Research article Special Issues

Enhancing the robustness of block ciphers through a graphical S-box evolution scheme for secure multimedia applications

  • Received: 01 September 2024 Revised: 30 November 2024 Accepted: 03 December 2024 Published: 18 December 2024
  • MSC : 20D35, 94A60

  • Block ciphers are essential for the secure exchange of data and communication, as they are one of the primary components of network security systems. Modern-day block ciphers are most significantly reliant on substitution-boxes (S-boxes). In essence, the security of these cryptosystems is contingent upon the quality of the S-box that is implemented. Robustness and assurance of the security competency necessary to block ciphers are provided by the cryptographically strong S-boxes. A novel coset graph-based algebraic method was proposed to evolve a robust and efficient S-box in order to address the challenges of strong S-box generation. To begin, the vertices of coset graphs for two Galois fields and a bijective function were employed to generate an initial S-box of sufficient cryptographic strength. Afterwards, a permutation group of large order enhances the robustness of the initial S-box, ensuring its resistance against various cryptanalytic attacks. The proposed method's efficacy was verified by comparing the attributes of our S-box with those of S-boxes that have been recently investigated. Furthermore, the proposed S-box was used for image encryption. The outcome of the majority logic criterion (MLC) criteria, differential analysis, and histogram test demonstrates the suitability of the proposed S-box for secure multimedia applications in the results.

    Citation: Abdul Razaq, Muhammad Mahboob Ahsan, Hanan Alolaiyan, Musheer Ahmad, Qin Xin. Enhancing the robustness of block ciphers through a graphical S-box evolution scheme for secure multimedia applications[J]. AIMS Mathematics, 2024, 9(12): 35377-35400. doi: 10.3934/math.20241681

    Related Papers:

  • Block ciphers are essential for the secure exchange of data and communication, as they are one of the primary components of network security systems. Modern-day block ciphers are most significantly reliant on substitution-boxes (S-boxes). In essence, the security of these cryptosystems is contingent upon the quality of the S-box that is implemented. Robustness and assurance of the security competency necessary to block ciphers are provided by the cryptographically strong S-boxes. A novel coset graph-based algebraic method was proposed to evolve a robust and efficient S-box in order to address the challenges of strong S-box generation. To begin, the vertices of coset graphs for two Galois fields and a bijective function were employed to generate an initial S-box of sufficient cryptographic strength. Afterwards, a permutation group of large order enhances the robustness of the initial S-box, ensuring its resistance against various cryptanalytic attacks. The proposed method's efficacy was verified by comparing the attributes of our S-box with those of S-boxes that have been recently investigated. Furthermore, the proposed S-box was used for image encryption. The outcome of the majority logic criterion (MLC) criteria, differential analysis, and histogram test demonstrates the suitability of the proposed S-box for secure multimedia applications in the results.



    加载中


    [1] M. Zhang, Y. Zhang, Q. Cen, S. Wu, Deep learning-based resource allocation for secure transmission in a non-orthogonal multiple access network, Int. J. Distr. Sensor Net., 18 (2022), 1975857866. https://doi.org/10.1177/15501329221104330 doi: 10.1177/15501329221104330
    [2] B. Bi, D. Huang, B. Mi, Z. Deng, H. Pan. Efficient LBS security-preserving based on NTRU oblivious transfer, Wireless Pers. Commun., 108 (2019), 2663–2674. https://doi.org/10.1007/s11277-019-06544-2 doi: 10.1007/s11277-019-06544-2
    [3] R. Bhanot, R. Hans, A review and comparative analysis of various encryption algorithms, Int. J. Secur. Its Appl., 9 (2015), 289–306. http://dx.doi.org/10.14257/ijsia.2015.9.4.27 doi: 10.14257/ijsia.2015.9.4.27
    [4] G. Sun, Y. Li, D. Liao, V. Chang, Service function chain orchestration across multiple domains: A full mesh aggregation approach, IEEE Tran. Network Service Manag., 15 (2018), 1175–1191. https://doi.org/10.1109/TNSM.2018.2861717 doi: 10.1109/TNSM.2018.2861717
    [5] J. Daemen, V. Rijmen, The design of Rijndael, New York: Springer-verlag, 2002. https://doi.org/10.1007/978-3-662-04722-4
    [6] E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. CRYPTOLOGY, 4 (1991), 3–72. https://doi.org/10.1007/BF00630563 doi: 10.1007/BF00630563
    [7] C. E. Shannon, Communication theory of secrecy systems, Bell Syst. Technical J., 28 (1949), 656–715. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x doi: 10.1002/j.1538-7305.1949.tb00928.x
    [8] N. Siddiqui, A. Naseer, M. Ehatisham-ul-Haq, A novel scheme of substitution-box design based on modified Pascal's triangle and elliptic curve, Wirel. Personal Commun., 116 (2021), 3015–3030. https://doi.org/10.1007/s11277-020-07832-y
    [9] H. A. Ahmed, M. F. Zolkipli, M. Ahmad, A novel efficient substitution-box design based on firefly algorithm and discrete chaotic map, Neural Comput. Appl., 31 (2019), 7201–7210. https://doi.org/10.1007/s00521-018-3557-3 doi: 10.1007/s00521-018-3557-3
    [10] F. Masood, J. Masood, L. Zhang, S. S. Jamal, W. Boulila, S. U. Rehman, et al., A new color image encryption technique using DNA computing and Chaos-based substitution box, Soft Comput., 26 (2022), 7461–7477. https://doi.org/10.1007/s00500-021-06459-w
    [11] A. Razaq, M. Ahmad, A. Yousaf, M. Alawida, A. Ullah, U. Shuaib, A group theoretic construction of large number of AES-like substitution-boxes, Wirel. Personal Commun., 122 (2022), 2057–2080. https://doi.org/10.1007/s11277-021-08981-4 doi: 10.1007/s11277-021-08981-4
    [12] A. Razaq, S. Akhter, A. Yousaf, U. Shuaib, M. Ahmad, A group theoretic construction of highly nonlinear substitution box and its applications in image encryption, Multi. Tools Appl., 81 (2022), 4163–4184. https://doi.org/10.1007/s11042-021-11635-z doi: 10.1007/s11042-021-11635-z
    [13] F. Gonzalez, R. Soto, B. Crawford, Stochastic fractal search algorithm improved with opposition-based learning for solving the substitution box design problem, Mathematics, 10 (2022), 2172. https://doi.org/10.3390/math10132172 doi: 10.3390/math10132172
    [14] F. Artuğer, F. Özkaynak, SBOX-CGA: Substitution box generator based on chaos and genetic algorithm, Neural. Comput. App., 34 (2022), 20203–20211. https://doi.org/10.1007/s00521-022-07589-4
    [15] M. S. Fadhil, A. K. Farhan, M. N. Fadhil, Designing substitution box based on the 1D logistic map chaotic system, IOP Conf. Series: Mater. Sci. Eng., 1076 (2021), 012041. https://doi.org/10.1088/1757-899X/1076/1/012041 doi: 10.1088/1757-899X/1076/1/012041
    [16] A. Razaq, Iqra, M. Ahmad, M. A. Yousaf, S. Masood, A novel finite rings based algebraic scheme of evolving secure S-boxes for images encryption, Mult. Tools Appl., 80 (2021), 20191–20215. https://doi.org/10.1007/s11042-021-10587-8 doi: 10.1007/s11042-021-10587-8
    [17] I. Ullah, N. A. Azam, U. Hayat, Efficient and secure substitution box and random number generators over Mordell elliptic curves, J. Infor. Security Appl., 56 (2021), 102619. https://doi.org/10.1016/j.jisa.2020.102619 doi: 10.1016/j.jisa.2020.102619
    [18] Z. Hua, J. Li, Y. Chen, S. Yi, Design and application of an S-box using complete Latin square, Nonlinear Dyn., 104 (2021), 807–825. https://doi.org/10.1007/s11071-021-06308-3 doi: 10.1007/s11071-021-06308-3
    [19] A. A. A. El-Latif, J. Ramadoss, B. Abd-El-Atty, H. S. Khalifa, F. Nazarimehr, A novel chaos-based cryptography algorithm and its performance analysis, Mathematics, 10 (2022), 2434. https://doi.org/10.3390/math10142434 doi: 10.3390/math10142434
    [20] A. Razaq, G. Alhamzi, S. Abbas, M. Ahmad, A. Razzaque, Secure communication through reliable S-box design: A proposed approach using coset graphs and matrix operations, Heliyon, 9 (2023). https://doi.org/10.1016/j.heliyon.2023.e15902
    [21] M. A. Khan, A. Ali, V. Jeoti, S. Manzoor, A chaos-based substitution box (S-Box) design with improved differential approximation probability (DP), Iran. J. Sci. Technol. Trans. Electr. Eng., 42 (2018), 219–238. https://doi.org/10.1007/s40998-018-0061-9 doi: 10.1007/s40998-018-0061-9
    [22] F. Artuğer, F. Özkaynak, A novel method for performance improvement of chaos-based substitution boxes, Symmetry, 12 (2020), 571. https://doi.org/10.3390/sym12040571
    [23] A. Freyre-Echevarría, A. Alanezi, I. Martínez-Díaz, M. Ahmad, A. A. A. Abd El-Latif, H. Kolivand, et al., An external parameter independent novel cost function for evolving bijective substitution-boxes, Symmetry, 12 (2020), 1896. https://doi.org/10.3390/sym12111896
    [24] L. Chu, Y. Su, X. Zan, W. Lin, X. Yao, P. Xu, et al, A deniable encryption method for modulation-based DNA storage, Interdisciplinary Sciences: Comput. Life Sci., 16 (2024), 872–881. https://doi.org/10.1007/s12539-024-00648-5
    [25] X. Yao, R. Xie, X. Zan, Y. Su, P. Xu, W. Liu, A novel image encryption scheme for DNA storage systems based on DNA hybridization and gene mutation, Inter. Sci. Comput. Life Sci., 15 (2023), 419–432. https://doi.org/10.1007/s12539-023-00565-z doi: 10.1007/s12539-023-00565-z
    [26] S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, X. Tang, EFR-CSTP: Encryption for face recognition based on the chaos and semi-tensor product theory, Inf. Sci., 621 (2023), 766–781. https://doi.org/10.1016/j.ins.2022.11.121 doi: 10.1016/j.ins.2022.11.121
    [27] S. Gao, H. H. C. Iu, J. Mou, U. Erkan, J. Liu, R. Wu, et al., Temporal action segmentation for video encryption, Chaos Solitons Fract., 183 (2024), 114958. https://doi.org/10.1016/j.chaos.2024.114958
    [28] S. Gao, H. H. C. Iu, M. Wang, D. Jiang, A. A. Abd El-Latif, R. Wu, et al., Design, hardware implementation, and application in video encryption of the 2-D memristive cubic map, IEEE Int. Things J., 11 (2024), 21807–21815. https://doi.org/10.1109/JIOT.2024.3376572
    [29] C. Fan, Q. Ding, A universal method for constructing non-degenerate hyperchaotic systems with any desired number of positive Lyapunov exponents, Chaos Solitons Fract., 161 (2022), 112323. https://doi.org/10.1016/j.chaos.2022.112323 doi: 10.1016/j.chaos.2022.112323
    [30] S. Gao, J. Liu, H. H. C. Iu, U. Erkan, S. Zhou, R. Wu, et al., Development of a video encryption algorithm for critical areas using 2D extended Schaffer function map and neural networks, Appl. Math. Model., 134 (2024), 520–537. https://doi.org/10.1016/j.apm.2024.06.016
    [31] M. Wang, X. Fu, L. Teng, X. Yan, Z. Xia, P. Liu, A new 2D-HELS hyperchaotic map and its application on image encryption using RNA operation and dynamic confusion, Chaos Solitons Fract., 183 (2024), 114959. https://doi.org/10.1016/j.chaos.2024.114959 doi: 10.1016/j.chaos.2024.114959
    [32] J. A. Gallian, Contemporary abstract algebra, Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9781003142331
    [33] Q. Mushtaq, A. Razaq, Homomorphic images of circuits in PSL(2, Z)-space, Bull. Malaysian Math. Sci. Society, 40 (2017), 1115–1133. https://doi.org/10.1007/s40840-016-0357-8
    [34] Q. Mushtaq, A. Razaq, A. Yousaf, On contraction of vertices of the circuits in coset diagrams for PSL(2, Z), Proc. Math. Sci., 129 (2019), 1–26. https://doi.org/10.1007/s12044-018-0450-z
    [35] M. Conder, Three-relator quotients of the modular group, Quart. J. Math., 38 (1987), 427–447. https://doi.org/10.1093/qmath/38.4.427 doi: 10.1093/qmath/38.4.427
    [36] G. A. Jones, Maximal subgroups of the modular and other groups, J. Group Theory, 22 (2019), 277–296. https://doi.org/10.1515/jgth-2018-0144 doi: 10.1515/jgth-2018-0144
    [37] A. Razaq, Q. Mushtaq, A. Yousaf, The number of circuits of length 4 in PSL(2, ℤ)-space, Commun. Algebra, 46 (2018), 5136–5145. https://doi.org/10.1080/00927872.2018.1461880
    [38] I. Hussain, T. Shah, H. Mahmood, A projective general linear group based algorithm for the construction of substitution box for block ciphers, Neural. Comput. Appl., 22 (2013), 1085–1093. https://doi.org/10.1007/s00521-012-0870-0 doi: 10.1007/s00521-012-0870-0
    [39] A. Altaleb, M. S. Saeed, I. Hussain, M. Aslam, An algorithm for the construction of substitution box for block ciphers based on projective general linear group, AIP Adv., 7 (2017), 035116. https://doi.org/10.1063/1.4978264 doi: 10.1063/1.4978264
    [40] S. Farwa, T. Shah, L. Idrees, A highly nonlinear S-box based on a fractional linear transformation, Spr. Plus, 5 (2016), 1658. https://doi.org/10.1186/s40064-016-3298-7 doi: 10.1186/s40064-016-3298-7
    [41] J. Pieprzyk, G. Finkelstein, Towards effective nonlinear cryptosystem design, IEE Proc. E-Comput. Digital Tech., 135 (1988), 325–335. https://doi.org/10.1049/ip-e.1988.0044 doi: 10.1049/ip-e.1988.0044
    [42] A. F. Webster, S. E. Tavares, On the Design of S-boxes, Adv. Crypt.-CRYPTO'85 Proc., 218 (1986). https://doi.org/10.1007/3-540-39799-X_41
    [43] M. Matsui, Linear Cryptanalysis Method for DES Cipher, Adv. Crypt.-EUROCRYPT'93, 765 (1994). https://doi.org/10.1007/3-540-48285-7_33
    [44] U. Hayat, N. A. Azam, H. R. Gallegos-Ruiz, S. Naz, L. Batool, A truly dynamic substitution box generator for block ciphers based on elliptic curves over finite rings, Arabian J. Sci. Engineer., 46 (2021), 1–13. https://doi.org/10.1007/s13369-021-05666-9 doi: 10.1007/s13369-021-05666-9
    [45] S. Ibrahim, A. M. Abbas, Efficient key-dependent dynamic S-boxes based on permutated elliptic curves, Inf. Sci., 558 (2021), 246–264. https://doi.org/10.1016/j.ins.2021.01.014 doi: 10.1016/j.ins.2021.01.014
    [46] B. M. Alshammari, R. Guesmi, T. Guesmi, H. Alsaif, A. Alzamil, Implementing a symmetric lightweight cryptosystem in highly constrained IoT devices by using a chaotic S-box, Symmetry, 13 (2021), 129. https://doi.org/10.3390/sym13010129 doi: 10.3390/sym13010129
    [47] H. S. Alhadawi, M. A. Majid, D. Lambić, M. A. Ahmad, A novel method of S-box design based on discrete chaotic maps and cuckoo search algorithm, Multimed. Tools Appl., 80 (2021), 7333–7350. https://doi.org/10.1007/s11042-020-10048-8 doi: 10.1007/s11042-020-10048-8
    [48] M. Long, L. Wang, S-box design based on discrete chaotic map and improved artificial bee colony algorithm, IEEE Access, 9 (2021), 86144–86154. https://doi.org/10.1109/ACCESS.2021.3069965 doi: 10.1109/ACCESS.2021.3069965
    [49] R. Soto, B. Crawford, F. G. Molina, R. Olivares, Human Behaviour based optimization supported with self-organizing maps for solving the S-box design problem, IEEE Access, 9 (2021), 84605–84618. https://doi.org/10.1109/ACCESS.2021.3087139 doi: 10.1109/ACCESS.2021.3087139
    [50] W. Yan, Q. Ding, A novel S-box dynamic design based on nonlinear-transform of 1D chaotic maps, Electronics, 10 (2021), 1313. https://doi.org/10.3390/electronics10111313 doi: 10.3390/electronics10111313
    [51] P. Zhou, J. Du, K. Zhou, S. Wei, 2D mixed pseudo-random coupling PS map lattice and its application in S-box generation, Nonlinear Dyn., 103 (2021), 1151–1166. https://doi.org/10.1007/s11071-020-06098-0 doi: 10.1007/s11071-020-06098-0
    [52] S. S. Jamal, M. M. Hazzazi, M. F. Khan, Z. Bassfar, A. Aljaedi, Z. ul Islam, Region of interest-based medical image encryption technique based on chaotic S-boxes, Expert Syst. Appl., 238 (2024), 122030. https://doi.org/10.1016/j.eswa.2023.122030
    [53] M. Wang, H. Liu, M. Zhao, Construction of a non-degeneracy 3D chaotic map and application to image encryption with keyed S-box, Mult. Tools Appl., 82 (2023), 34541–34563. https://doi.org/10.1007/s11042-023-14988-9 doi: 10.1007/s11042-023-14988-9
    [54] A. Razaq, L. A. Maghrabi, M. Ahmad, Q. H. Naith, Novel substitution-box generation using group theory for secure medical image encryption in E-healthcare, AIMS Math., 9 (2024), 6207–6237. https://doi.org/10.3934/math.2024303 doi: 10.3934/math.2024303
    [55] K. Z. Zamli, F. Din, H. S. Alhadawi, Exploring a Q-learning-based chaotic naked mole rat algorithm for S-box construction and optimization, Neural Comput. Appl., 35 (2023), 10449–10471. https://doi.org/10.1007/s00521-023-08243-3 doi: 10.1007/s00521-023-08243-3
    [56] A. A. Alzaidi, M. Ahmad, H. S. Ahmed, E. A. Solami, Sine-cosine optimization-based bijective substitution-boxes construction using enhanced dynamics of chaotic map, Complexity, 2018 (2018), 1–16. https://doi.org/10.1155/2018/9389065 doi: 10.1155/2018/9389065
    [57] T. Farah, R. Rhouma, S. Belghith, A novel method for designing S-box based on chaotic map and teaching-learning-based optimization, Nonlinear Dyn., 88 (2017), 1059–1074. https://doi.org/10.1007/s11071-016-3295-y doi: 10.1007/s11071-016-3295-y
    [58] H.S. Alhadawi, D. Lambic, M.F. Zolkipli, M. Ahmad, Globalized firefly algorithm and chaos for designing substitution box, J. Inf. Security Appl., 55 (2020), 1–13. https://doi.org/10.1016/j.jisa.2020.102671 doi: 10.1016/j.jisa.2020.102671
    [59] F. Özkanak, A.B. Özer, A method for designing strong S-boxes based on chaotic Lorenz system, Phys. Lett. A, 374 (2010), 3733–3738. https://doi.org/10.1016/j.physleta.2010.07.019
    [60] Y. Aydin, A. M. Garipcan, F. Özkaynak, A novel secure S-box design methodology based on FPGA and SHA-256 hash algorithm for block cipher algorithms, Arab. J. Sci. Eng., 2024, 1–14. https://doi.org/10.1007/s13369-024-09251-8
    [61] I. Hussain, T. Shah, M.A. Gondal, H. Mahmood, Generalized majority logic criterion to analyze the statistical strength of S-boxes, Z Nat. A, 67 (2012), 282–288. https://doi.org/10.5560/zna.2012-0022 doi: 10.5560/zna.2012-0022
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(153) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog