In this paper, adjoint curves generated by means of integral curves of special Smarandache curves with respect to the Bishop frame in three-dimensional Euclidean space were introduced. Relations between the main curve and the Bishop apparatus of these adjoint curves were obtained. Some important results were given concerning the slant helix and general helix of these curves. Finally, these findings were illustrated with figures.
Citation: Esra Damar. Adjoint curves of special Smarandache curves with respect to Bishop frame[J]. AIMS Mathematics, 2024, 9(12): 35355-35376. doi: 10.3934/math.20241680
[1] | Zeshan Qiu . Fourth-order high-precision algorithms for one-sided tempered fractional diffusion equations. AIMS Mathematics, 2024, 9(10): 27102-27121. doi: 10.3934/math.20241318 |
[2] | Zunyuan Hu, Can Li, Shimin Guo . Fast finite difference/Legendre spectral collocation approximations for a tempered time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34647-34673. doi: 10.3934/math.20241650 |
[3] | Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172 |
[4] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[5] | Sadia Arshad, Iram Saleem, Ali Akgül, Jianfei Huang, Yifa Tang, Sayed M Eldin . A novel numerical method for solving the Caputo-Fabrizio fractional differential equation. AIMS Mathematics, 2023, 8(4): 9535-9556. doi: 10.3934/math.2023481 |
[6] | H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220 |
[7] | Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299 |
[8] | Ritu Agarwal, Mahaveer Prasad Yadav, Dumitru Baleanu, S. D. Purohit . Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Mathematics, 2020, 5(2): 1062-1073. doi: 10.3934/math.2020074 |
[9] | Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112 |
[10] | Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312 |
In this paper, adjoint curves generated by means of integral curves of special Smarandache curves with respect to the Bishop frame in three-dimensional Euclidean space were introduced. Relations between the main curve and the Bishop apparatus of these adjoint curves were obtained. Some important results were given concerning the slant helix and general helix of these curves. Finally, these findings were illustrated with figures.
In this paper, we consider the Cauchy problem for the following two-dimensional inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion:
{ρt+u⋅∇ρ=0,(t,x)∈R+×R2,ρ(ut+u⋅∇u)−Δu+∇P+σdiv(∇b⊗∇b−12|∇b|2I)=0,bt+u⋅∇b+1ν(e′(b)−σΔb)=0,divu=0,(ρ,u,b)(t,x)|t=0=(ρ0,u0,b0)(x), | (1.1) |
where the unknowns ρ=ρ(x,t), u=(u1(x,t),u2(x,t)) and b=b(x,t) stand for the density, velocity of the fluid and the spherical part of the elastic strain, respectively. P is a scalar pressure function, which guarantees the divergence-free condition of the velocity field. The coefficients ν and σ are two positive constants. In addition, we suppose that e(⋅) is a smooth convex function about b and e(0)≤0, e′(0)=0, e″(b)≤C0, where C0 is a positive constant depending on the initial data. The class of fluids is the elastic response described by a spherical strain [3]. Compared with [3], we have added the divergence-free condition to investigate the effect of density on viscoelastic rate-type fluids, while the divergence-free condition is for computational convenience.
It is easy to observe that for σ=0, the system (1.1) degenerates two distinct systems involving the inhomogeneous Navier-Stokes equation for the fluid and a transport equation with damped e′(b). Numerous researchers have extensively studied the well-posedness concern regarding the inhomogeneous Navier-Stokes equations; see [1,7,8,9,11,14] and elsewhere. However, the transport equation has a greater effect on the regularity of density than on that of velocity. Additionally, due to the presence of the damped term e′(b), the initial elasticity in system (1.1) exhibits higher regularity compared to the initial velocity.
In the case where σ>0, system (1.1) resembles the inhomogeneous magnetohydrodynamic (MHD) equations, with b as a scalar function in (1.1) that does not satisfy the divergence condition found in MHD equations. It is essential to highlight that the system (1.1) represents a simplified model, deviating from standard viscoelastic rate-type fluid models with stress-diffusion to facilitate mathematical calculations. Related studies on system (1.1) can be found in [3,4,15]. In particular, Bulíček, Málek, and Rodriguez in [5] established the well-posedness of a 2D homogeneous system (1.1) in Sobolev space. Our contribution lies in incorporating the density equation into this established framework.
Inspired by [11,18], we initially establish a priori estimates for the system (1.1). Subsequently, by using a Friedrich's method and the compactness argument, we obtain the existence and uniqueness of the solutions. Our main result is as follows:
Theorem 1.1. Let the initial data (ρ0,u0,b0) satisfy
0<m<ρ0(x)<M<∞,(u0,b0)∈H1(R2)×H2(R2),e(b0)∈L1(R2), | (1.2) |
where m,M are two given positive constants with m<M. Then system (1.1) has a global solution (ρ,u,b) such that, for any given T>0, (t,x)∈[0,T)×R2,
m<ρ(t,x)<M,u∈L∞(0,T;H1(R2))∩L2(0,T;H2(R2)),∂tu∈L∞(0,T;L2(R2))∩L2(0,T;H1(R2)),b∈L∞(0,T;H2(R2))∩L2(0,T;H3(R2)),∂tb∈L∞(0,T;H1(R2))∩L2(0,T;H2(R2)). |
Moreover, if ∇ρ0∈L4(R2), then the solution is unique.
Remark 1.1. Compared to the non-homogeneous MHD equations, handling the damping term e′(b) poses a challenge, so that we cannot obtain the time-weighted energy of the velocity field. To explore the uniqueness of the solution, it is necessary to improve the regularity of the initial density data.
The key issue to prove the global existence part of Theorem 1.1 is establishing the a priori L∞(0,T;H1(R2)) estimate on (u,∇b) for any positive time T. We cannot directly estimate the L2 estimate of (u,b), which mainly occurs in the velocity term div(∇b⊗∇b−12|∇b|2I). Therefore, we need to estimate the L2 of the ∇b equation. Afterwards, the L2 estimation of equation b was affected by a damping term e′(b), so we made an L2 estimation of equation e′(b). Finally, to show the L∞(0,T;H1(R2)) of u, we also need an estimate of the second derivative of b. In summary, we found that the initial value of the b equation needs to be one derivative higher than the initial value of the u equation.
Concerning the uniqueness of the strong solutions, a common approach is to consider the difference equations between two solutions and subsequently derive some energy estimates for the resulting system differences based on the fundamental natural energy of the system. However, for system (1.1), the presence of a damping term e′(b) of the equation b and density equation prevents the calculation of the time-weighted energy of the velocity field. To research the solution's uniqueness, we need to enhance the regularity of the initial density data.
The paper is structured as follows: Section 2 presents prior estimates for system (1.1). In Section 3, we establish the existence and uniqueness of Theorem 1.1.
Proposition 2.1. Assume that m,M are two given positive constants and 0<m≤M<∞, the initial data ρ0 satisfies 0<m≤ρ0≤M<+∞, and the initial data (√ρ0u0,∇b0)∈L2(R2)×L2(R2). Let (ρ,u,b) be a smooth solution of system (1.1), then there holds for any t>0,
0<m≤ρ(t)≤M<+∞, | (2.1) |
‖(√ρu,∇b,u)(t)‖2L2+∫t0‖(∇u,∇2b)‖2L2dτ≤C‖(√ρ0u0,∇b0)‖2L2, | (2.2) |
where C is a constant depending only on σ, ν.
Proof. First, any Lebesgue norm of ρ0 is preserved through the evolution, and 0<m≤ρ(t)≤M<+∞.
To prove (2.2), taking the L2 inner product of the second equation of (1.1) with u and integrating by parts, then we obtain
12ddt‖√ρu‖2L2+‖∇u‖2L2=−σ∫R2Δb∇b⋅udx, | (2.3) |
where we used the fact that
div(∇b⊗∇b−12|∇b|2I)=Δb∇b. |
Multiplying the third equation of (1.1) by −σΔb and integrating by parts, we obtain
σ2ddt‖∇b‖2L2+σ2ν‖Δb‖2L2−σ2ν∫R2e′(b)Δbdx=σ∫R2u⋅∇bΔbdx. | (2.4) |
Thanks to the convexity of e(b), we know
−σ2ν∫R2e′(b)Δbdx=σ2ν∫R2∇(e′(b))∇bdx=σ2ν∫R2e″(b)|∇b|2dx≥0. | (2.5) |
By inserting (2.5) into (2.4), combining the result with (2.3), one yields
ddt‖(√ρu,∇b)‖2L2+‖∇u‖2L2+C‖Δb‖2L2≤0. |
Integrating it with respect to time, we have
‖(√ρu,∇b)(t)‖2L2+∫t0‖(∇u,∇2b)‖2L2dτ≤C‖(√ρ0u0,∇b0)‖2L2. | (2.6) |
On the other hand, applying 0<m≤ρ≤M<+∞, which together with (2.6) implies
‖u‖2L∞(L2)≤m−1‖√ρu‖2L∞(L2)≤C‖(√ρ0u0,∇b0)‖2L2, |
which, along with inequality (2.6), yields (2.2).
Proposition 2.2. Under the assumptions of Proposition 2.1, the corresponding solution (ρ, u, b) of the system (1.1) admits the following bound for any t>0:
‖(∇u,∇2b,∇b,b)‖2L2+∫t0‖(∇2u,∇3b,√ρuτ,bτ,uτ)‖2L2dτ≤C, | (2.7) |
where C is a positive constant depending on m, M, u0, ρ0, and ∇b0.
Proof. First, we obtain by taking L2 inner product of (1.1)3 with e′(b) that
ddt∫R2e(b)dx+1ν‖e′(b)‖2L2≤‖u⋅∇b‖L2‖e′(b)‖L2+14ν‖e′(b)‖2L2+C‖Δb‖2L2≤12ν‖e′(b)‖2L2+C‖u‖2L4‖∇b‖2L4+C‖Δb‖2L2≤12ν‖e′(b)‖2L2+C‖u‖L2‖∇u‖L2‖∇b‖L2‖∇2b‖L2+C‖Δb‖2L2≤12ν‖e′(b)‖2L2+C(‖∇u‖2L2+‖∇2b‖2L2). |
Integrating with respect to time, we obtain
‖e(b)‖L∞(L1)+‖e′(b)‖2L2(L2)≤‖(√ρ0u0,∇b0)‖2L2+‖e(b0)‖L1. | (2.8) |
Similarly, multiplying (1.1)3 by b, we have
12ddt‖b‖2L2+‖∇b‖2L2≤C(‖b‖2L2+‖e′(b)‖2L2), |
after using (2.8) and Grönwall's inequality, we obtain
b∈L∞(0,t;L2(R2))∩L2(0,t;H1(R2)). | (2.9) |
In the following, applying Laplace operator Δ to (1.1)3 and multiplying the resulting equation by Δb; additionally, multiplying (1.1)2 by ut and (1.1)3 by bt, respectively, then integrating them on R2 and adding up all these results together, we obtain
12ddt∫R2(|Δb|2+|∇u|2+σν|∇b|2)dx+∫R2(ρ|ut|2+|bt|2+σν|∇3b|2)dx=−∫R2ρu⋅∇u⋅utdx−σ∫R2Δb∇b⋅utdx−∫R2u⋅∇bbtdx−1ν∫R2e′(b)btdx−∫R2Δ(u⋅∇b)⋅Δbdx−1ν∫R2Δe′(b)⋅Δbdx≜6∑j=1Ij. | (2.10) |
Utilizing Gagliardo-Nirenberg's, Hölder's, Young's inequalities (2.2), we estimate the first term as follows:
I1≤‖√ρ‖L∞‖√ρut‖L2‖u‖L4‖∇u‖L4≤116‖√ρut‖2L2+C‖u‖2L4‖∇u‖2L4≤116‖√ρut‖2L2+C‖u‖L2‖∇u‖2L2‖∇2u‖L2≤116‖√ρut‖2L2+116‖∇2u‖2L2+C‖∇u‖4L2. |
Similarly, by direct calculations, the other terms can be bounded as
I2≤116‖√ρut‖2L2+σ8ν‖∇3b‖2L2+C‖∇2b‖4L2,I3≤14‖bt‖2L2+C‖∇u‖2L2+C‖∇b‖2L2‖Δb‖2L2,I4≤14‖bt‖2L2+C‖e′(b)‖2L2,I5≤3σ16ν‖∇3b‖2L2+116‖∇2u‖2L2+C‖∇u‖4L2+C‖∇2b‖4L2,I6≤3σ16ν‖∇3b‖2L2+C‖∇b‖2L2. |
Next, according to the regularity theory of the Stokes system in Eq (1.1)2, it follows that
‖∇2u‖2L2≤‖ρut‖2L2+‖ρu⋅∇u‖2L2+σ‖∇bΔb‖2L2≤‖√ρut‖2L2+C‖∇u‖2L2‖∇2u‖L2+C‖∇2b‖2L2‖∇3b‖L2≤‖√ρut‖2L2+12‖∇2u‖2L2+σ2ν‖∇3b‖2L2+C(‖∇u‖4L2+‖∇2b‖4L2), |
after multiplying by 18, we arrive at
116‖∇2u‖2L2≤18‖ρut‖2L2+σ16ν‖∇3b‖2L2+C(‖∇u‖4L2+‖∇2b‖4L2). | (2.11) |
Substituting the estimates I1−I6 into (2.10) and combining inequality (2.11), we have
ddt(‖(∇u,∇b,∇2b)‖2L2+1)+‖(√ρut,bt,∇3b,∇2u)‖2L2≤C(‖(∇u,∇b,∇2b)‖2L2+1)‖(∇u,∇b,∇2b)‖2L2+C‖e′(b)‖2L2, |
which, along with Grönwall's inequality (2.2), (2.8), and (2.9), leads to
‖(∇u,∇b,∇2b)‖2L2+∫t0‖(√ρuτ,bτ,∇3b,∇2u)‖2L2dτ≤C, | (2.12) |
which completes the proof of Proposition 2.2.
Proposition 2.3. Under the assumptions of Proposition 2.2, there holds
‖(√ρut,bt,∇bt,ut)‖2L2+∫t0‖(∇uτ,∇bτ,Δbτ)‖2L2dτ≤C, | (2.13) |
where C is a positive constant depending on m, M, u0, ρ0 and b0.
Proof. Taking the derivative of Eq (1.1)2 with respect to time t, then multiplying ut on both sides of the resulting equation and integrating by parts gives
12ddt‖√ρut‖2L2+‖∇ut‖2L2=−∫R2ρtut⋅utdx−∫R2ρtu⋅∇u⋅utdx−∫R2ρut⋅∇u⋅utdx−∫R2σΔbt∇b⋅utdx−σ∫R2Δb∇bt⋅utdx. | (2.14) |
Next, we compute each term on the right-hand side of the equation above one by one using estimates (2.2) and (2.7). The bound of the first term has been estimated as
−∫R2ρtut⋅utdx=∫R2 div(ρu)ut⋅utdx=−∫R22ρuut⋅∇utdx≤C‖ρ‖L∞‖u‖L4‖ut‖L4‖∇ut‖L2≤C‖u‖12L2‖∇u‖12L2‖∇ut‖32L2‖ut‖12L2≤110‖∇ut‖2L2+C‖∇u‖2L2‖ut‖2L2. |
By using Gagliardo-Nirenberg's, Hölder's, and Young's inequalities and (2.2), we have
−∫R2ρtu⋅∇u⋅utdx=∫R2∇⋅(ρu)u⋅∇u⋅utdx=−∫R2ρu⋅∇u⋅∇u⋅utdx−∫R2ρu⋅u⋅∇2u⋅utdx−∫R2u⋅∇u⋅ρu⋅∇utdx≤‖ρ‖L∞(‖u‖L6‖∇u‖2L3‖ut‖L6+‖u‖2L6‖∇2u‖L2‖ut‖L6+‖u‖2L6‖∇u‖L6‖∇ut‖L2)≤C‖u‖13L2‖∇u‖2L2‖∇2u‖23L2‖ut‖13L2‖∇ut‖23L2+C‖u‖23L2‖∇u‖43L2‖∇2u‖L2‖ut‖13L2‖∇ut‖23L2 +C‖u‖23L2‖∇u‖53L2‖∇2u‖23L2‖∇ut‖L2≤110‖∇ut‖2L2+C‖∇2u‖2L2+C‖∇u‖2L2‖ut‖2L2. |
Similarly,
−∫R2ρut⋅∇u⋅utdx≤C‖ρ‖L∞‖∇u‖L2‖ut‖2L4≤110‖∇ut‖2L2+C‖∇u‖2L2‖ut‖2L2 |
and
−∫R2σΔbt∇b⋅utdx−σ∫R2Δb∇bt⋅utdx≤C‖Δbt‖L2‖∇b‖L4‖ut‖L4+C‖Δb‖L4‖∇bt‖L2‖ut‖L4≤C‖Δbt‖L2‖∇b‖12L2‖Δb‖12L2‖ut‖12L2‖∇ut‖12L2+C‖Δb‖12L2‖∇3b‖12L2‖∇bt‖L2‖ut‖12L2‖∇ut‖12L2≤σ16ν‖∇bt‖2L2+σ16ν‖Δbt‖2L2+110‖∇ut‖2L2+C(‖∇b‖2L2+‖∇3b‖2L2)‖∇2b‖2L2‖ut‖2L2. |
Inserting these estimates into (2.14), we have
ddt‖√ρut‖2L2+85‖∇ut‖2L2≤σ8ν‖(∇bt,Δbt)‖2L2+C‖∇2u‖2L2+C‖(∇u,∇2b,∇3b)‖2L2‖ut‖2L2. | (2.15) |
Now we turn to the b equation of (1.1). Differentiating (1.1)3 with respect to t, we obtain
btt+ut⋅∇b+u⋅∇bt+1ν(e″(b)bt−σΔbt)=0. |
Multiplying it by bt and −Δbt, integrating the resulting equation, and summing up these results, due to the divergence-free condition divu=0, we obtain
12ddt‖(bt,∇bt)‖2L2+σν‖(∇bt,Δbt)‖2L2+1ν∫R2e″(b)(bt)2dx=∫R2ut⋅b⋅∇btdx+∫R2ut⋅∇b⋅Δbtdx+∫R2u⋅∇bt⋅Δbtdx+1ν∫R2e″(b)bt⋅Δbtdx≤‖ut‖L4‖b‖L4‖∇bt‖L2+‖ut‖L4‖∇b‖L4‖Δbt‖L2+‖u‖L4‖∇bt‖L4‖Δbt‖L2+C‖bt‖L2‖Δbt‖L2≤σ4ν‖∇bt‖2L2+‖ut‖L2‖∇ut‖L2‖b‖L2‖∇b‖L2+σ8ν‖Δbt‖2L2+‖ut‖L2‖∇ut‖L2‖∇b‖L2‖Δb‖L2+σ8ν‖Δbt‖2L2+C‖u‖L2‖∇u‖L2‖∇bt‖L2‖∇2bt‖L2+σ8ν‖Δbt‖2L2+C‖bt‖2L2≤σ4ν‖∇bt‖2L2+σ2ν‖Δbt‖2L2+12‖∇ut‖2L2+C(‖∇b‖2L2+‖Δb‖2L2)‖ut‖2L2+C‖bt‖2L2+C‖∇u‖2L2‖∇bt‖2L2. | (2.16) |
Summing up (2.15) and (2.16) yields that
ddt‖(√ρut,bt,∇bt)‖2L2+‖(∇ut,∇bt,Δbt)‖2L2≤C‖∇2u‖2L2+C‖bt‖2L2+C‖(∇u,∇2b,∇3b,∇b)‖2L2‖(√ρut,bt,∇bt)‖2L2. |
Applying (2.7) and Grönwall's inequality to the above inequality, we obtain
‖(√ρut,bt,∇bt)‖2L2+∫t0‖(∇uτ,∇bτ,Δbτ)‖2L2dτ≤C. |
What's more, by the same argument of ‖u‖L∞(L2) in Proposition 2.1, we have
‖ut‖L∞(L2)≤C, |
which completes the proof of Proposition 2.3.
Proposition 2.4. Under the assumption of Proposition 2.3, it holds that for any t>0:
∫t0‖∇u‖L∞dτ≤Ct23 | (2.17) |
and
sup | (2.18) |
Proof. Again, it follows from the regularity of the Stokes system
\begin{align*} &\Vert \nabla^2 u \Vert _{L^4}+\|\nabla P\|_{L^4} \\& \le \Vert \rho u_t \Vert _{L^4} + \Vert \rho u \cdot \nabla u \Vert _{L^4} + \Vert \Delta b \nabla b \Vert _{L^4} \\ & \le C (\Vert u_t \Vert _{L^4} + \Vert u \Vert _{L^\infty} \Vert \nabla u \Vert _{L^4} + \Vert \Delta b \Vert _{L^4} \Vert \nabla b \Vert _{L^\infty} )\\ & \le C (\Vert u_t \Vert _{L^2}^ \frac{1}{2}\Vert \nabla u_t \Vert _{L^2}^ \frac{1}{2} + \Vert u \Vert _{L^2}^ \frac{1}{2} \Vert \nabla^2 u \Vert _{L^2} \Vert \nabla u \Vert _{L^2}^ \frac{1}{2} + \Vert \nabla^2 b \Vert _{L^2}^ \frac{1}{2} \Vert \nabla^3 b \Vert _{L^2} \Vert \nabla b \Vert _{L^2}^ \frac{1}{2} ). \end{align*} |
By Propositions 2.1–2.3, we obtain
\begin{align*} \begin{split} \int_{0}^{t} \Vert \nabla^2 u \Vert _{L^4} \mathrm{d} \tau+ &\int_{0}^{t} \Vert \nabla P \Vert _{L^4} \mathrm{d}\tau \le C (\int_{0}^{t} \Vert \nabla^2 u \Vert _{L^4}^2 \mathrm{d} \tau ) ^\frac{1}{2} t^\frac{1}{2} +C (\int_{0}^{t} \Vert \nabla P \Vert _{L^4}^2 \mathrm{d} \tau ) ^\frac{1}{2} t^\frac{1}{2}\\ &\le C\big(\Vert u_t \Vert _{L^2(L^2)}+ \Vert \nabla u_t \Vert _{L^2(L^2)}+ \Vert u \Vert _{L^{\infty}(L^2)}^\frac{1}{2} \Vert \nabla u \Vert _{L^{\infty}(L^2)}^\frac{1}{2} \Vert \nabla^2 u \Vert _{L^2(L^2)} \\ &\qquad + \Vert \nabla b \Vert _{L^{\infty}(L^2)}^\frac{1}{2} \Vert \nabla^2 b \Vert _{L^{\infty}(L^2)}^\frac{1}{2} \Vert \nabla^3 b \Vert _{L^2(L^2)}\big)t^\frac{1}{2}\\ &\le C t^\frac{1}{2}, \end{split}& \end{align*} |
and
\begin{align*} \begin{split} \int_{0}^{t} \Vert \nabla u \Vert _{L^\infty} \mathrm{d} \tau &\le \int_{0}^{t} \Vert \nabla u \Vert _{L^2}^\frac{1}{3} \Vert \nabla^2 u \Vert_{L^4} ^\frac{2}{3} \mathrm{d} \tau \le C (\int_{0}^{t} \Vert \nabla^2 u \Vert _{L^4}^2 \mathrm{d} \tau ) ^\frac{1}{3} t^\frac{2}{3} \\ &\le \Big(\Vert u_t \Vert _{L^2(L^2)}^{\frac{2}{3}}+ \Vert \nabla u_t \Vert _{L^2(L^2)}^{\frac{2}{3}}+ \Vert u \Vert _{L^{\infty}(L^2)}^\frac{2}{3} \Vert \nabla u \Vert _{L^{\infty}(L^2)}^\frac{2}{3} \Vert \nabla^2 u \Vert _{L^2(L^2)}^{\frac{2}{3}} \\ & \qquad + \Vert \nabla b \Vert _{L^{\infty}(L^2)}^\frac{2}{3} \Vert \nabla^2 b\Vert _{L^{\infty}(L^2)}^\frac{2}{3} \Vert \nabla^3 b \Vert _{L^2(L^2)}^{\frac{2}{3}}\Big)t^\frac{2}{3}\\ &\le C t^\frac{2}{3}, \end{split}& \end{align*} |
which leads to (2.17). Finally, we recall that the density \rho satisfies
\begin{align*} \partial_t\rho+u\cdot\nabla\rho = 0. \end{align*} |
Applying the operator \nabla to both sides of the above equation yields
\begin{align*} \partial_t\nabla\rho+u\cdot\nabla (\nabla\rho) = -\nabla u\cdot\nabla\rho. \end{align*} |
By applying the L^p estimate to the above equation, combined with the divergence free condition implies
\begin{align*} \frac{\mathrm{d}}{\mathrm{d}t}\|\nabla\rho\|_{L^p}\leq\|\nabla u\|_{L^\infty}\|\nabla \rho\|_{L^p}. \end{align*} |
The Grönwall's inequality implies
\begin{align*} \|\nabla \rho\|_{L^p}\leq\|\nabla\rho_0\|_{L^p}\exp\int_{0}^{t}\|\nabla u\|_{L^\infty}\mathrm{d}\tau\leq C(t). \end{align*} |
We thus complete the proof of Proposition 2.4.
The section is to prove Theorem 1.1. For any given \rho_0 and (u_0, b_0)\in H^s(\mathbb{R}^2)\times H^{s+1}(\mathbb{R}^2) , we define the initial data
\rho_0^{\epsilon} = \rho_0\ast\eta_\epsilon, \quad u_0^{\epsilon} = u_0\ast\eta_\epsilon, \quad b^{\epsilon} = b_0\ast\eta_\epsilon, |
where \eta_\epsilon is the standard Friedrich's mollifier with \epsilon > 0 . With the initial data (\rho_0^{\epsilon}, u_0^{\epsilon}, b_0^{\epsilon}) , the system (1.1) has a unique global smooth solution (\rho^{\epsilon}, u^{\epsilon}, b^{\epsilon}) . From Propositions 2.1 and 2.2, we obtain
m\leq\rho^{\epsilon}(x, t)\leq M, |
\begin{align*} \Vert (u^{\epsilon}, b^{\epsilon}, \nabla u^{\epsilon}, \nabla b^{\epsilon}, \nabla^2 b^{\epsilon}) \Vert_{L^2}^2 + \int_{0}^{t} \Vert (\sqrt{\rho} u^{\epsilon}_\tau , b^{\epsilon}_\tau, \nabla ^3 b^{\epsilon}, \nabla^2 u^{\epsilon}) \Vert_{L^2}^2\mathrm{d} \tau\le C. \end{align*} |
By standard compactness arguments and Lions-Aubin's Lemma, we can obtain a subsequence denoted again by (u^{\epsilon}, b^{\epsilon}) , that (u^{\epsilon}, b^{\epsilon}) converges strongly to (u, b) in L^2(\mathbb{R}^+; H^{s_1})\times L^2(\mathbb{R}^+; H^{s_2}) , as \epsilon\rightarrow 0 , for s_1 < 2 and s_2 < 3 . By the definition of \rho_0^{\epsilon} and let \epsilon\rightarrow 0 , we find that the limit \rho of \rho^{\epsilon} satisfies m\leq\rho\leq M.
Next, we shall prove the uniqueness of the solutions. Assume that (\rho_i, u_i, b_i)\, (i = 1, 2) be two solutions of system (1.1), which satisfy the regularity propositions listed in Theorem 1.1. We denote
\begin{align*} (\tilde{\rho}, \tilde{u}, \tilde{b}, \tilde{P})\overset{def}{ = }(\rho_2-\rho_1, u_2-u_1, b_2-b_1, P_2-P_1). \end{align*} |
Then the system for (\tilde{\rho}, \tilde{u}, \tilde{b}, \tilde{P}) reads
\begin{equation} \begin{cases} \tilde{\rho}_t+u_2\cdot\nabla\tilde{\rho} = -\tilde{u}\cdot\nabla\rho_1, \\ \rho_2\tilde{u}_t+\rho_2 u_2\cdot\nabla\tilde{u}-\Delta\tilde{u}+\nabla\tilde{P} = \tilde{F}, \\ \tilde{b}_t+u_2\cdot\nabla\tilde{b}+\frac{1}{\nu}(e'(b_2)-e'(b_1)-\sigma\Delta \tilde{b}) = -\tilde{u}\cdot\nabla b_1, \\ \mathrm{div}\, \tilde{u} = 0, \\ (\tilde{\rho}, \tilde{u}, \tilde{b})(t, x)|_{t = 0} = (0, 0, 0), \end{cases} \end{equation} | (3.1) |
where
\tilde{F} = -\sigma\Delta\tilde{b}\nabla b_2-\sigma\Delta b_2 \nabla\tilde{b}-\tilde{\rho}\partial_tu_1-\tilde{\rho}u_1\cdot\nabla u_1-\rho_2\tilde{u}\cdot\nabla u_1. |
Setting \nu = \sigma = 1 in what follows.
Step 1: Taking L^2 inner product to the second equation of (3.1) with \tilde{u} , we have
\begin{align} \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\sqrt{\rho_2}\tilde{u}\|_{L^2}^2+\|\nabla\tilde{u}\|_{L^2}^2 = &-\int_{\mathbb{R}^2}\Delta\tilde{b}\nabla b_2\cdot \tilde{u}\mathrm{d}x -\int_{\mathbb{R}^2} \Delta b_2 \nabla\tilde{b}\cdot\tilde{u}\mathrm{d}x-\int_{\mathbb{R}^2}\tilde{\rho}\partial_tu_1\cdot\tilde{u}\mathrm{d}x\\ &-\int_{\mathbb{R}^2}\tilde{\rho}u_1\cdot\nabla u_1\cdot\tilde{u}\mathrm{d}x-\int_{\mathbb{R}^2}\rho_2\tilde{u}\cdot\nabla u_1\cdot\tilde{u}\mathrm{d}x. \end{align} | (3.2) |
By Hölder's and interpolation inequalities, we have
\begin{equation} \begin{split} &-\int_{\mathbb{R}^2}\Delta\tilde{b}\nabla b_2\cdot \tilde{u}\mathrm{d}x -\int_{\mathbb{R}^2} \Delta b_1 \nabla\tilde{b}\cdot\tilde{u}\mathrm{d}x\\ &\leq C\|\Delta\tilde{b}\|_{L^2}\|\nabla b_2\|_{L^4}\|\tilde{u}\|_{L^4}+C\|\Delta b_1 \|_{L^4}\|\nabla\tilde{b}\|_{L^2}\|\tilde{u}\|_{L^4}\\ &\leq C\|\Delta\tilde{b}\|_{L^2}\|\nabla b_2\|_{L^2}^{\frac{1}{2}}\|\nabla^2 b_2\|_{L^2}^{\frac{1}{2}}\|\tilde{u}\|_{L^2}^{\frac{1}{2}}\|\nabla\tilde{u}\|_{L^2}^{\frac{1}{2}}\\ &\quad+C\|\Delta b_1 \|_{L^2}^{\frac{1}{2}}\|\nabla^3 b_1\|_{L^2}^{\frac{1}{2}}\|\nabla\tilde{b}\|_{L^2}\|\tilde{u}\|_{L^2}^{\frac{1}{2}}\|\nabla \tilde{u}\|_{L^2}^{\frac{1}{2}}\\ &\leq \frac{1}{8}\|(\Delta\tilde{b}, \nabla\tilde{b})\|_{L^2}^2+\frac{1}{8}\|\nabla\tilde{u}\|_{L^2}^2+C(\|\nabla b_2\|_{L^2}^{2}\|\nabla^2 b_2\|_{L^2}^{2}+\|\nabla^3 b_1\|_{L^2}^2\|\nabla^2 b_1\|_{L^2}^{2})\|\tilde{u}\|_{L^2}^2. \end{split} \end{equation} | (3.3) |
Similarly,
\begin{equation} \begin{split} &-\int_{\mathbb{R}^2}\tilde{\rho}\partial_tu_1\cdot\tilde{u}\mathrm{d}x-\int_{\mathbb{R}^2}\tilde{\rho}u_1\cdot\nabla u_1\cdot\tilde{u}\mathrm{d}x\\ &\leq \|\tilde{\rho}\|_{L^2}(\|\partial_tu_1\|_{L^4}+\|u_1\cdot\nabla u_1\|_{L^4})\|\tilde{u}\|_{L^4}\\ &\leq \|\tilde{\rho}\|_{L^2}\big(\|\partial_tu_1\|_{L^2}+\|\nabla\partial_tu_1\|_{L^2}+\|u_1\|_{L^\infty}\|\Delta u_1\|_{L^2}+\| u_1\|_{L^\infty}\|\nabla u_1\|_{L^2}\big)\\ &\quad\times(\|\tilde{u}\|_{L^2}+\|\nabla\tilde{u}\|_{L^2}) \\ &\leq \frac{1}{8}\|\nabla\tilde{u}\|_{L^2}^2+\mathcal{F}_1(t)\|\tilde{\rho}\|_{L^2}^2+C\|\tilde{u}\|_{L^2}^2, \end{split} \end{equation} | (3.4) |
where
\mathcal{F}_1(t) = \|\partial_tu_1\|_{L^2}^2+\|\nabla\partial_tu_1\|_{L^2}^2+\|u_1\|_{L^\infty}^2\|\Delta u_1\|_{L^2}^2+\|u_1\|_{L^\infty}^2\|\nabla u_1\|_{L^2}^2. |
Hölder's inequality implies
\begin{align} -\int_{\mathbb{R}^2}\rho_2\tilde{u}\cdot\nabla u_1\cdot\tilde{u}\mathrm{d}x\leq\|\nabla u_1\|_{L^\infty}\|\sqrt{\rho_2}\tilde{u}\|_{L^2}^2. \end{align} | (3.5) |
By substituting above estimates (3.3)–(3.5) into (3.2), we have
\begin{align} \frac{\mathrm{d}}{\mathrm{d}t}\|\sqrt{\rho_2}\tilde{u}\|_{L^2}^2+\|\nabla\tilde{u}\|_{L^2}^2\leq\frac{1}{4}\|\Delta\tilde{b}\|_{L^2}^2+\frac{1}{4}\|\nabla\tilde{b}\|_{L^2}^2+C\mathcal{F}_2(t)\|\tilde{u}\|_{L^2}^2+\mathcal{F}_1(t)\|\tilde{\rho}\|_{L^2}^2, \end{align} | (3.6) |
where
\mathcal{F}_2(t) = \|\nabla b_2\|_{L^2}^{2}\|\nabla^2 b_2\|_{L^2}^{2}+\|\nabla^3 b_1\|_{L^2}^2\|\nabla^2 b_1\|_{L^2}^{2}+\|\nabla u_1\|_{L^\infty}+1. |
Step 2: Taking L^2 inner product to the third equation of (3.1) with \tilde{b}-\Delta\tilde{b} , we obtain
\begin{align} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|(\tilde{b}, \nabla\tilde{b})\|_{L^2}^2+\|(\nabla\tilde{b}, \Delta\tilde{b})\|_{L^2}^2+\int_{\mathbb{R}^2}[e'(b_2)-e'(b_1)]\tilde{b}\mathrm{d}x\\ & = \int_{\mathbb{R}^2}u_2\cdot\nabla \tilde{b}\cdot\Delta\tilde{b}\mathrm{d}x-\int_{\mathbb{R}^2}\tilde{u}\cdot\nabla b_1\cdot(\tilde{b}-\Delta\tilde{b})\mathrm{d}x+\int_{\mathbb{R}^2}[e'(b_2)-e'(b_1)]\Delta\tilde{b}\mathrm{d}x. \end{align} | (3.7) |
We shall estimate each term on the right-hand side of (3.7). For the first term of (3.7), using Hölder's inequality, we have
\begin{align} \int_{\mathbb{R}^2}u_2\cdot\nabla \tilde{b}\cdot\Delta\tilde{b}\mathrm{d}x\leq\|u_2\|_{L^\infty}\|\nabla\tilde{b}\|_{L^2}\|\Delta\tilde{b}\|_{L^2}\leq\frac{1}{8}\|\Delta\tilde{b}\|_{L^2}^2+C\|u_2\|_{L^\infty}^2\|\nabla\tilde{b}\|_{L^2}^2. \end{align} | (3.8) |
Meanwhile, we have
\begin{align} \int_{\mathbb{R}^2}[e'(b_2)-e'(b_1)]\tilde{b}\mathrm{d}x = \int_{\mathbb{R}^2}e''(\xi)\tilde{b}^2\mathrm{d}x > 0, \end{align} | (3.9) |
where \xi is a function between b_2 and b_1 .
Moreover,
\begin{align} &-\int_{\mathbb{R}^2}\tilde{u}\cdot\nabla b_1\cdot(\tilde{b}-\Delta\tilde{b})\mathrm{d}x\leq C\|\tilde{u}\|_{L^4}\|\nabla b_1\|_{L^4}(\|\tilde{b}\|_{L^2}+\|\Delta\tilde{b}\|_{L^2})\\ &\leq \frac{1}{8}\|\Delta\tilde{b}\|_{L^2}^2+C\|\tilde{b}\|_{L^2}^2+C\|\tilde{u}\|_{L^2}\|\nabla\tilde{u}\|_{L^2}\|\nabla b_1\|_{L^2}\|\Delta b_1\|_{L^2}\\ &\leq \frac{1}{8}\|\Delta\tilde{b}\|_{L^2}^2+C\|\tilde{b}\|_{L^2}^2+\frac{1}{8}\|\nabla\tilde{u}\|_{L^2}^2+C\|\tilde{u}\|_{L^2}^2\|\nabla b_1\|_{L^2}^2\|\Delta b_1\|_{L^2}^2, \end{align} | (3.10) |
and
\begin{align} \int_{\mathbb{R}^2}[e'(b_2)-e'(b_1)]\Delta\tilde{b}\mathrm{d}x& = \int_{\mathbb{R}^2}e''(\xi)\tilde{b}\Delta\tilde{b}\mathrm{d}x\\ &\le C_0 \|\tilde{b}\|_{L^2}\|\Delta\tilde{b}\|_{L^2}\le\frac{1}{4}\|\Delta\tilde{b}\|_{L^2}^2+C\|\tilde{b}\|_{L^2}^2. \end{align} | (3.11) |
By inserting (3.8)–(3.11) into (3.7), one yields
\begin{equation} \begin{split} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|(\tilde{b}, \nabla\tilde{b})\|_{L^2}^2+\frac{1}{2}\|(\nabla\tilde{b}, \Delta\tilde{b})\|_{L^2}^2\\ &\leq C\|u_2\|_{L^\infty}^2\|\nabla\tilde{b}\|_{L^2}^2+C\|\tilde{b}\|_{L^2}^2+\frac{1}{8}\|\nabla\tilde{u}\|_{L^2}^2+C\|\tilde{u}\|_{L^2}^2\|\nabla b_1\|_{L^2}^2\|\Delta b_1\|_{L^2}^2. \end{split} \end{equation} | (3.12) |
Step 3: We will derive the estimate of \|\tilde{\rho}\|_{L^2} as follows:
\begin{align} \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\tilde{\rho}\|_{L^2}^2&\leq \|\tilde{u}\cdot\nabla\rho_1\|_{L^2}\|\tilde{\rho}\|_{L^2}\\ &\leq\|\tilde{u}\|_{L^4}\|\nabla\rho_1\|_{L^4}\|\tilde{\rho}\|_{L^2}\\ &\leq \|\nabla\tilde{u}\|_{L^2}^\frac{1}{2}\|\tilde{u}\|_{L^2}^{\frac{1}{2}}\|\nabla\rho_1\|_{L^4}\|\tilde{\rho}\|_{L^2}\\ &\leq \frac{1}{4}\|\nabla\tilde{u}\|_{L^2}^2+C\|\nabla\rho_1\|_{L^4}^{\frac{4}{3}}(\|\tilde{\rho}\|_{L^2}^2+\|\tilde{u}\|_{L^2}^2). \end{align} | (3.13) |
Step 4: Summing up the above estimates, that is, (3.6), (3.12), and (3.13), we obtain
\begin{align} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|(\tilde{\rho}, \sqrt{\rho_2}\tilde{u}, \tilde{b}, \nabla\tilde{b})\|_{L^2}^2+\|(\nabla\tilde{u}, \nabla\tilde{b}, \Delta\tilde{b})\|_{L^2}^2\\ &\leq C\mathcal{F}_5(t)\|\nabla\tilde{b}\|_{L^2}^2+C\|\tilde{b}\|_{L^2}^2+C\mathcal{F}_4(t)\|\tilde{u}\|_{L^2}^2+\mathcal{F}_3(t)\|\tilde{\rho}\|_{L^2}^2\\ &\leq C(1+\mathcal{F}_3(t)+\mathcal{F}_4(t)+\mathcal{F}_5(t))\|(\tilde{\rho}, \sqrt{\rho_2}\tilde{u}, \tilde{b}, \nabla\tilde{b})\|_{L^2}^2, \end{align} | (3.14) |
where
\begin{align*} &\mathcal{F}_3(t) = \|\partial_tu_1\|_{L^2}^2+\|\nabla\partial_tu_1\|_{L^2}^2+\|u_1\|_{L^\infty}^2\|\Delta u_1\|_{L^2}^2+\|u_1\|_{L^\infty}^2\|\nabla u_1\|_{L^2}^2+\|\nabla\rho_1\|_{L^4}^{\frac{4}{3}}, \\ &\mathcal{F}_4(t) = \|\nabla b_2\|_{L^2}^{2}\|\nabla^2 b_2\|_{L^2}^{2}+\|\nabla^3 b_1\|_{L^2}^2\|\nabla^2 b_1\|_{L^2}^{2}+\|\nabla u_1\|_{L^\infty}+\|\nabla b_1\|_{L^2}^2\|\Delta b_1\|_{L^2}^2\\ &\qquad\quad+\|\nabla\rho_1\|_{L^4}^{\frac{4}{3}}+1, \\ &\mathcal{F}_5(t) = \|u_2\|_{L^\infty}^2. \end{align*} |
Noticing the fact that \int_0^t \big(1+\mathcal{F}_3(\tau)+\mathcal{F}_4(\tau)+\mathcal{F}_5(\tau)\big)\mathrm{d}\tau\le Ct+C and that \|f\|_{L^\infty}^2\leq\|f\|_{L^2}\|\nabla^2f\|_{L^2} , we can obtain that there exists a small \epsilon_0 such that
\begin{equation*} \begin{split} \|(\tilde{\rho}, \sqrt{\rho_2}\tilde{u}, \tilde{b}, \nabla\tilde{b})\|_{L^\infty(L^2)} = 0, \end{split} \end{equation*} |
for t\in [0, \epsilon_0] . Therefore, we obtain \tilde{\rho}(t) = \tilde{u}(t) = \tilde{b}(t)\equiv 0 for any t\in [0, \epsilon_0] . The uniqueness of such strong solutions on the whole time interval [0, +\infty) then follows by a bootstrap argument.
Moreover, the continuity with respect to the initial data may also be obtained by the same argument in the proof of the uniqueness, which ends the proof of Theorem 1.1.
This paper focuses on two-dimensional inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion. We have established its global solution, and the uniqueness of the solution in specific situations is also proved in this paper.
Xi Wang and Xueli Ke: Conceptualization, methodology, validation, writing-original draft, writing-review & editing. All authors have read and approved the final version of the manuscript for publication.
The authors would like to thank the anonymous referees for their suggestions which make the paper more readable.
The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article.
[1] |
L. R. Bishop, There is more than one way to frame a curve, Amer. Math. Month., 82 (1975), 246–251. https://doi.org/10.1080/00029890.1975.11993807 doi: 10.1080/00029890.1975.11993807
![]() |
[2] | N. Yüksel, A. T. Vanlı, E. Damar, A new approach for geometric properties of DNA structure in \mathbb{E}3, Life Sci. J., 12 (2015), 71–79. |
[3] | R. S. Millman, G. D. Parker, Elements of differential geometry, Prentice Hall, 1977. |
[4] |
H.A. Hayden, On a general helix in Riemannian n-space, Proc. London Math. Soc., 32 (1931), 37–45. https://doi.org/10.1112/plms/s2-32.1.337 doi: 10.1112/plms/s2-32.1.337
![]() |
[5] | M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc., 125 (1997), 1503–1509. |
[6] | S. Izumiya, N. Takeuchi, Special curves and ruled surfaces, Beitrage Algebra Geom., 44 (2003), 203–212. |
[7] | S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk J. Math., 28 (2004), 153–163. |
[8] |
B. Bükcü, M. K. Karacan, The slant helices according to Bishop frame, Int. J. Comput. Math. Sci., 3 (2009), 67–70. https://doi.org/10.5281/zenodo.1058229 doi: 10.5281/zenodo.1058229
![]() |
[9] |
J. H. Choi, Y. H. Kim, Associated curves of a Frenet curve and their applications, Appl. Math. Comput., 218 (2012), 9116–9124. https://doi.org/10.1016/j.amc.2012.02.064 doi: 10.1016/j.amc.2012.02.064
![]() |
[10] |
J. H. Choi, Y. H. Kim, A. T. Ali, Some associated curves of Frenet non-lightlike curves in \mathbb{E}_1.3, J. Math. Anal. Appl., 394 (2012), 712–723. https://doi.org/10.1016/j.jmaa.2012.04.063 doi: 10.1016/j.jmaa.2012.04.063
![]() |
[11] |
S. Deshmukh, B. Y. Chen, A. Algehanemi, Natural mates of Frenet curves in Euclidean 3-space, Turk. J. Math., 42 (2018), 2826–2840. https://doi.org/10.3906/mat-1712-34 doi: 10.3906/mat-1712-34
![]() |
[12] |
S. K. Nurkan, İ. A. Güven, M. K. Karacan, Characterizations of adjoint curves in Euclidean 3-space, Proc. Natl. Acad. Sci., 89 (2019), 155–161. https://doi.org/10.1007/s40010-017-0425-y doi: 10.1007/s40010-017-0425-y
![]() |
[13] | D. Canlı, S. Şenyurt, F. E. Kaya, L. Grilli, The pedal curves generated by alternative frame vectors and their Smarandache curves, Symmetry, 16 (2024) 1012. https://doi.org/10.3390/sym16081012 |
[14] |
S. Şenyurt, F. E. Kaya, D. Canlı, Pedal curves obtained from Frenet vector of a space curve and Smarandache curves belonging to these curves, AIMS Math., 9 (2024), 20136–20162. https://doi.org/10.3934/math.2024981 doi: 10.3934/math.2024981
![]() |
[15] |
T. Mendonca, J. Alan, R. Teixeira, Smarandache curves of natural curves pair according to Frenet frame, Adv. Res., 25 (2024), 1–13. https://doi.org/10.9734/air/2024/v25i51131 doi: 10.9734/air/2024/v25i51131
![]() |
[16] |
Y. Li, M. Mak, Framed natural mates of framed curves in Euclidean 3-space, Mathematics, 11 (2023), 3571. https://doi.org/10.3390/math11163571 doi: 10.3390/math11163571
![]() |
[17] |
P. P. Kumar, S. Balakrishnan, S. Magesh, P. Tamizharasi, S. I. Abdelsalam, Numerical treatment of entropy generation and Bejan number into an electroosmotically-driven flow of Sutterby nanofluid in an asymmetric microchannel, Numer. Heat Transfer Part B, 85 (2024), 1–20. https://doi.org/10.1080/10407790.2024.2329773 doi: 10.1080/10407790.2024.2329773
![]() |
[18] |
T. Körpinar, A. Sazak, Optical quantum recursive vortex filament flows and energy with the bishop frame, Opt. Quantum Electron., 55 (2023), 1085. https://doi.org/10.1007/s11082-023-05357-9 doi: 10.1007/s11082-023-05357-9
![]() |
[19] |
N. Yüksel, B. Saltık, E. Damar, Parallel curves in Minkowski 3-space, Gümüşhane Univ. J. Sci. Technol., 12 (2020), 480–486. https://doi.org/10.17714/gumusfenbil.85526519 doi: 10.17714/gumusfenbil.85526519
![]() |
[20] | M. Turgut, S. Yılmaz, Smarandache curves in Minkowski space time, Int. J. Math. Comb., 3 (2008), 51–55. |
[21] | D. Rabouski, F. Smarandache, L. Borisova, Neutrosophic methods in general relativity, APS March Meeting Abstracts, 2018. |
[22] |
A. T. Ali, Special Smarandache curves in the Euclidean space, Int. J. Math. Comb., 2 (2010), 30–36. https://doi.org/10.5281/ZENODO.9392 doi: 10.5281/ZENODO.9392
![]() |
[23] | M. Çetin, Y. Tuncer, M. K. Karacan, Smarandache curves according to Bishop frame in Euclidean 3-space, Gen. Math. Notes, 20 (2014), 50–66. |
[24] | S. K. Nurkan, İ. Güven, A new approach for Smarandache curves, Turk. J. Math. Comput. Sci., 14 (2022), 155–165. https://doi.org/10.47000/tjmcs.1004423 |
[25] | S. Şenyurt, A. Çalışkan, Smarandache curves of Mannheim curve couple according to Frenet frame, Math. Sci. Appl. E-Notes, 5 (2017), 122–136. https://doi.org/10.36753/mathenot.421717 |
[26] | S. Şenyurt, A. Çaliskan, U. Çelik, Smarandache curves of Bertrand curves pair according to Frenet frame, Bol. Soc. Paranaense Mat., 39 (2021), 163–173. https://doi.org/10.5269/bspm.41546 |
[27] | Y. Altun, C. Cevahir, S. Şenyurt, On the Smarandache curves of spatial quaternionic involute curve, Proc. Natl. Acad. Sci. India Sect. A, 90 (2020) 827–837. https://doi.org/10.1007/s40010-019-00640-5 |
[28] |
S. Şenyurt, Y. Altun, Smarandache curves of the evolute curve according to Sabban frame, Commun. Adv. Math. Sci., 3 (2020), 1–8. https://doi.org/10.33434/cams.594690 doi: 10.33434/cams.594690
![]() |
[29] |
E. M. Solouma, Special equiform Smarandache curves in Minkowski space-time, J. Egypt. Math. Soc., 25 (2017), 319–325. https://doi.org/10.1016/j.joems.2017.04.003 doi: 10.1016/j.joems.2017.04.003
![]() |
[30] |
H. Zhang, Y. Zhao, J. Sun, The geometrical properties of the Smarandache curves on 3-dimension pseudo-spheres generated by null curves, AIMS Math., 9 (2024), 21703–21730. https://doi.org/10.3934/math.20241056 doi: 10.3934/math.20241056
![]() |
[31] |
N. Yüksel, On dual surfaces in Galilean 3-space, AIMS Math., 8 (2023), 4830–4842. https://doi.org/10.3934/math.2023240 doi: 10.3934/math.2023240
![]() |
[32] |
M. Elzawy, S. Mosa, Smarandache curves in the Galilean 4-space G4, J. Egypt. Math. Soc., 25 (2017), 53–56. https://doi.org/10.1016/j.joems.2016.04.008 doi: 10.1016/j.joems.2016.04.008
![]() |
[33] |
H. S. Abdel-Aziz, M. S. Khalifa, Smarandache curves of some special curves in the Galilean 3-space, Honam Math. J., 37 (2015), 253–264. https://doi.org/10.5831/HMJ.2015.37.2.253 doi: 10.5831/HMJ.2015.37.2.253
![]() |
[34] |
S. Senyurt, D. Canlı, E. Can, S. G. Mazlum, Some special Smarandache ruled surfaces by Frenet frame in E3-Ⅱ, Honam Math. J., 44 (2022), 594–617. https://doi.org/10.5831/HMJ.2022.44.4.594 doi: 10.5831/HMJ.2022.44.4.594
![]() |
[35] |
S. Şenyurt, D. Canlı, E. Çan, S. G. Mazlum, Another application of Smarandache based ruled surfaces with the Darboux vector according to Frenet frame in \mathbb{E}.3, Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat., 72 (2023), 880–906. https://doi.org/10.31801/cfsuasmas.1151064 doi: 10.31801/cfsuasmas.1151064
![]() |
[36] | S. Senyurt, S. G. Mazlum, D. Canli, E. Can, Some special Smarandache ruled surfaces according to alternative frame in E3, Maejo Int. J. Sci. Technol., 17 (2023), 138–153. |
[37] |
V. Bulut, Adjoint approach between a spatial curve and a ruled surface based on the Bishop frame, Eur. J. Sci. Technol., 34 (2022), 181–192. https://doi.org/10.31590/ejosat.1079225 doi: 10.31590/ejosat.1079225
![]() |