of (1)X  is: 
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4. Expressions for entropy measures 

Entropy measure, as a fundamental concept in information theory, is utilized to quantify the 

uncertainty or informational content of random variables. It serves as a metric that characterizes the 

probability distribution of a random variable and is employed to depict the level of uncertainty 

associated with said distribution. A higher entropy measure indicates greater uncertainty and thus more 

information contained within the random variable. Conversely, a lower entropy measure signifies 

reduced uncertainty and consequently less information present. This notion finds extensive 

applications in diverse fields such as information theory, data analysis, pattern recognition, signal 

processing, and machine learning. Currently, numerous researchers have made notable advancements 

in exploring entropy measures. For instance, Kashyap et al. [9] proposed an innovative entropy 

measure specifically tailored for Pythagorean fuzzy sets by axiomatically defining it and introducing 

key properties related to it. Sayyari and Barsam [10] investigated novel practical inequalities for 

extended entropy and relative entropy across various parameters. Abd El-Raouf and AbaOud [11] 

analyzed different entropy indices of unit generalized Rayleigh distributions while employing Monte 

Carlo simulation techniques to estimate their performance under this particular model. 

4.1. Shannon entropy 

Shannon entropy, also known as information entropy, is extensively utilized in various fields 

including communication, data compression, channel capacity, and cryptography to quantify the 

average amount of information, data compression rate, and security of cryptographic systems. 

Moreover, Shannon entropy plays a crucial role in statistics, machine learning, and data analysis where 

it finds applications in tasks such as feature selection, cluster analysis, and pattern recognition. Wang 

et al. [12] comprehensively investigated the impact of temperature and quantum confidence on the 

Shannon entropy of hydrogen impurity states in gallium arsenide quantum wells. Nascimento et al. [13] 

employed Shannon entropy to explore electrons confined in a double quantum dot system by mapping 

changes in spatial entropy parameters as an indicator of decoupling/coupling extent between twin 

quantum dots. Piga et al. [14] proposed a fast semi-analytic estimator for sparse sampling distributions 

using a hierarchical Bayesian approach to estimate Shannon entropy. Formentin et al. [15] discussed 

the concept of entropy along with degree-based indices for characterizing the chemical structure of 

iron chloride while utilizing these indices to calculate Shannon's entropy. Below, we present the 

expression for Shannon entropy under the UCRD: 
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     ln( ) [ln( )] ( 1) [ln(1 ( ) )].

(1 ) 1

SH g x g x dx

x x
E E

x x

   




 

= −

= − − + + +
− −


 (22) 

4.2. Rényi entropy 

Rényi entropy, proposed by Rényi in 1960 as a generalization of Shannon entropy, measures the 

uncertainty and diversity of random variables [16]. When the parameter 1 = , Rényi entropy transforms 

into the form of Shannon entropy. Recent progress has been made on Rényi entropy. Zhong [17] 

investigated the replication technique and homogenization mapping for calculating the heat of Rényi 

entropy in individual intervals on cylinder calibration. Baharith [18] discussed the basic statistical 

properties of the Chweeble inverse Gompertz distribution, including the reliability function, moments, 
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Rényi entropy, and order statistics. Below is the expression for Rényi entropy under UCRD: 
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4.3. Havrda-Charvat entropy 

Havrda-Charvat entropy, also known as Tsallis entropy in the context of non-extensive 

thermodynamics, is a generalized concept that expands on Shannon entropy. It was introduced by 

Havrda and Charvat in 1967 and has found applications in various fields such as pattern recognition, 

image processing, and data clustering. Compared to Shannon entropy, Havrda-Charvat entropy offers 

a more flexible and comprehensive set of measures that effectively describe complex systems with 

non-standard probability distributions. Shi et al. [19] proposed a novel complexity measurement 

method called weighted Havrda-Charvat entropy based on permutation patterns and the Havrda-

Charvat entropy itself to differentiate uncertainty among time series possessing identical pattern orders. 

Brochet et al. [20] conducted a quantitative comparison of loss functions by implementing parametric 

Tsallis-Havrda-Charvat entropy alongside conventional Shannon entropy for training deep learning 

networks in medical imaging tasks constrained by limited data volumes. Wang and Shang [21] utilized 

the Havrda-Charvat entropy plane to analyze complexity features within time series data while Brochet 

et al. [22] designed a classifier using convolutional neural networks with a novel loss function based 

on Havrda-Charvat entropy for analyzing various types of data. Below, we present the expression for 

Havrda-Charvat entropy under the UCRD: 
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 (24) 

4.4. Arimoto entropy 

The Arimoto entropy is a measure in information theory that quantifies the correlation or mutual 

information between random variables. It was introduced by the Japanese scientist Arimoto in 1972 

and is based on relative entropy, which measures the discrepancy between probability distributions. 

The Arimoto entropy has wide applications in fields such as information theory, pattern recognition, 

machine learning, and communications. It can be utilized for tasks including feature selection, cluster 

analysis, information encoding, and channel capacity to comprehend and quantify relationships and 

information transfer between random variables. Li et al. [23] proposed a novel objective non-reference 

metric for evaluating image fusion by leveraging the properties of Arimoto entropy in their calculations. 

Additionally, Li et al. [24] introduced a new method for non-rigid registration of medical images that 

employs the Arimoto entropy of gradient distribution as an information-theoretic metric. Almarashi [25] 

and Abd El-Raouf and AbaOud [26] conducted research on the statistical properties of Rényi entropy, 

Shannon entropy, Havrda-Charvat entropy, and Arimoto entropy under different distributional settings. 
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Below, we present the expression for Arimoto entropy under the UCRD: 
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4.5. Mathai-Haubold entropy 

Almanjahie et al. [27] studied the fundamental properties of Mathai-Haubold entropy through 

order statistics and evaluated the performance of magnitude-based Mathai-Haubold entropy via 

simulation. Additionally, Asgharzadeh et al. [28] analyzed various properties of a generalization of the 

Lindley distribution and derived estimates of the Rényi entropy and Mathai-Haubold entropy for this 

distribution. Below, we present the expression for Mathai-Haubold entropy under the UCRD: 
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5. Estimation of UCRD model parameters 

5.1. ML estimation 

Let 
1 2( , , , )nx x x   be an observation of a random sample 

1 2( , , , )nX X X   drawn from the 

UCRD. The corresponding likelihood function is: 
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 (27) 

The log-likelihood function is: 
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By taking the partial derivatives of the log-likelihood function with respect to the parameters   and  , 

we obtain the likelihood Eqs (29) and (30): 
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By solving the likelihood Eqs (29) and (30), we can obtain the ML estimates for   and  . 

However, these equations cannot be directly solved analytically, so we consider using numerical 

methods such as the Newton-Raphson iteration or dichotomy method to obtain the ML estimates for 

  and  . Due to the invariance of ML estimation, the parameter estimates ̂ , ̂  obtained through 

numerical methods can be substituted back into Eqs (22)−(26) to obtain the ML estimates for the 

corresponding entropies ˆ ˆ ˆ ˆ ˆ, , , ,S R H A MH H H H H . 

5.2. BE 

In this section, we use BE to estimate the parameters of the URED model under the squared error 

loss function. BE, as a traditional estimation method, is based on Bayes theorem to estimate the 

probability of unknown parameters in the case of given observation data. It has a better property than 

ML estimation, using prior knowledge and sample size to get more accurate parameter estimation. 

Assuming that    and    are independent random variables and follow 
1 1( , )    and 

2 2( , )   , 

respectively, the density functions of   and   are: 
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Then, the joint prior distribution of   and   is: 
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According to Bayes' theorem, the joint posterior density of   and   is: 
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 (34) 

In order to quantify the cost loss resulting from errors in the estimation process, it is customary 

to introduce a loss function aimed at minimizing the expected loss. In this study, we explore the 

utilization of both square error loss functions (SELF) for parameter estimation in UCRD models. The 

SELF is formally defined as [29]: 

2ˆ ˆ( , ) ( ) .L    = −  

Where ̂  represents the ML estimate for the parameter  . 
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Thus, the Bayesian estimator under the SELF is: 
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The non-explicit form of Eq (35) makes direct calculation more intricate, leading us to consider 

employing the Lindley approximation algorithm for parameter estimation. The definition of Lindley's 

approximation is obtained from [30]: 

 

( , ) ( , )

0 0

( , ) ( , )

0 0

( , )
( ) [ ( , ) ] .

h l x

h l x

e d d
I x E x

e d d

   

   

    
  

 

  +

  +
= =

 

 
 (36) 

Where ( , )     represents the parameter vector, ( , ) ln ( , )h     =  , if the sample size is 

sufficiently large, Eq (36) can be further simplified to the following expression: 
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Where ̂  and ̂  are ML estimates of   and  , and the subscripts represent partial derivatives of 

variables, such as   representing the first derivative of   in ( , )   ; similarly, the others are 

similar representations, ,i j  representing the (i,j) element of 
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When we calculate the estimate of   under SELF, where ( , )   = , we have 

 1, 0.          = = = = = =  (44) 

Bring the Eqs (38)−(44) into the Eq (37) to get the following formula: 
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When we calculate the estimate of   under SELF, where ( , )   = , we have 

 1, 0.          = = = = = =  (45) 

Bring the Eqs (38)−(43) and Eq (45) into the Eq (37) to get the following formula: 
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6. Simulation study 

In this section, we utilize the Monte Carlo simulation method in conjunction with the estimation 

technique employed in this study and MATLAB software to compute the mean square error (MSE), 

mean bias (AB), and mean relative estimate (MRE) of the parameters of the UCRD model. Initially, 

we set 0.3, 0.1 = =   as the initial parameter values, while 1 1 2 2 1   = = = =   serve as 

hyperparameters. We consider sample sizes of n = 30, 50, 80, and 100 for which we conduct 1000 

repeated tests per sample size; the main code can be found in Appendix A. The specific results are 

presented in Table 2. 

Based on ML estimation, we estimate different entropy measures under UCRD to evaluate and 

compare their performance. First, we set the initial values of the parameters as 

0.35,0.75,1.25,1.65 =  , 0.5,1,1.5,2 =  , and the entropy parameter 0.5,1.5 =  , and obtain the 

estimates of different entropy measures under UCRD (see Tables 3 and 4). Then, we further set the 

initial values of the parameters to 0.5, 0.3 = =   and 0.75, 0.4 = =  , and set the entropy 

parameters 0.8,1.2,1.5,1.7 = . For the sample size n = 30, 50, 80, 100, we conducted 1000 repetitions. 

Based on these experiments, we used MATLAB software to calculate the AEEs, AEBs, and corresponding 
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MSEs and MREs of the parameters and five entropy measures under UCRD (see Tables 5−8). The main 

code is in Appendix B. 

Table 2. ML estimates and Bayesian estimates of UCRD model parameters with different 

sample sizes and corresponding MSEs, ABs, and MREs. 

n  
ML Lindley 

        

30 

AE 0.3360 0.1489 0.3431 0.1560 

MSE 0.0109 0.0156 0.0115 0.0164 

AB 0.0702 0.0762 0.0726 0.0780 

MRE 0.1199 0.4890 0.1436 0.5602 

50 

AE 0.3126 0.1169 0.3168 0.1211 

MSE 0.0040 0.0043 0.0041 0.0045 

AB 0.0466 0.0459 0.0473 0.0463 

MRE 0.0420 0.1691 0.0561 0.2113 

80 

AE 0.3091 0.1103 0.3117 0.1130 

MSE 0.0023 0.0023 0.0024 0.0024 

AB 0.0369 0.0347 0.0372 0.0350 

MRE 0.0302 0.1034 0.0390 0.1298 

100 

AE 0.3077 0.1094 0.3098 0.1115 

MSE 0.0018 0.0020 0.0019 0.0021 

AB 0.0329 0.0328 0.0333 0.0330 

MRE 0.0256 0.0936 0.0326 0.1148 

Table 3. Measured values of different entropies under the UCRD when 0.5 = . 

    SH  
RH  

HH  
AH  

MH  

0.35 

0.5 

−0.1593 −0.1012 −0.1191 −0.0963 −0.2134 

0.75 −0.1978 −0.1193 −0.1398 −0.1125 −0.2701 

1.25 −0.3718 −0.2497 −0.2833 −0.2210 −0.4986 

1.65 −0.4801 −0.3448 −0.3823 −0.2916 −0.6413 

0.35 

1 

−0.2691 −0.1708 −0.1976 −0.1570 −0.3726 

0.75 −0.2074 −0.1289 −0.1507 −0.1209 −0.2788 

1.25 −0.3205 −0.2103 −0.2410 −0.1897 −0.4297 

1.65 −0.3994 −0.2783 −0.3136 −0.2429 −0.5310 

0.35 

1.5 

−0.3520 −0.2238 −0.2556 −0.2005 −0.4984 

0.75 −0.2361 −0.1496 −0.1740 −0.1390 −0.3155 

1.25 −0.3146 −0.2044 −0.2345 −0.1849 −0.4234 

1.65 −0.3761 −0.2573 −0.2914 −0.2268 −0.5020 

0.35 

2 

−0.4187 −0.2668 −0.3016 −0.2342 −0.6032 

0.75 −0.2666 −0.1711 −0.1979 −0.1573 −0.3560 

1.25 −0.3212 −0.2078 −0.2383 −0.1877 −0.4340 

1.65 −0.3706 −0.2504 −0.2841 −0.2215 −0.4970 
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Table 4. Measured values of different entropies under the UCRD when 1.5 = . 

    SH  
RH  

HH  
AH  

MH  

0.35 

0.5 

−0.1593 −0.2028 −0.3643 −0.2098 −0.0987 

0.75 −0.1978 −0.2533 −0.4610 −0.2643 −0.1159 

1.25 −0.3718 −0.4452 −0.8512 −0.4799 −0.2347 

1.65 −0.4801 −0.5562 −1.0947 −0.6111 −0.3167 

0.35 

1 

−0.2691 −0.3417 −0.6361 −0.3619 −0.1637 

0.75 −0.2074 −0.2610 −0.4759 −0.2726 −0.1248 

1.25 −0.3205 −0.3892 −0.7336 −0.4156 −0.1997 

1.65 −0.3994 −0.4710 −0.9065 −0.5099 −0.2598 

0.35 

1.5 

−0.3520 −0.4450 −0.8509 −0.4797 −0.2117 

0.75 −0.2361 −0.2930 −0.5386 −0.3078 −0.1442 

1.25 −0.3146 −0.3840 −0.7227 −0.4097 −0.1943 

1.65 −0.3761 −0.4479 −0.8570 −0.4830 −0.2414 

0.35 

2 

−0.4187 −0.5272 −1.0297 −0.5763 −0.2498 

0.75 −0.2666 −0.3277 −0.6078 −0.3462 −0.1640 

1.25 −0.3212 −0.3927 −0.7408 −0.4196 −0.1974 

1.65 −0.3706 −0.4439 −0.8484 −0.4784 −0.2354 

Table 5. AEEs, AEBs, and corresponding MSEs and MREs for parameters and different 

entropies under the UCRD when 0.8 =  and 0.5, 0.3 = = . 

n      SH  
RH  

HH  
AH  

MH  

 Initial value 0.5000 0.3000 0.1075 0.0920 0.1226 0.0910 0.1229 

30 

AEE 0.5662 0.4234 0.1397 0.1203 0.1596 0.1182 0.1598 

MSE 0.0469 0.1369 0.0044 0.0036 0.0060 0.0033 0.0060 

AEB 0.1370 0.2059 0.0464 0.0399 0.0523 0.0386 0.0526 

MRE 0.1324 0.4115 0.0291 0.3080 0.3014 0.2998 0.3001 

50 

AEE 0.5436 0.3647 0.1287 0.1103 0.1465 0.1086 0.1469 

MSE 0.0226 0.0430 0.0025 0.0018 0.0030 0.0016 0.0031 

AEB 0.0989 0.1296 0.0355 0.0293 0.0385 0.0285 0.0393 

MRE 0.0873 0.2158 0.1972 0.1984 0.1947 0.1938 0.1953 

80 

AEE 0.5254 0.3400 0.1199 0.1035 0.1377 0.1021 0.1381 

MSE 0.0099 0.0199 0.0012 0.0009 0.0016 0.0009 0.0017 

AEB 0.0735 0.0996 0.0259 0.0221 0.0291 0.0215 0.0301 

MRE 0.0507 0.1334 0.1151 0.1253 0.1232 0.1227 0.1238 

100 

AEE 0.5149 0.3232 0.1179 0.0998 0.1328 0.0985 0.1332 

MSE 0.0073 0.0146 0.0009 0.0007 0.0012 0.0006 0.0007 

AEB 0.0636 0.0863 0.0225 0.0190 0.0250 0.0185 0.0260 

MRE 0.0298 0.0774 0.0968 0.0845 0.0827 0.0827 0.0838 

 

 



22831 

AIMS Mathematics  Volume 9, Issue 8, 22813–22841. 

Table 6. AEEs, AEBs, and corresponding MSEs and MREs for parameters and different 

entropies under the UCRD when 1.2 =  and 0.5, 0.3 = = . 

n      SH  
RH  

HH  
AH  

MH  

 Initial value 0.5000 0.3000 0.1075 0.1214 0.1899 0.1226 0.0912 

30 

AEE 0.5662 0.4234 0.1393 0.1588 0.2500 0.1613 0.1199 

MSE 0.0469 0.1369 0.0044 0.0060 0.0155 0.0064 0.0036 

AEB 0.1370 0.2059 0.0460 0.0545 0.0872 0.0561 0.0416 

MRE 0.1324 0.4115 0.2957 0.3078 0.3166 0.3151 0.3155 

50 

AEE 0.5436 0.3647 0.1292 0.1448 0.2273 0.1467 0.1091 

MSE 0.0226 0.0430 0.0025 0.0030 0.0078 0.0032 0.0018 

AEB 0.0989 0.1296 0.0356 0.0391 0.0624 0.0402 0.0295 

MRE 0.0873 0.2158 0.2023 0.1925 0.1974 0.1965 0.1972 

80 

AEE 0.5254 0.3400 0.1203 0.1346 0.2109 0.1362 0.1013 

MSE 0.0099 0.0199 0.0012 0.0015 0.0038 0.0016 0.0008 

AEB 0.0735 0.0996 0.0257 0.0281 0.0446 0.0287 0.0208 

MRE 0.0507 0.1334 0.1191 0.1084 0.1110 0.1105 0.1109 

100 

AEE 0.5149 0.3232 0.1171 0.1307 0.2047 0.1322 0.0983 

MSE 0.0073 0.0146 0.0008 0.0011 0.0028 0.0012 0.0006 

AEB 0.0636 0.0863 0.0217 0.0249 0.0395 0.0255 0.0183 

MRE 0.0298 0.0774 0.0898 0.0762 0.0780 0.0777 0.0782 

Table 7. AEEs, AEBs, and corresponding MSEs and MREs for parameters and different 

entropies under the UCRD when 1.5 =  and 0.75, 0.4 = = . 

n      SH  
RH  

HH  
AH  

MH  

 Initial value 0.7500 0.4000 0.2054 0.2636 0.4810 0.2755 0.1195 

30 

AEE 0.9566 0.6359 0.2382 0.3036 0.5650 0.3215 0.1477 

MSE 0.3901 0.4698 0.0091 0.0121 0.0497 0.0152 0.0049 

AEB 0.3230 0.3461 0.0720 0.0858 0.1713 0.0953 0.0514 

MRE 0.2755 0.5896 0.1597 0.1518 0.1746 0.1667 0.2361 

50 

AEE 0.8346 0.5004 0.2245 0.2829 0.5217 0.2977 0.1335 

MSE 0.0833 0.0990 0.0050 0.0063 0.0250 0.0077 0.0023 

AEB 0.1898 0.1985 0.0543 0.0618 0.1219 0.0680 0.0359 

MRE 0.1128 0.2509 0.0929 0.0732 0.0846 0.0806 0.1176 

80 

AEE 0.8075 0.4647 0.2172 0.2797 0.5141 0.2937 0.1303 

MSE 0.0350 0.0417 0.0028 0.0035 0.0136 0.0042 0.0012 

AEB 0.1332 0.1428 0.0406 0.0461 0.0906 0.0506 0.0265 

MRE 0.0767 0.1618 0.0572 0.0611 0.0687 0.0661 0.0905 

100 

AEE 0.7893 0.4444 0.2170 0.2749 0.5044 0.2884 0.1272 

MSE 0.0225 0.0248 0.0023 0.0027 0.0104 0.0032 0.0009 

AEB 0.1127 0.1167 0.0378 0.0411 0.0805 0.0450 0.0234 

MRE 0.0523 0.1110 0.0564 0.0429 0.0485 0.0466 0.0649 
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Table 8. AEEs, AEBs, and corresponding MSEs and MREs for parameters and different 

entropies under the UCRD when 1.7 =  and 0.75, 0.4 = = . 

n      SH  
RH  

HH  
AH  

MH  

 Initial value 0.7500 0.4000 0.2054 0.2823 0.5684 0.2994 0.0781 

30 

AEE 0.9507 0.6352 0.2435 0.3191 0.6599 0.3436 0.0988 

MSE 0.4225 0.4765 0.0097 0.0122 0.0673 0.0164 0.0028 

AEB 0.3187 0.3430 0.0732 0.0855 0.1963 0.0980 0.0364 

MRE 0.2676 0.5881 0.1430 0.1304 0.1610 0.1478 0.2659 

50 

AEE 0.8353 0.4948 0.2282 0.3041 0.6217 0.3253 0.0896 

MSE 0.0756 0.0891 0.0053 0.0063 0.0329 0.0082 0.0012 

AEB 0.1855 0.1996 0.0559 0.0620 0.1403 0.0705 0.0251 

MRE 0.1137 0.2369 0.1112 0.0771 0.0937 0.0866 0.1473 

80 

AEE 0.8041 0.4610 0.2179 0.2967 0.6033 0.3164 0.0856 

MSE 0.0396 0.0468 0.0030 0.0039 0.0202 0.0051 0.0007 

AEB 0.1384 0.1446 0.0424 0.0496 0.1115 0.0561 0.0195 

MRE 0.0721 0.1525 0.0609 0.0508 0.0614 0.0569 0.0968 

100 

AEE 0.7847 0.4398 0.2148 0.2918 0.5917 0.3107 0.0832 

MSE 0.0240 0.0275 0.0023 0.0029 0.0145 0.0037 0.0005 

AEB 0.1140 0.1178 0.0381 0.0426 0.0953 0.0481 0.0164 

MRE 0.0463 0.0995 0.0459 0.0337 0.0410 0.0379 0.0654 

Based on the above tables, we can draw the following conclusions: 

(1) The ML estimation exhibits superior parameter accuracy compared to the BE when 

considering the SELF. Moreover, as the sample size increases, the MSEs, AEBs, and MREs of 

parameter estimation all demonstrate a decreasing trend, indicating an improvement in estimation 

accuracy with larger data volumes. 

(2) When   is fixed, different entropy measures exhibit a decrease with increasing  . Similarly, 

when   is fixed, various entropy measures tend to decrease as   increases. 

(3) With fixed parameters    and   , Rényi entropy, Havrda-Charvat entropy, and Arimoto 

entropy measures tend to decrease as the entropy parameters    increase. Conversely, Mathai-

Haubold entropy measures tend to increase with higher values of the entropy parameters  . 

(4) As the sample size increases, the AEs of parameters and different entropies gradually approach 

the initial values, and the MSEs, AEBs, and MREs of parameters and entropies decrease. 

(5) Increasing the entropy parameter   generally leads to higher MSEs and AEBs for entropies. 

7. Real data analysis 

In this section, we employ two sets of actual data to examine the versatility and applicability of 

the UCRD across the unit interval in comparison with other classical probability distribution models. 

Additionally, we investigate the feasibility of utilizing ML estimation for estimating various entropy 

measures. The initial dataset was provided by Bjerkedal [31] and pertains to the survival time of 72 

guinea pigs infected with virulent tuberculosis bacillus. The second dataset consists of infection times 

(in months) among dialysis patients as proposed by Klein and Moeschberger [32], with specific details 

presented in Table 8. It is important to note that we need to normalize dataset 2 within the range (0,1), 
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resulting in converted values as follows: 0.08333, 0.08333, 0.11667, 0.11667, 0.11667, 0.15000, 

0.18333, 0.21667, 0.21667, 0.25000, 0.25000, 0.25000, 0.25000, 0.28333, 0.31667, 0.35000, 0.38333, 

0.41667, 0.41667, 0.45000, 0.48333, 0.48333, 0.71667, 0.71667, 0.75000, 0.75000, 0.85000, 0.91667. 

Table 9. Real data values. 

Data  

1 

0.010 0.033 0.044 0.056 0.059 0.072 0.074 0.077 0.092 0.093 

0.096 0.100 0.100 0.102 0.105 0.107 0.107 0.108 0.108 0.108 

0.109 0.112 0.113 0.115 0.116 0.120 0.121 0.122 0.122 0.124 

0.130 0.134 0.136 0.139 0.144 0.146 0.153 0.159 0.160 0.163 

0.163 0.168 0.171 0.172 0.176 0.183 0.195 0.196 0.197 0.202 

0.213 0.215 0.216 0.222 0.230 0.231 0.240 0.245 0.251 0.253 

0.254 0.254 0.278 0.293 0.327 0.342 0.347 0.361 0.402 0.432 

0.458 0.555         

 2.5 2.5 3.5 3.5 3.5 4.5 5.5 6.5 6.5 7.5 

2 7.5 7.5 7.5 8.5 9.5 10.5 11.5 12.5 12.5 13.5 

 14.5 14.5 21.5 21.5 22.5 22.5 25.5 27.5   

In this study, to comprehensively evaluate the goodness of fit of the UCRD model to both datasets, 

we selected various probability distribution models for analysis. These included the Kumaraswamy 

(Kw) distribution, CRD, generalized Rayleigh distribution (GRD), inverse exponential Rayleigh 

distribution (IERD), and two-parameter Rayleigh distribution (RD), which were compared with the 

UCRD model. Using MATLAB software, we applied Akaiike information criteria (AIC), 

Kolmogorov-Smirnov (KS) statistics, and Anderson-Darling (AD) statistics to these models. The P-

value of KS statistic was adopted as the criterion for selecting the best-fitting model; the main code 

can be found in Appendix C and D, and corresponding numerical results are presented in Table 10. 

Additionally, empirical distributions of both datasets were plotted and visually compared with CDF 

diagrams corresponding to each model. These comparison results are illustrated in Figure 4. It can be 

observed from Table 10 and Figure 4 that the UCRD exhibits superior fitting performance for both 

datasets. Based on this finding, we further analyze the proposed statistics using these two datasets; 

relevant analysis results are shown in Table 11. In Table 11, it is evident that metric values of Rényi 

entropy, Havrda-Charvat entropy, and Arimoto entropy decrease with increasing entropy parameters, 

while metric values of Mathai-Haubold entropy increase with increasing entropy parameters. This 

conclusion aligns with the findings obtained in the simulation section and further validates the 

effectiveness and reliability of our proposed method for estimating entropy measures. 
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Table 10. ML estimates and goodness of fit tests for two sets of real data. 

Data Model     AIC AD KS KS (p-values) 

1 

UCRD 1.5824 0.0626 −374.7721 0.6281 0.0886 0.3232 

Kw 1.7584 16.1025 −134.5082 1.1577 0.0918 0.2970 

CRD 4.5374 0.1483 −138.6299 0.7445 0.0977 0.2530 

GRD 0.9361 4.7828 −135.0087 1.1676 0.0966 0.2611 

IERD 0.4044 0.0021 −47.0799 10.9825 0.3320 1.2759e-07 

RD 0.1513 89.2556 −164.3701 78.8664 0.8180 1.4387e-42 

2 

UCRD 0.4702 0.0622 −182.1497 0.2625 0.0820 0.6865 

Kw 1.2651 2.0797 −3.3250 0.7083 0.1377 0.3457 

CRD 2.7035 0.3650 −3.1880 0.4173 0.1165 0.4675 

GRD 0.7483 2.0202 −3.1094 0.5596 0.1366 0.3516 

IERD 0.6636 0.0275 1.7176 0.9928 0.1388 0.3400 

RD 0.1985 11.0026 1.50062 16.9951 0.4355 2.4352e-05 

  
(a) (b) 

Figure 4. Empirical distribution of two sets of real data and CDF of other models. 

Table 11. The parameter ML estimates and various entropy estimates with different   

values were employed for the two sets of real data. 

Data ( , )     SH  
RH  

HH  
AH  

MH  

1 1.5824, 0.0626 = =  

0.5 −0.9660 −0.7331 −0.7409 −0.5196 −1.4279 

1.2 −0.9660 −1.0186 −1.7456 −1.1102 −0.8204 

1.8 −0.9660 −1.1215 −3.4128 −1.4538 −0.3522 

2.2 −0.9660 −1.1655 −5.3998 −1.6287 1.1818 

2 0.4702, 0.0622 = =  

0.5 −0.1862 −0.0997 −0.1173 −0.0948 −0.2764 

1.2 −0.1862 −0.2169 −0.3426 −0.2209 −0.1509 

1.8 −0.1862 −0.2961 −0.6281 −0.3165 −0.0407 

2.2 −0.1862 −0.3390 −0.8889 −0.3723 0.0451 
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8. Conclusions 

In this paper, we construct a novel UCRD model, which is defined on the bounded interval (0,1). 

First, the basic characteristics of the UCRD model are briefly summarized. Then, the core statistical 

properties such as quantile function, K-moment, expectation, and variance of the distribution are 

derived in detail, and the application potential and adaptability of the model in practice are deeply 

discussed. In addition, five entropy measures under the framework of the model are systematically 

analyzed, and ML estimation and BE are used to estimate the model parameters. Through Monte Carlo 

simulation, the AEEs, AEBs, MSEs, and MREs of these entropy measures are further calculated. 

Finally, two sets of real data are used to verify the performance of the UCRD model, and the results 

show that compared with other traditional distributions, the UCRD model presents a better fitting effect. 

In future work, we plan to further expand the UCRD model to enhance its adaptability to different 

types of data. We are considering combining the UCRD model with other models to improve the 

predictive power of the model. At the same time, we will explore the development of the UCRD model 

in other subject areas, promote knowledge exchange between disciplines, and solve interdisciplinary 

problems. In addition, we will deepen theoretical research and model validation to enhance the 

theoretical support and practical application value of the UCRD model. 
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A． Estimating the parameters of the UCRD model using maximum likelihood estimation and Bayesian 

estimation 

clear,clc; 

n=30;%nIndicates the total number of samples 

beta0=0.3;theta0=0.1;%Set the initial value of parameters 

a1=1;b1=1;a2=1;b2=1;%Set the value of hyperparameterss 

for i=1:1000 

G=rand(1,m); 
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for j=1:m 

H(j)=G(j).^(1/(j+sum(R(m-j+1:m)))); 

end 

for j=1:m 

Z(j)=1-prod(H(m-j+1:m)); 

x(j)=1-(1+(theta0.*(1-Z(j)).^(-1./beta0)-theta0).^(1/2)).^(-1);%Generate random numbers that follow 

the UCRD distribution 

end 

thetaML(i)=ER(n,x); 

betaML(i)=n./sum(log(1+(1./thetaML(i)).*(x./(1-x)).^2));%Obtaining maximum likelihood estimates 

of parameters from the dichotomy method 

[beta_BE(i),theta_BE(i)]=Lindley(n,x,a1,b1,a2,b2,betaML(i),thetaML(i)); 

end 

theta=mean(thetaML);beta=mean(betaML);%Maximum likelihood estimation mean of parameters 

theta_B=mean(theta_BE);beta_B=mean(beta_BE);%Bayesian estimation mean of parameters 

Attached call function: 

(1) Dichotomy method 

function thetaML=ER(n,x) 

f=@(n,x,theta)-n./theta+((n./sum(log(1+(1./theta).*(x./(1-x)).^2)))+1).*sum(((x./(1-

x)).^2)./(theta.^2+theta.*(x./(1-x)).^2));%Merge of likelihood functions 

theta_lower=0;%The lower bound of theta 

theta_upper=5;%The upper bound of theta 

tolerance=1e-5;%Error tolerance 

while theta_upper-theta_lower>tolerance 

    theta_mid=(theta_lower+theta_upper)/2;%The midpoint of theta 

    f_mid=f(n,x,theta_mid); 

    if f_mid<0 

        theta_upper=theta_mid; 

        theta_mid=(theta_lower+theta_upper)/2; 

    else 

        theta_lower=theta_mid; 

        theta_mid=(theta_lower+theta_upper)/2; 

    end 

end 

thetaML=theta_mid; 

end 

(2) Lindly approximation 

function [beta_BE,theta_BE]=Lindley(n,x,a1,b1,a2,b2,betaML,thetaML)%Lindley approximation for 

Bayesian estimation 

L11=@(a,b)-n./(a.^2); 

L22=@(a,b)n./(b.^2)-(a+1).*sum(((x./1-x).^2.*(2.*b+(x./1-x).^2))./(b.^2+b.*(x./1-x).^2).^2); 

L12=@(a,b)sum(((x./1-x).^2)./(b.^2+b.*(x./1-x).^2)); 
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L21=L12; 

L111=@(a,b)2.*n./(a.^3); 

L121=0; 

L211=L121; 

L221=@(a,b)-sum(((x./1-x).^2.*(2.*b+(x./1-x).^2))./(b.^2+b.*(x./1-x).^2).^2); 

L122=L221; 

L212=L221; 

L222=@(a,b)(-2.*n)./(b.^3)-2.*(a+1).*sum(((x./1-x).^2)./(b.^2+b.*(x./1-

x).^2).^2)+2.*(a+1).*sum(((x./1-x).^2.*(2.*b+(x./1-x).^2).^2)./(b.^2+b.*(x./1-x).^2).^3);%On the 

differentiation of parameters of logarithmic likelihood function 

P1=@(a,b)((a1-1)./a)-b1; 

P2=@(a,b)((a2-1)./b)-b2;%The logarithmic derivative of the logarithmic joint prior distribution of 

parameters 

%Next, we will apply maximum likelihood estimates to each function 

L11=L11(betaML,thetaML);L12=L12(betaML,thetaML);L21=L21(betaML,thetaML);L22=L22(beta

ML,thetaML); 

L111=L111(betaML,thetaML);L122=L122(betaML,thetaML);L212=L122;L221=L122;L222=L222(

betaML,thetaML); 

P1=P1(betaML,thetaML);P2=P2(betaML,thetaML); 

O=inv([-L11,-L12;-L21,-L22]);O11=O(1,1);O12=O(1,2);O21=O(2,1);O22=O(2,2);%Using O to 

represent Fisher inverse matrix 

%Next, calculate the Bayesian estimation of beta under the squared error loss function 

U1=betaML; 

U1_1=1; 

U1_2=0;U1_11=0;U1_22=0;U1_12=0;U1_21=0; 

%Substitute maximum likelihood estimates into U1 

beta_BE=U1+0.5*((U1_11+2*U1_1*P1)*O11+(U1_21+2*U1_2*P1)*O21+(U1_12+2*U1_1*P2)*

O12+(U1_22+2*U1_2*P2)*O22)+0.5*((U1_1*O11+U1_2*O12)... 

    *(L111*O11+L221*O22)+(U1_1*O21+U1_2*O22)*(L122*O12+L212*O21+L222*O22)); 

%Next, calculate the Bayesian estimation of theta under the squared error loss function 

U2=thetaML; 

U2_1=1; 

U2_2=0;U2_11=0;U2_22=0;U2_12=0;U2_21=0; 

%Substitute maximum likelihood estimation into U2 

theta_BE=U2+0.5*((U2_11+2*U2_1*P1)*O11+(U2_21+2*U2_2*P1)*O21+(U2_12+2*U2_1*P2)*

O12+(U2_22+2*U2_2*P2)*O22)+0.5*((U2_1*O11+U2_2*O12)*... 

    (L111*O11+L221*O22)+(U2_1*O21+U2_2*O22)*(L122*O12+L212*O21+L222*O22)); 

end 

B． Calculate the average estimate of parameters and entropy, the average deviation, as well as the 

corresponding mean square error and average relative estimate 

clear,clc; 

n=30;%Indicates the total number of samples 

beta0=0.5;theta0=0.3;%Set the initial value of parameters 

alpha=0.8;%Set entropy parameter values 
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HR=@(a,b)(1./(1-alpha)).*log(integral(@(t)((2*a)./b).^alpha.*(t./(1-t).^3).^alpha.*(1+(1./b).*(t./(1-

t)).^2).^(-alpha.*(a+1)),0,1)); 

%Expressions for Renyi entropy 

HR0=HR(beta0,theta0);  

%The initial values of Renyi entropy 

for i=1:1000 

G=rand(1,m); 

for j=1:m 

H(j)=G(j).^(1/(j+sum(R(m-j+1:m)))); 

end 

for j=1:m 

Z(j)=1-prod(H(m-j+1:m)); 

x(j)=1-(1+(theta0.*(1-Z(j)).^(-1./beta0)-theta0).^(1/2)).^(-1); 

end 

thetaML(i)=ER(n,x); 

betaML(i)=n./sum(log(1+(1./thetaML(i)).*(x./(1-x)).^2));%Estimating parameters through dichotomy 

method 

HR_ML(i)=HR(betaML(i),thetaML(i));  

%Obtain estimates of Renyi entropy 

end 

theta_AEE=mean(thetaML);beta_AEE=mean(betaML);%Mean of parameters 

HR_AEE=mean(HR_ML);  

%The mean of Renyi entropy 

theta_MSE=sum((thetaML-theta0).^2)./1000; 

beta_MSE=sum((betaML-beta0).^2)./1000;%Mean squared error of parameters 

HR_MSE=sum((HR_ML-HR0).^2)./1000;  

%Mean squared error of Renyi entropy 

theta_AEB=sum(abs(thetaML-theta0))./1000; 

beta_AEB=sum(abs(betaML-beta0))./1000;%The average bias of parameters 

HR_AEB=sum(abs(HR_ML-HR0))./1000; 

%The average bias of Renyi entropy 

theta_MRE=sum((thetaML-theta0)./theta0)./1000; 

beta_MRE=sum((betaML-beta0)./beta0)./1000;%The mean relative estimate of parameters 

HR_MRE=sum((HR_ML-HR0)./HR0)./1000;  

%Mean relative estimates of Renyi entropy 

C． Calculate the KS and AD statistics of UCRD on real data: 

clear,clc; 

n=72;%Indicates the total number of samples 

w=[0.010    0.033   0.044   0.056   0.059   0.072   0.074   0.077   0.092   0.093   

0.096   0.100   0.100   0.102   0.105   0.107   0.107   0.108   0.108   0.108... 

0.109   0.112   0.113   0.115   0.116   0.120   0.121   0.122   0.122   0.124... 

0.130   0.134   0.136   0.139   0.144   0.146   0.153   0.159   0.160   0.163... 

0.163   0.168   0.171   0.172   0.176   0.183   0.195   0.196   0.197   0.202... 

0.213   0.215   0.216   0.222   0.230   0.231   0.240   0.245   0.251   0.253... 
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0.254   0.254   0.278   0.293   0.327   0.342   0.347   0.361   0.402   0.432… 

0.458   0.555];%Real dataset 

thetaML=ER_2(n,w); 

betaML=n./sum(log(1+(1./thetaML).*(w./(1-w)).^2));%Estimated values of UCRD parameters 

obtained through dichotomy method 

F_u=@(x)1-(1+(1./thetaML).*(x./(1-x)).^2).^(-betaML);%The CDF of UCRD 

Fu_values=F_u(w);%Bring this set of real data into the CDF 

z=length(w); % Number of data points 

ecdf_values = (1:z) / z; % The value of the empirical distribution function 

KS_statistic_U = max(abs(Fu_values - ecdf_values));%Formula for calculating KS test (cumulative 

distribution function - empirical distribution function) 

p_value_U = exp(-2 * (KS_statistic_U)^2 * n);%Formula for calculating p-value 

i=1:z; 

AD_u=-g-sum(((2*i-1)./z).*(log(Fu_values)+log(1-Fu_values(end:-1:1))));%Formula for calculating 

AD test 

D． Calculate the AIC of UCRD on real data: 

clear,clc; 

n=72;%Indicates the total number of samples 

w=[0.010    0.033   0.044   0.056   0.059   0.072   0.074   0.077   0.092   0.093   

0.096   0.100   0.100   0.102   0.105   0.107   0.107   0.108   0.108   0.108... 

0.109   0.112   0.113   0.115   0.116   0.120   0.121   0.122   0.122   0.124... 

0.130   0.134   0.136   0.139   0.144   0.146   0.153   0.159   0.160   0.163... 

0.163   0.168   0.171   0.172   0.176   0.183   0.195   0.196   0.197   0.202... 

0.213   0.215   0.216   0.222   0.230   0.231   0.240   0.245   0.251   0.253... 

0.254   0.254   0.278   0.293   0.327   0.342   0.347   0.361   0.402   0.432… 

0.458   0.555];%Real dataset 

thetaML=ER_2(n,w); 

betaML=n./sum(log(1+(1./thetaML).*(w./(1-w)).^2));%Estimated values of UCRD parameters 

obtained through dichotomy method 

f_u=((2.*betaML.*w)./(thetaML.*(1-w).^3)).*(1+(1./thetaML).*(w./1-w).^2).^(-betaML-1);%The 

PDF of UCRD 

L_u=prod(f_u);%Likelihood function of UCRD 

% Calculate AIC 

k = 2; % The number of model parameters 

AIC_u = -2 .* log(L_u) + 2 .* k. 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


