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Abstract: Block ciphers are essential for the secure exchange of data and communication, as they are 

one of the primary components of network security systems. Modern-day block ciphers are most 

significantly reliant on substitution-boxes (S-boxes). In essence, the security of these cryptosystems is 

contingent upon the quality of the S-box that is implemented. Robustness and assurance of the security 

competency necessary to block ciphers are provided by the cryptographically strong S-boxes. A novel 

coset graph-based algebraic method was proposed to evolve a robust and efficient S-box in order to 

address the challenges of strong S-box generation. To begin, the vertices of coset graphs for two Galois 

fields and a bijective function were employed to generate an initial S-box of sufficient cryptographic 

strength. Afterwards, a permutation group of large order enhances the robustness of the initial S-box, 

ensuring its resistance against various cryptanalytic attacks. The proposed method's efficacy was 

verified by comparing the attributes of our S-box with those of S-boxes that have been recently 

investigated. Furthermore, the proposed S-box was used for image encryption. The outcome of the 

majority logic criterion (MLC) criteria, differential analysis, and histogram test demonstrates the 

suitability of the proposed S-box for secure multimedia applications in the results. 
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1. Introduction 

Data security includes methods that prevent unauthorized entry, disclosure, alteration, tampering, 

and interruption of sensitive information [1,2]. In cryptography, we implement procedures to safeguard 

data, referred to as cryptosystems or ciphers. There are two principal categories of cryptography: 

Asymmetric cryptography and symmetric cryptography. Asymmetric cryptography utilizes a pair of 

keys for its operations, whereas symmetric cryptography employs just one key for both encryption and 

decryption. We categorize symmetric ciphers into two branches: block ciphers and stream ciphers [3]. 

Sun et al. [4] proposed a full mesh aggregation approach, emphasizing the robustness required for 

securing cryptographic operations. 

The stream cipher operates on a byte-by-byte basis to transform plaintext into ciphertext. In the 

block cipher, a cryptographic key and algorithm encrypt the secret data into blocks to produce 

ciphertext. The block cipher's substitution box (S-box) is a fundamental and distinctive feature that is 

essential for the purpose of concealing the connections between the ciphertext and the key. S-boxes 

are used in conventional block ciphers, such as the advanced encryption standard (AES) [5] and data 

encryption standard (DES) [6], to provide cryptosystems with the obfuscation property described by 

Shannon [7]. In general, the protection of a cryptosystem is contingent upon the grade of the S-box 

that is employed. The competency of block ciphers is guaranteed by the robust S-box. The significance 

of the S-box in encryption techniques can be illustrated. By investigating its capacity to induce confusion 

and perplexity in plaintext and by conducting a variety of analyses, we can illustrate its importance. 

The S-box in DES is compromised and should no longer be utilized in critical systems. 

Consequently, inadequate S-boxes diminish the reliability of cryptosystems, making robust S-boxes 

essential for the creation of dependable cryptosystems. This prompted the cryptographer to embark on 

a deeper study to create cryptographically secure S-boxes. The AES block cipher has efficiently 

employed the 8-bit S-box. As a result of the advantageous implementation of the 8-bit S-box, 

cryptographers globally concentrated on developing resilient S-boxes of the dimensions 8×8. Siddiqui 

et al. [8] employed an elliptic curve to form a secure S-box. In [9], the authors introduced a novel method 

based on the chaotic function firefly algorithm to construct a reliable S-box. In [10], DNA-based 

computing was employed alongside a chaotic dynamical framework to generate a robust S-box. In [11], 

a certain type of algebraic structure was employed to compose more than 2 million copies of AES-like 

S-boxes. In [12], the authors provided an innovative S-box design method. To construct an S-box with 

elevated nonlinearity, the authors used graphs for a certain triangle group and a permutation group of 

large order. In [13], the authors introduced a resilient S-box utilizing the stochastic fractal search 

technique. Artuger and Ozkaynak [14] proposed a novel method for constructing safe S-boxes utilizing 

chaos theory and genetic algorithms. Fadhil et al. [15] employed a one-dimensional logistic chaotic map 

to generate an S-box with satisfactory cryptographic attributes. In [16], we present an efficient S-box 

construction methodology utilizing algebraic rings and symmetric groups. Ullah et al. devised a 

systematic methodology for the creation of extremely nonlinear S-boxes [17]. The authors utilized the 

concept of Mordell elliptic curves in the proposed strategy. In [18], a robust S-box design was 

introduced, incorporating a chaotic sequence and a complete Latin square. In [19], the suggested S-

box was developed using a chaotic dynamical oscillator. In [20], researchers developed a novel mechanism 

of S-box formation that makes use of coset diagrams and a newly defined matrix operation. Khan et al. 

introduced an S-box derived from a chaotic map exhibiting minimal differential uniformity [21]. Artuger 

and Özkaynak [22] offered an innovative method to improve the quality of chaos-based substitution 

boxes. The technique was successfully evaluated on many S-boxes. In [23], a novel external parameter-

independent cost mapping was utilized in the development of robust S-boxes.  
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Recent advances in data security include DNA storage encryption methods, hybridization 

techniques, and chaotic semi-tensor product theory applications [24–26]. Video encryption 

innovations leverage temporal action segmentation and 2D memristive cubic maps for enhanced 

security [27,28]. Innovative approaches to data security include the construction of non-degenerate 

hyperchaotic systems [29], video encryption algorithms leveraging 2D extended Schaffer function 

maps and neural networks [30], and the application of 2D-HELS hyperchaotic maps for secure image 

encryption through RNA operations and dynamic confusion [31]. 

The growth of algebraic frameworks and their automorphism features are essential concerns. 

Furthermore, AES proved to be susceptible to several linear cryptanalysis attacks, and numerous loops 

were deciphered. These issues necessitate the development of new, complex, and robust methods for 

constructing secure S-boxes. The goal of this research is to develop a novel S-box design scheme based on 

the combination of two group theoretic graphs whose sum of vertices is 256. We generate a sequence with 

the vertices of these graphs that possess enough randomness, which is necessary for a reliable S-box. 

We organize the remaining content of this study as follows: In Section 2, we present some basic 

knowledge about the Galois field of prime power order and coset graphs. Section 3 provides the 

construction scheme of the proposed S-box. Section 4 focuses on evaluating the generated S-box's 

performance using various algebraic analyses. We conduct several statistical analyses in Section 5 to 

assess the suitability of the generated S-box for image encryption applications through MLC. This section 

also contains differential analysis, and histogram test. Section 6 presents the conclusion of this research. 

2. Mathematical preliminaries 

Prior to detailing the suggested strategy, it is essential to explain certain details regarding the 

modular group 𝑴, Galois fields 𝑮𝑭(𝟐𝒏), and the associated coset graphs. 

2.1. Coset graphs of the modular group over Galois fields 

Until 1830, algebraists believed that a finite field has always prime order. For each prime 𝑝 and 

𝑛 ∈ ℕ, Évariste Galois constructed a field having 𝑝𝑛 number of elements. It is referred to as Galois 

field, symbolized by 𝐺𝐹(𝑝𝑛). Galois proved that 𝐺𝐹(𝑝𝑛) =
ℤ𝑝[𝑋]

𝑓(𝛶)
⁄ = {𝛶, 𝛶2, 𝛶3, … , 𝛶𝑛−1 = 1}, 

where ℤ𝑝[𝑋] represents the field extension of ℤ𝑝 and 𝑓(𝛶) is an nth degree irreducible polynomial 

over ℤ𝑝 [32]. In other words, a Galois field 𝐺𝐹(𝑝𝑛) can be built using an irreducible polynomial of 

degree 𝑛 over ℤ𝑝. It is essential to note that, for fixed values of 𝑝 and 𝑛, many irreducible polynomials 

of degree 𝑛 exist over ℤ𝑝; hence, several Galois fields 𝐺𝐹(𝑝𝑛) of a given order 𝑝𝑛 can be generated. 

The modular group 𝑀 [33] is generated by 𝑥: 𝛾 ⟶
−1

𝛾
 and 𝑦: 𝛾 ⟶

𝛾−1

𝛾
, with the finite presentation 

〈𝑥, 𝑦: 𝑥2 = 𝑦3 = 1〉. The coset graphs for M were developed in 1983 by Q. Mushtaq [34]. These graphs 

result from the action of M on 𝐺𝐹(𝑝𝑛)∪ {∞}. The generators 𝑥: 𝛾 ⟶
−1

𝛾
 and 𝑦: 𝛾 ⟶

𝛾−1

𝛾
 of 𝑀 are 

applied to each element of 𝐺𝐹(𝑝𝑛). Consequently, we obtain permutation representations of 𝑥 and 𝑦. 

Since 𝑥  has order two, then, the permutation representation of 𝑥  is the product of disjoint 

transpositions. Similarly, the permutation representation of 𝑦 is the product of disjoint cycles of length 

three. In a coset graph, each cycle (𝑎, 𝑏, 𝑐) of 𝑦 gives rise to a triangle Δ 𝑎𝑏𝑐 and each cycle (𝑟, 𝑠) of 

𝑥 represents a line joining 𝑟 and 𝑠 called the 𝑥-edge. Note that if 𝑟 and 𝑠 are in different cycles of 𝑦, 

then (𝑟, 𝑠) is a line joining vertices of two different triangles; otherwise, (𝑟, 𝑠) is a loop, that is, a line 

joining two vertices of the same triangle. The elements of 𝐺𝐹(𝑝𝑛) ∪ {∞} that are fixed points of 𝑥 and 

𝑦 are presented by small circles. A coset graph is composed of triangles, where each vertex of the 
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triangle is linked to just one vertex of the triangle via an x-edge. For further elucidation on the coset 

graphs of M, we suggest consulting references [35–37].  

In the subsequent example, we construct a coset graph of M over 𝐺𝐹(17) ∪ {∞}. 

Example 2.1 In order to draw the coset graph of 𝑀 on 𝐺𝐹(17) ∪ {∞}, we first apply 𝑥: 𝛾 ⟶
−1

𝛾
 and 

𝑦: 𝛾 ⟶
𝛾−1

𝛾
 on each element of 𝐺𝐹(17) ∪ {∞}. It is important to mention that, for every 𝛾 ∈ 𝐺𝐹(17) 

∪ {∞}, both (𝛾)𝑥 and (𝛾)𝑦 are fractions. Since 17 is zero in 𝐺𝐹(17), we continue to add 17 to the 

numerator until we reach an integral value. This method allows us to derive the permutation forms of 

𝑥 and 𝑦: 

𝑥 = (0,∞)(6,14)(2,8)(16,1)(3,11)(9,15)(5,10)(12,7), 

𝑦 = (∞, 1,0)(13,14,7)(8,3,12)(2,9,16)(15,10,6)(4,5,11). 

The coset graph in Figure 1 is the result of the aforementioned permutation forms of 𝑥 and 𝑦. 

2.2. Galois fields involved in the proposed method 

An 8-bit S-box has 256 distinct entries and 28 = 256, therefore Galois field 𝐺𝐹(28) plays a vital 

role in the 8-bit S-box construction scheme. In the literature, many S-box design proposals involving 

𝐺𝐹(28) have been suggested. The S-box used in AES [5] is generated by the irreducible polynomial 

1 + 𝛶 + 𝛶3 + 𝛶4 + 𝛶8.  In [38,39], the authors proposed the method of S-box design based on 1 +
𝛶 + 𝛶2 + 𝛶3 + 𝛶4 + 𝛶8. Farwa et al. [40] generated an S-box by using 1 + 𝛶4 + 𝛶5 + 𝛶6 + 𝛶8.  In 

this work, instead of using the Galois field 𝐺𝐹(28) of 256 elements, we first involve 𝐺𝐹1(2
7) and 

𝐺𝐹2(2
7) both having 128 elements, write their elements in a 16 × 16 matrix with the help of the 

vertices of their coset graphs, and then define a function 𝑓: 𝐺𝐹1(2
7) ∪ 𝐺𝐹2(2

7) ⟶ 𝐺𝐹(28)  to 

generate our initial S-box of reasonable strength. Furthermore, we increase complexity by reshuffling 

the initial S-box columns. The irreducible polynomials 𝑓(𝛶) = 1 + 𝛶4 + 𝛶7, 𝑔(𝛵) = 1 + 𝛵 + 𝛵2 +
𝛵3 + 𝛵5 + 𝛵6 + 𝛵7,  and ℎ(𝛿) = 1 + 𝛿4 + 𝛿5 + 𝛿6 + 𝛿8  are used to generate the elements of 

𝐺𝐹1(2
7), 𝐺𝐹2(2

7), and 𝐺𝐹(28), respectively (see Tables 1–3). 

 

Figure 1: The coset graph of 𝑀 on 𝐺𝐹(17) ∪ {∞}. 
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Table 1. Structure description of 𝐺𝐹1(2
7). 

Binary 

Forms 
𝐺𝐹1(2

7) Decimal 
Binary 

Forms 
𝐺𝐹1(2

7) Decimal 
Binary 

Forms 
𝐺𝐹1(2

7) Decimal 
Binary 

Forms 
𝐺𝐹1(2

7) Decimal 

0000000 0 0 0000001 𝛶127  1 0000010 𝛶1 2 0000100 𝛶2 4 

0001000 𝛶3 8 0010000 𝛶4  16 0100000 𝛶5 32 1000000 𝛶6 64 

0010001 𝛶7 17 0100010 𝛶8 34 1000100 𝛶9 68 0011001 𝛶10 25 

… … … … … … … … … … … … 

… … … … … … … … … … … … 

… … … … … … … … … … … … 

0001101 𝛶115 13 0011010 𝛶116 26 0110100 𝛶117 52 1101000 𝛶118 104 

1000001 𝛶119 65 0010011 𝛶120 19 0100110 𝛶121 38 1001100 𝛶122 76 

0001001 𝛶123 9 0010010 𝛶124 18 0100100 𝛶125 36 1001000 𝛶126 72 

Table 2. Structure description of 𝐺𝐹2(2
7). 

Binary 

Forms 
𝐺𝐹1(2

7) Decimal 
Binary 

Forms 
𝐺𝐹1(2

7) Decimal 
Binary 

Forms 
𝐺𝐹1(2

7) Decimal 
Binary 

Forms 
𝐺𝐹1(2

7) Decimal 

0000000 0 0 0000001 1 1 0000010 𝛵1 2 0000100 𝛵2 4 

0001000 𝛵3 8 0010000 𝛵4 16 0100000 𝛵5 32 1000000 𝛵6 64 

            

1101111 𝛵7 111 0110001 𝛵8 49 1100010 𝛵9 98 0101011 𝛵10 43 

… … … … … … … … … … … … 

… … … … … … … … … … … … 

… … … … … … … … … … … … 

1001111 𝛵115 79 1110001 𝛵116 113 0001101 𝛵117 13 0011011 𝛵118 26 

0110100 𝛵119 52 1101000 𝛵120 104 0111111 𝛵121 63 1111110 𝛵122 126 

0010011 𝛵123 19 0100110 𝛵124 38 1001100 𝛵125 76 1110111 𝛵126 119 

Table 3. Structure description of 𝐺𝐹(28). 

Binary Forms 𝐺𝐹(28) Binary Forms 𝐺𝐹(28) Binary Forms 𝐺𝐹(28) Binary Forms 𝐺𝐹(28) 

00000000 0 00000001 1 00000010 𝛿1 00000100 𝛿2 
00001000 𝛿3 00010000 𝛿4 00000100 𝛿5 01000000 𝛿6 
10000000 𝛿7 01110001 𝛿8 11100010 𝛿9 10110101 𝛿10 
00011011 𝛿11 00110110 𝛿12 01101100 𝛿13 11011000 𝛿14 

… … … … … … … … 

… … … … … … … … 

… … … … … … … … 

01011010 δ243 10110100 δ244 00011001 δ245 00110010 δ246 

01100100 𝛿247 11001000 𝛿248 11100001 𝛿249 10110011 𝛿250 
00010111 𝛿251 00101110 𝛿252 01011100 𝛿253 10111000 𝛿254 
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3. Proposed S-box construction method 

The construction process of the generated S-box is based on coset graphs for 𝐺𝐹1(2
7) ∪ {∞} and 

𝐺𝐹2(2
7) ∪ {∞} along with a certain column reshuffling pattern. This section is devoted to narrating 

the process used to complete the task. 

3.1. Coset graphs used in the method 

We designed the proposed S-box using two coset graphs 𝐷1 and 𝐷2 evolved through the action of 

𝑀 on 𝐺𝐹1(2
7) ∪ {∞} and 𝐺𝐹2(2

7) ∪ {∞}, respectively. 

In this section, we propose our S-box construction method based on the concepts described in the 

previous section. 

3.1.1. Coset graphs of 𝑀 for 𝐺𝐹1(2
7) ∪ {∞} 

In order to form coset graphs of 𝑀 for 𝐺𝐹1(2
7) ∪ {∞}, we first apply the generators 𝑥: 𝛾 ⟶

−1

𝛾
 

and 𝑦: 𝛾 ⟶
𝛾−1

𝛾
  of 𝑀 on each element of 𝐺𝐹1(2

7) ∪ {∞} and obtain permutation representations of 𝑥 

and 𝑦, respectively. For instance, 

(𝛶1)𝑥 =
−1

𝛶1
=

1

𝛶1
=
𝛶127

𝛶1
= 𝛶126 and (𝛶126)𝑥 =

−1

𝛶126
=

1

𝛶126
=
𝛶127

𝛶126
= 𝛶1, that is, (𝛶1, 𝛶126). 

Also, (𝛶1)𝑦 =
𝛶1−1

𝛶1
=
𝛶97

𝛶1
= 𝛶96 , (𝛶96)𝑦 =

𝛶96−1

𝛶96
=
𝛶126

𝛶96
= 𝛶30 , and (𝛶30)𝑦 =

𝛶30−1

𝛶30
=
𝛶31

𝛶30
= 𝛶1 , 

that is, (𝛶1, 𝛶96, 𝛶30). 
In a similar way, we find all remaining cycles of the permutations 𝑥 and 𝑦 which are given as: 

𝑥 = (𝛶1, 𝛶126)(𝛶2, 𝛶125)(𝛶3, 𝛶124)(𝛶4, 𝛶123)(𝛶5, 𝛶122)(𝛶6, 𝛶121)(𝛶7, 𝛶120)(𝛶8, 𝛶119)(𝛶9, 𝛶118) 

(𝛶10, 𝛶117)(𝛶11, 𝛶116)(𝛶12, 𝛶115)(𝛶13, 𝛶114)(𝛶14, 𝛶113)(𝛶15, 𝛶112)(𝛶16, 𝛶111)(𝛶17, 𝛶110)(𝛶18, 𝛶109) 

(𝛶19, 𝛶108)(𝛶20, 𝛶107)(𝛶21, 𝛶106)(𝛶22, 𝛶105)(𝛶23 , 𝛶104)(𝛶24, 𝛶103)(𝛶25, 𝛶102)(𝛶26, 𝛶101)(𝛶27, 𝛶100) 

(𝛶28, 𝛶99)(𝛶29, 𝛶98)(𝛶30, 𝛶97)(𝛶31, 𝛶96)(𝛶32, 𝛶95)(𝛶33, 𝛶94)( 𝛶34, 𝛶93)( 𝛶35 , 𝛶92)(𝛶36, 𝛶91)(𝛶37, 𝛶90) 

(𝛶38, 𝛶89)(𝛶39, 𝛶88)(𝛶40, 𝛶87)(𝛶41, 𝛶86)(𝛶42, 𝛶85)(𝛶43, 𝛶84)(𝛶44, 𝛶83)(𝛶45, 𝛶82)( 𝛶46, 𝛶81)(𝛶47, 𝛶80) 

(𝛶48, 𝛶79)(𝛶49, 𝛶78)(𝛶50, 𝛶77)(𝛶51, 𝛶76)(𝛶52, 𝛶75)(𝛶53, 𝛶74)(𝛶54, 𝛶73)(𝛶55, 𝛶72)(𝛶56, 𝛶71)(𝛶57, 𝛶70) 

        (𝛶58, 𝛶69)(𝛶59, 𝛶68)(𝛶60, 𝛶67)(𝛶61, 𝛶66)(𝛶62, 𝛶65)( 𝛶63, 𝛶64). 

𝑦 = (0 ,∞, 1)(𝛶1, 𝛶96, 𝛶30) (𝛶2, 𝛶65, 𝛶60)(𝛶3, 𝛶120, 𝛶4)(𝛶5, 𝛶45, 𝛶77)(𝛶6, 𝛶113, 𝛶8)(𝛶7, 𝛶124, 𝛶123) 

(𝛶9, 𝛶83, 𝛶35)(𝛶10, 𝛶90, 𝛶27)(𝛶11, 𝛶93, 𝛶23)(𝛶12, 𝛶99, 𝛶16)(𝛶13, 𝛶36, 𝛶78)(𝛶14, 𝛶121, 𝛶119) 

(𝛶15, 𝛶64, 𝛶48)(𝛶17, 𝛶58, 𝛶52)(𝛶18, 𝛶39, 𝛶70)(𝛶19, 𝛶21, 𝛶87)(𝛶20, 𝛶53, 𝛶54)(𝛶22, 𝛶59, 𝛶46) 

(𝛶24, 𝛶71, 𝛶32)(𝛶25, 𝛶41, 𝛶61)(𝛶26, 𝛶72, 𝛶29)(𝛶28, 𝛶115, 𝛶111)(𝛶31, 𝛶126, 𝛶97)(𝛶33, 𝛶43, 𝛶51) 

(𝛶34, 𝛶116, 𝛶104)(𝛶37, 𝛶117, 𝛶111)(𝛶38, 𝛶42, 𝛶47)(𝛶40, 𝛶106, 𝛶108)(𝛶44 , 𝛶118, 𝛶92)(𝛶48, 𝛶15, 𝛶64) 

(𝛶49, 𝛶91, 𝛶114)(𝛶50, 𝛶82, 𝛶122)(𝛶55, 𝛶101, 𝛶98)(𝛶56, 𝛶103, 𝛶95)(𝛶57, 𝛶88, 𝛶109)(𝛶62, 𝛶125, 𝛶67) 

(𝛶63, 𝛶112, 𝛶79)(𝛶66, 𝛶86, 𝛶102)(𝛶68, 𝛶105, 𝛶81)(𝛶69, 𝛶110, 𝛶75)(𝛶73, 𝛶74, 𝛶107)(𝛶76, 𝛶84, 𝛶94) 

(𝛶80, 𝛶85, 𝛶89). 
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These permutations of 𝑥 and 𝑦 give rise to a disconnected coset diagram 𝐷1, consisting of a total of 22 

patches. It is worth mentioning that out of these 22 patches, 21 are of similar type, denoted by 𝐷1(Γ𝑖), 
where 𝑖 = 1,2,3, … ,21, and the 22nd patch, which is a straight line connecting 1 and 0 through 𝑥, is denoted 

by 𝐷1(Π). Figures 2 and 3 show 𝐷1(Π) and one of the copies of 𝐷1(Γ𝑖), respectively. 

 

 

Figure 2. The patch 𝐷1(Π). 

 

Figure 3. The patch  𝐷1(Γ1). 

3.1.2. Coset graphs of 𝑀 for 𝐺𝐹2(2
7) ∪ {∞}  

We denote this coset diagram by 𝐷2, obtained as a result of the action of 𝑀 on 𝐺𝐹2(2
7) ∪ {∞}. 

The permutation representations of 𝑥 and 𝑦 are given below: 

𝑥

= (𝛵1, 𝛵126)(𝛵2, 𝛵125)(𝛵3, 𝛵124)(𝛵4, 𝛵123)(𝛵5, 𝛵122)(𝛵6, 𝛵121)(𝛵7, 𝛵120)(𝛵8, 𝛵119)(𝛵9, 𝛵118)(𝛵10, 𝛵117) 

(𝛵11, 𝛵116)(𝛵12, 𝛵115)(𝛵13, 𝛵114)(𝛵14, 𝛵113)(𝛵15, 𝛵112)(𝛵16, 𝛵111)(𝛵17, 𝛵110)(𝛵18, 𝛵109)(𝛵19, 𝛵108) 

(𝛵20, 𝛵107)(𝛵21, 𝛵106)(𝛵22, 𝛵105)(𝛵23, 𝛵104)(𝛵24, 𝛵103)(𝛵25, 𝛵102)(𝛵26, 𝛵101)(𝛵27, 𝛵100)(𝛵28, 𝛵99) 

(𝛵29, 𝛵98)(𝛵30, 𝛵97)(𝛵31, 𝛵96)(𝛵32, 𝛵95)(𝛵33, 𝛵94)(𝛵34, 𝛵93)(𝛵35, 𝛵92)(𝛵36, 𝛵91)(𝛵37, 𝛵90)(𝛵38, 𝛵89) 

(𝛵39, 𝛵88)(𝛵40, 𝛵87)(𝛵41, 𝛵86)(𝛵42, 𝛵85)(𝛵43, 𝛵84)(𝛵44, 𝛵83)(𝛵45, 𝛵82)(𝛵46, 𝛵81)(𝛵47, 𝛵80)(𝛵48, 𝛵79) 

(𝛵49, 𝛵78)(𝛵50, 𝛵77)(𝛵51, 𝛵76)(𝛵52, 𝛵75)(𝛵53, 𝛵74)(𝛵54, 𝛵73)(𝛵55, 𝛵72)(𝛵56, 𝛵71)(𝛵57, 𝛵70)(𝛵58, 𝛵69) 

(𝛵59, 𝛵68)(𝛵60, 𝛵67)(𝛵61, 𝛵66)(𝛵62, 𝛵65)(𝛵63, 𝛵64). 

𝑦 = (0,∞, 1)(𝛵1, 𝛵54, 𝛵72)(𝛵2, 𝛵108, 𝛵17)(𝛵3, 𝛵85, 𝛵39)(𝛵4, 𝛵89, 𝛵34)(𝛵5, 𝛵92, 𝛵30)(𝛵6, 𝛵43, 𝛵78) 

(𝛵7, 𝛵13, 𝛵107)(𝛵8, 𝛵51, 𝛵68)(𝛵9, 𝛵16, 𝛵102)(𝛵10, 𝛵57, 𝛵60)(𝛵11, 𝛵37, 𝛵79)(𝛵12, 𝛵86, 𝛵29)(𝛵14, 𝛵26, 𝛵87) 

(𝛵15, 𝛵66, 𝛵46)(𝛵18, 𝛵32, 𝛵77)(𝛵19, 𝛵125, 𝛵110)(𝛵20, 𝛵114, 𝛵120)(𝛵21, 𝛵62, 𝛵44)(𝛵22, 𝛵74, 𝛵31) 

(𝛵23, 𝛵71, 𝛵33)(𝛵24, 𝛵45, 𝛵58)(𝛵25, 𝛵111, 𝛵118)(𝛵27, 𝛵36, 𝛵64)(𝛵28, 𝛵52, 𝛵47)(𝛵35, 𝛵122, 𝛵97) 
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(𝛵38, 𝛵123, 𝛵93)(𝛵40, 𝛵101, 𝛵113)(𝛵41, 𝛵115, 𝛵98)(𝛵42, 𝛵124, 𝛵88)(𝛵48, 𝛵90, 𝛵116)(𝛵49, 𝛵84, 𝛵121) 

(𝛵50, 𝛵95, 𝛵109)(𝛵53, 𝛵105, 𝛵96)(𝛵55, 𝛵73, 𝛵126)(𝛵56, 𝛵104, 𝛵94) (𝛵59, 𝛵76, 𝛵119)(𝛵61, 𝛵112, 𝛵81) 

(𝛵63, 𝛵91, 𝛵100)(𝛵65, 𝛵106, 𝛵83)(𝛵67, 𝛵70, 𝛵117)(𝛵69, 𝛵82, 𝛵103)(𝛵75, 𝛵99, 𝛵80). 

The coset diagrams 𝐷1 and 𝐷2 are similar except in the labeling of the vertices. In 𝐷2, the 21 similar 

types of patches are denoted by 𝐷2(Γ𝑖), and the 22nd patch is represented by 𝐷2(Π). In Figures 4 and 5, 

𝐷2(Π) and one of the copies of 𝐷2(Γ𝑖) are shown, respectively. 

 

 

Figure 4. The patch 𝐷2(Π). 

 

Figure 5. The patch  𝐷2(Γ1). 

3.2. Proposed method 

The suggested S-box construction scheme involves three steps. The explanation of all three steps 

is provided below. 

Step 1. In this step, we construct a square matrix of 256 elements by the above-mentioned two coset 

graphs, that is, coset graphs for 𝐺𝐹1(2
7) and 𝐺𝐹2(2

7). We pick one copy of fragments 𝐷1(Γ𝑖): 𝑖 =
1,2,3, … ,21, which has a vertex with the least power of 𝛶 , that is, 𝛶1 . Call it 𝐷1(Γ1), and apply 

𝑥𝑦𝑥𝑦−1𝑥𝑦 on 𝛶1 ∈ 𝐷1(Γ1) such that we reach 𝛶126 by following the path: 

𝛶1
𝑥
→ 𝛶126

𝑦
→ 𝛶97

𝑥
→ 𝛶30

𝑦−1

→  𝛶96
𝑥
→ 𝛶31 (see Figure 3). Insert 𝛶1, 𝛶126, 𝛶97, 𝛶30, 𝛶96, and 𝛶31 at 

the 1st, 2nd, 3rd, 4th, 5th and 6th places of the first row, respectively. Next, we choose a copy from the 

fragments 𝐷2(Γ𝑖): 𝑖 = 1,2,3, … ,21  that contains a vertex with the least power of 𝛵,  that is, 

𝛵1. Name it 𝐷2(Γ1) (see Figure 5) and write all the vertices of 𝐷2(Γ1) at the 7th, 8th, 9th, 10th, 11th, and 

12th positions of the 1st row in a similar way as written in the case of 𝐷1(Γ1). After that, select a copy 

from  {𝐷1(Γ𝑖): 𝑖 = 1,2,3, … ,21} − {𝐷1(Γ1)} that has the least power of 𝛵 (it is important to mention 

here that the vertex with the least power of 𝛵 does not have to be 𝛵2, because 𝛵2 could be one of the 

vertices of 𝐷1(Γ1). Name this copy 𝐷1(Γ2), and write the six vertices of 𝐷1(Γ2) as the next six elements 

(13th,14th, 15th and 16th elements of the 1st row and the 1st and 2nd elements of the 2nd row) of the matrix 

in a similar order mentioned in the case of 𝐷1(Γ1 ). Then, we use a copy from {𝐷2(Γ𝑖): 𝑖 =
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1,2,3, … ,21} − {𝐷2(Γ1)} to write 6 more elements, and this process continues until all the copies of 

𝐷1(Γ𝑖) and 𝐷2(Γ𝑖) are exhausted. In this way, we have filled the matrix with the elements of 𝐺𝐹1(2
7) 

and 𝐺𝐹2(2
7) up to the 12th element of the 16th row.  Lastly, place 1, 0 from fragment 𝐷1(Π) and 1, 0 

from fragment 𝐷2(Π) at the 13th, 14th, 15th, and 16th positions of the last row. Thus, we were able to 

develop a square matrix (see Table 4) with 256 points from 𝐺𝐹1(2
7) and 𝐺𝐹2(2

7). 

Table 4. Output of Step 1. 

𝜰𝟏 𝜰𝟏𝟐𝟔 𝜰𝟗𝟕 𝜰𝟑𝟎 𝜰𝟗𝟔 𝜰𝟑𝟏 𝜯𝟏 𝜯𝟏𝟐𝟔 𝜯𝟓𝟓 𝜯𝟕𝟐 𝜯𝟓𝟒 𝜯𝟕𝟑 𝜰𝟐 𝜰𝟏𝟐𝟓 𝜰𝟔𝟕 𝜰𝟔𝟎 

𝜰𝟔𝟓 𝛶62 𝛵2 𝛵125 𝛵110 𝛵17 𝛵108 𝛵19 𝛶3 𝛶124 𝛶123 𝛶4 𝛶120 𝛶7 𝛵3 𝛵124 
𝜯𝟖𝟖 𝛵39 𝛵85 𝛵42 𝛶5 𝛶122 𝛶50 𝛶77 𝛶45 𝛶82 𝛵4 𝛵123 𝛵93 𝛵34 𝛵89 𝛵38 
𝜰𝟔 𝛶121 𝛶119 𝛶8 𝛶113 𝛶14 𝛵5 𝛵122 𝛵97 𝛵30 𝛵92 𝛵35 𝛶9 𝛶118 𝛶92 𝛶35 
𝜰𝟖𝟑 𝛶44 𝛵6 𝛵121 𝛵49 𝛵78 𝛵43 𝛵84 𝛶10 𝛶117 𝛶100 𝛶27 𝛶90 𝛶37 𝛵7 𝛵120 

𝜯𝟐𝟎 𝛵107 𝛵13 𝛵114 𝛶11 𝛶116 𝛶104 𝛶23 𝛶93 𝛶34 𝛵8 𝛵119 𝛵59 𝛵68 𝛵51 𝛵76 
𝜰𝟏𝟐 𝛶115 𝛶111 𝛶16 𝛶99 𝛶28 𝛵9 𝛵118 𝛵25 𝛵102 𝛵16 𝛵111 𝛶13 𝛶114 𝛶49 𝛶78 
𝜰𝟑𝟔 𝛶91 𝛵10 𝛵117 𝛵67 𝛵60 𝛵57 𝛵70 𝛶15 𝛶112 𝛶79 𝛶48 𝛶64 𝛶63 𝛵11 𝛵116 
𝜯𝟒𝟖 𝛵79 𝛵37 𝛵90 𝛶17 𝛶110 𝛶75 𝛶52 𝛶58 𝛶69 𝛵12 𝛵115 𝛵98 𝛵29 𝛵86 𝛵41 
𝜰𝟏𝟖 𝛶109 𝛶57 𝛶70 𝛶39 𝛶88 𝛵14 𝛵113 𝛵40 𝛵87 𝛵26 𝛵101 𝛶19 𝛶108 𝛶40 𝛶87 
𝜰𝟐𝟏 𝛶106 𝛵15 𝛵112 𝛵81 𝛵46 𝛵66 𝛵61 𝛶20 𝛶107 𝛶73 𝛶54 𝛶53 𝛶74 𝛵18 𝛵109 
𝜯𝟓𝟎 𝛵77 𝛵32 𝛵95 𝛶22 𝛶105 𝛶81 𝛶46 𝛶59 𝛶68 𝛵21 𝛵106 𝛵83 𝛵44 𝛵62 𝛵65 
𝜰𝟐𝟒 𝛶103 𝛶95 𝛶32 𝛶71 𝛶56 𝛵22 𝛵105 𝛵96 𝛵31 𝛵74 𝛵53 𝛶25 𝛶102 𝛶66 𝛶61 
𝜰𝟒𝟏 𝛶86 𝛵23 𝛵104 𝛵94 𝛵33 𝛵71 𝛵56 𝛶26 𝛶101 𝛶98 𝛶29 𝛶72 𝛶55 𝛵24 𝛵103 
𝜯𝟔𝟗 𝛵58 𝛵45 𝛵82 𝛶33 𝛶94 𝛶76 𝛶51 𝛶43 𝛶84 𝛵27 𝛵100 𝛵63 𝛵64 𝛵36 𝛵91 
𝜰𝟑𝟖 𝛶89 𝛶80 𝛶47 𝛶42 𝛶85 𝛵28 𝛵99 𝛵80 𝛵47 𝛵52 𝛵75 𝛶127 0 𝛵127 0 

 

Step 2. In Step 1, we created a matrix with 128 distinct entries at 256 positions, ensuring each entry 

occupies two positions. In this step, we construct our initial S-box, that is, a square matrix of order 16 with 

distinct entries (see Table 5) by defining a bijective map 𝑓: 𝐺𝐹1(2
7) ∪ 𝐺𝐹2(2

7) ⟶ 𝐺𝐹(28) by  

𝑓(Δ) =

{
  
 

  
 

𝛿2𝑛+1,           𝑖𝑓 𝛥 = 𝛶2𝑛+1

𝛿2𝑛+128,          𝑖𝑓 𝛥 = 𝛶2𝑛

𝛿2𝑛,             𝑖𝑓 𝛥 = 𝛵2𝑛

𝛿2𝑛+129,          𝑖𝑓 𝛥 = 𝛵2𝑛+1

           0            𝑖𝑓 𝛥 = 0 ∈ 𝐺𝐹1(2
7)

       𝛿128,         𝑖𝑓 𝛥 = 0 ∈ 𝐺𝐹1(2
7)

. 

The constructed initial S-box possesses satisfactory qualities to secure sensitive information. Its 

nonlinearity value is 104.50. In the next step, we further strengthen its security capabilities. 
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Table 5. Output of Step 2 (Initial S-box). 

2 184 137 176 41 175 182 242 15 117 138 246 29 121 38 145 

177 166 04 92 146 183 156 62 08 46 66 116 200 128 58 132 

143 71 49 53 32 179 214 236 217 40 16 23 43 188 131 72 

161 168 42 102 37 220 232 33 82 239 235 97 226 50 173 09 

210 251 64 225 107 169 197 213 233 178 114 215 119 36 51 84 

13 48 110 74 27 180 06 104 167 136 113 100 240 76 221 118 

55 148 85 227 198 44 204 21 189 103 243 147 108 45 79 186 

194 205 181 25 67 14 60 65 193 87 35 141 122 112 163 89 

159 05 245 222 151 241 59 203 120 152 54 90 99 88 199 109 

31 73 229 250 144 249 216 174 81 196 211 228 190 96 142 255 

26 24 201 170 20 195 19 83 124 78 234 191 69 157 95 192 

158 93 47 172 129 171 140 127 07 134 248 39 80 212 56 244 

230 206 126 34 130 30 52 12 252 17 165 231 209 185 153 28 

162 98 115 237 63 68 133 202 11 139 164 207 123 101 208 03 

125 187 135 105 94 86 150 77 106 160 22 253 61 224 18 238 

155 111 10 247 218 219 223 57 70 254 154 75 149 0 1 91 

 

Step 3. In this step, we apply the action of a permutation group G with four generators on the initial 

S-box to generate our proposed S-box. The group G is generated by the elements a,b,c, and d, where 

the generators are given as: 

𝑎 =(1,148,162,24,38,93,152,90,78,41,13,54,35,213,155,89,98,127,192,211,5,200,186,117,96,99,206,

37,208,229,250,109,203,181,25,107,170,246,14,33,207,150,77,232,97,240,112,231,95,122,182,252,

74,57,66,129,6,30,102,251,23,165,9,151,120,134,234,55,12,184,256,239,218,188,244,104,216,233,1

31,177,224,164,214,220,195,15,42,227,48,198,50,31,118,83,156,88,147,124,179,47,80,222,19,111,1

69,32,221,76,139,67,140,245,110,238,132,103,56,115,63,125,161,201,86,194,167,20,39,199,128,79,

126,84,176,226,58,119,28,49). 

𝑏 = (2,149,65,193,73,52,8). 

𝑐 = (3,105,254,43,174,175,166,137,7,17,173,133,145,144,51,138,75,249,253,64,146,197,159,235,19

1,121,94,172,114,236,142,160,92,189,85,255,153,27,196,141,91,100,187,185,204,183,180,59,26,68,53,

219,36,82,71,178,60,10,157,11,44,4,248,45,202,106,61,72,243,168,87,22,225,136,101,163,209,21,190,1

16,247,158,242,18,70,210,143,212,113,205,237,62,130,29,228,123,40,215,171,108,154,46,16). 

𝑑 =(34,81,241,230,69,217,135). 

With the help of GAP software, we determine that 𝐺 has the finite presentation of the form: 

〈𝑎, 𝑏, 𝑐, 𝑑: 𝑎138 = 𝑏7 = 𝑐103 = 𝑑7 = 𝑎𝑏𝑎−1𝑏−1 = 𝑎𝑐𝑎−1𝑐−1 = 𝑏𝑐𝑏−1𝑐−1 = 𝑎𝑑𝑎−1𝑑−1

= 𝑏𝑑𝑏−1𝑑−1 = 𝑐𝑑𝑐−1𝑑−1〉, 

and the order of 𝐺 is 696486. The actions of all these 696486 elements (permutations) on the initial 

S-box produce a new S-box. After exhaustive enumeration, we identify that the S-box resulting from 

the application of the element 𝑎83𝑏5𝑐13𝑑4 achieves the highest nonlinearity score of 111.75. Thus, we 

select this S-box as our proposed S-box (see Table 6) for its enhanced security properties. 
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Table 6. Output of Step 3 (Proposed S-box). 

159 210 61 46 21 218 234 144 181 231 172 206 241 110 24 209 

147 6 115 119 17 190 204 44 30 1 56 82 223 45 36 134 

228 86 232 99 68 154 77 166 65 62 200 235 37 194 148 240 

251 136 189 184 66 160 180 129 54 75 27 7 48 212 243 195 

233 64 185 81 71 183 227 197 242 215 16 118 141 216 186 163 

107 113 29 221 130 143 117 49 91 15 191 9 156 109 79 158 

131 18 3 205 176 224 165 112 50 53 168 199 40 94 41 101 

201 152 8 226 245 217 178 122 31 124 111 211 78 150 139 238 

90 25 187 108 188 26 155 23 133 0 85 32 76 70 203 137 

145 120 63 175 230 229 173 20 22 237 127 220 140 10 177 149 

219 128 57 116 33 236 249 97 12 58 98 42 196 105 35 87 

239 248 167 80 72 132 100 19 88 106 253 89 73 103 151 39 

102 153 250 193 182 174 55 202 121 164 135 255 162 170 104 207 

43 125 247 198 246 161 169 74 13 52 34 2 67 244 208 60 

138 171 179 96 126 59 4 47 192 252 69 114 146 254 214 84 

11 83 93 51 28 14 213 225 157 38 222 123 95 5 142 92 

4. Algebraic analyses 

In this section, we undertake an assessment of the security characteristics of the newly created S-

box. The evaluation of the properties of the proposed S-box is critical in determining its potential use 

in various encryption techniques and security contexts. To accomplish this objective, we apply five 

security performance tests. We then compare the results obtained from the proposed S-box to those of 

widely recognized S-boxes. The subsequent sections present a comprehensive explanation of the 

security tests employed on these S-boxes.  

4.1. Bijection test 

The bijection test assesses the distinctiveness of the output generated by an S-box. When an S-

box meets the bijection criterion, the output values are distinct and are not repeated within the range 

of [0,255]. Additionally, a one-to-one correspondence exists between each input and output value. The 

suggested S-box has been found to meet the criteria for the bijection test. It generates distinct output 

values within the range of [0, 255], establishing a one-to-one correspondence between each input and 

its corresponding output. 

4.2. Nonlinearity 

A Boolean mapping 𝜃: 𝑍2
𝑘 ⟶ 𝑍2 is nonlinear if it is at least as far away from the set of affine 

mappings as possible. This makes sure that the input vectors are not linearly mapped to the output 

vectors [41]. Its mathematical calculation is as follows: 

𝒩𝜃 = 2
𝑘−1 −

1

2
[  (|𝒮𝜃(𝑣)|)𝑣∈𝑍2

𝑘
𝑚𝑎𝑥 ], 

where 𝒮𝜃(𝑣) = ∑ (−1)𝜃(𝑢)(−1)𝑢.𝑣𝑢∈𝑍2
𝑘  is the Walsh spectrum of 𝜃(𝑢) and 𝑢. 𝑣 represents the scalar 

product of 𝑢 and 𝑣, respectively. Table 7 shows that the average nonlinearity of all eight Boolean 
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mappings in the proposed S-box is 111.75. Table 12 presents a comparison of our S-box with other S-

boxes in terms of nonlinearity analysis, demonstrating the proficiency of our S-box. 

Table 7. Nonlinearity values of the proposed S-box 

Boolean 

function 
𝒉𝟎 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓 𝒉𝟔 𝒉𝟕 Mean 

NL score 112 112 110 112 112 112 112 112 111.75 

4.3. Strict avalanche criteria 

The assessment of the quality of an S-box also encompasses the use of the strict avalanche 

criterion (SAC), which was introduced in 1985 [42]. This method assesses whether altering a single 

input bit results in a probability of half of the output bits changing. This analysis is characterized by 

the determination of the S-box's dependency matrix. A desirable S-box should have an average value 

for all dependency matrix elements that is closer to 0.50. Table 8 shows the dependency matrix of the 

developed S-box, with an SAC average value of 0.5007, which is nearly equal to the ideal value. 

Therefore, the developed S-box meets the SAC requirements. 

Table 8. SAC values of the proposed S-box. 

0.5 0.5469 0.4531 0.5156 0.4844 0.4531 0.4531 0.5625 

0.4844 0.4844 0.5156 0.5312 0.4531 0.4844 0.5 0.5156 

0.5156 0.4688 0.5 0.5312 0.5625 0.5 0.5312 0.4375 

0.4375 0.4688 0.5312 0.4531 0.5156 0.4688 0.5 0.4688 

0.5 0.5156 0.5 0.5312 0.5156 0.4844 0.5312 0.5156 

0.5469 0.5312 0.4531 0.4688 0.4531 0.5 0.5156 0.4688 

0.5312 0.5312 0.5156 0.5156 0.5 0.5312 0.5469 0.5156 

0.4531 0.5156 0.5469 0.4688 0.4531 0.5625 0.4375 0.5625 

4.4. Bits independence criteria 

The bit independence criteria (BIC) is a set of strict rules for checking how well the output bits 

work and how changes affect the next encryption cycles. This scrutiny involves pairwise comparison 

of the variables to ascertain their level of independence. For intricate and dependable systems, a high 

degree of BIC-nonlinearity is essential. Table 9 illustrates the BIC-nonlinearity dependency matrix. 

Additionally, we apply the SAC to BIC. Table 10 showcases the dependency matrix for BIC-SAC. The 

findings indicate that the proposed S-box meets the BIC requirements. 

Table 9. BIC nonlinearity scores for the proposed S-box. 

- 112 112 112 112 112 112 112 

112 - 110 112 110 110 110 112 

112 110 - 112 112 112 112 110 

112 112 112 - 110 110 112 112 

112 110 112 110 - 112 112 112 

112 110 112 110 112 - 112 112 

112 110 112 112 112 112 - 112 

112 112 110 112 112 112 112 - 
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Table 10. BIC-SAC Outcomes for the proposed S-box. 

- 0.502 0.5312 0.5078 0.502 0.5195 0.4941 0.4961 

0.502 - 0.4766 0.4941 0.5078 0.498 0.5059 0.4883 

0.5312 0.4766 - 0.4941 0.4883 0.5059 0.4902 0.4961 

0.5078 0.4941 0.4941 - 0.5156 0.5176 0.4941 0.498 

0.502 0.5078 0.4883 0.5156 - 0.5039 0.4824 0.4961 

0.5195 0.498 0.5059 0.5176 0.5039 - 0.502 0.4668 

0.4941 0.5059 0.4902 0.4941 0.4824 0.502 - 0.5137 

0.4961 0.4883 0.4961 0.498 0.4961 0.4668 0.5137 - 

4.5. Linear probability 

To ensure data privacy, modern block ciphers aim to increase the degree of indeterminacy and 

complexity in the encrypted data bits. This mechanism provides a shield against various techniques 

utilized by cryptanalysts to decipher the encrypted text. The primary way to achieve this is by 

deploying S-boxes. An S-box with a lower linear probability (LP) score is generally considered to be 

an effective countermeasure against linear cryptanalysis attacks. A mathematical formula [43] 

determines the LP of a substitution box, as shown below: 

𝐿𝑃 =  |
#{𝑢 ∈ 𝐺𝐹(2𝑘): 𝑢. 𝑓𝑢 = 𝑆(𝑢). 𝑔𝑢}

2𝑘
−
1

2
| ,𝑓𝑢,𝑔𝑢≠0

𝑚𝑎𝑥  

where 𝑓𝑢 and 𝑔𝑢 represent input and output masks, respectively. The proposed S-box has an LP score 

of 0.0703. 

4.6. Differential uniformity 

A fundamental measure of an S-box's performance, differential uniformity (DU) [43], evaluates 

its resistance against differential attacks. We compute DU as the number of identical mappings from 

an input differential ∆𝓇 to an output differential ∆𝓈. The S-box is considered efficient in countering 

differential attacks when it has a low DU value. The mathematical formula to calculate the DU value 

is as follows; 

𝐷𝑈 =   #{𝓇 ∈ 𝑌: 𝑆(𝓇)⨁𝑆(𝓇 + ∆𝓇) = ∆𝓈}.∆𝓇≠0,∆𝓈
𝑚𝑎𝑥  

Table 11 shows the differential distribution for the proposed S-box. Our S-box has a maximum DU 

value of 6, which indicates that it is sufficiently strong to resist the effects of differential attacks. 
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Table 11. DU Values of the proposed S-box 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 

4.7. Comparison analysis discussion 

The suggested S-box shows remarkable cryptographic properties, therefore stressing the strength 

of its developing technique in comparison to current S-boxes. By means of a thorough investigation 

of important performance measures in Table 12, the S-box exhibits robustness against several 

cryptographic assaults, surpassing many previously developed S-boxes using optimization, algebraic, 

and chaotic approaches. Significant findings on the strength of the suggested S-box architecture are 

presented below. 

i. To withstand linear assaults, the S-box must have a large NL value. It is critical for defending 

against linear cryptanalysis by increasing the S-box’s complexity and confusion. The proposed S-

box achieves an average NL value of 111.75, which is significantly higher than S-boxes listed in 

Table 12. Therefore, the proposed S-box has a significant level of complexity and confusion, 

rendering it resistant to all available linear cryptanalysis techniques. 

ii. A SAC value close to 0.5 shows that each output bit depends equally on each input bit. This way, 

an optimal diffusion effect can be achieved. The SAC value of the proposed S-box (0.5007) is 

approximately equal to 0.5 outperforming many S-boxes listed in Table 12. This shows the S-box’s 

strong compliance with the SAC requirement, ensuring a robust spread of bit changes across output. 

iii. In terms of BIC, both for SAC and NL, the proposed S-box exhibits superior performance. A high 

BIC score ensures that changes in individual bits are independent and propagate effectively, a 

critical feature for strong encryption. The proposed S-box achieves BIC-NL and BIC-SAC values 

that surpass most of the existing S-boxes, ensuring optimal bit independence. 

iv. An efficacious S-box has a lower DU value. As shown in Table 12, the DU value of the proposed 

S-box is either less than or equal to the DU values of the S-boxes listed in Table 12. 

v. An S-box with a low LP score is less susceptible to linear cryptanalysis. Our S-box has an LP 

score of 0.0703, which is lower or equal to the LP values of the S-boxes listed in Table 12. 
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Table 12. Performance comparison of various analyses among different S-boxes. 

S-box 
Nonlinearity  

SAC 
BIC-

SAC 
BIC-NL DU LP 

min max mean  

Initial S-box 98 108 104.50 0.5037 0.5005 104.5 12 0.125 

Suggested S-box 110 112 111.75 0.5007 0.4996 111.5 6 0.0703 

Ref [9] 106 108 107.50 0.4944 0.4982 104.35 10 0.1250 

Ref [44] 106 108 106.25 0.5112 0.4975 103.93 12 0.1484 

Ref [45] 106 110 106.5 0.5010 0.4987 103.93 10 0.125 

Ref [46] 106 108 107 0.4949 0.5019 102.29 12 0.141 

Ref [47] 106 110 108.5 0.4995 0.5011 103.85 10 0.109 

Ref [48] 

 

108 110 109.75 0.5042 0.4987 110.6 6 0.0859 

Ref [49] 102 110 106.5 0.4943 0.5019 103.35 12 0.1468 

Ref [50] 104 108 105.5 0.5065 0.5031 103.57 10 0.1328 

Ref [51] 104 110 107 0.4993 0,5050 103.29 10 0.1328 

Ref [52] 102 112 108 0.5029 0.5020 104.43 14 0.1328 

Ref [53] 102 108 105 0.5063 0.5002 104.07 10 0.1328 

Ref [54] 110 112 111 0.5017 0.5018 111.43 6 0.0703 

Ref [55] 108 110 109.75 0.4998 0.5041 104.14 10 0.1171 

Ref [56] 108 110 109.50 0.4985 0.5012 104.07 10 0.1328 

Ref [57] 104 110 106.50 0.4995 0.4983 104.57 10 0.1171 

Ref [58] 108 110 108.5 0.491 0.5048 103.78 10 0.0791 

Ref [59] 100 106 103.20 0.5048 0.5009 103.70 10 0.1289 

Ref [60] 104 110 106.75 0.4995 0.5043 105.07 12 0.1289 

5. Majority logic criterion for encryption analysis 

The MLC [61] comprises a collection of evaluations, including contrast, correlation, energy, 

homogeneity, and entropy. The results of these tests assist in selecting the most suitable S-box for the 

encryption procedure. We assess the statistical competence of the S-box using the MLC for various 

encryption techniques. The available research describes a variety of statistical and analytical 

techniques for determining the S-box's potential to generate perplexity. Since the encryption process 

distorts the image, it is essential to understand the impact of statistical characteristics. A correlation 

test examines the relationship between plaintext and ciphertext. The entropy value depicts the level of 

randomness in the ciphertext image. Contrast analysis evaluates the brightness loss in the plaintext 

image during the encryption process. We can examine more features of the ciphertext by employing 

homogeneity and energy analyses. In light of the significance of these analyses' findings, we used our S-

boxes to encrypt plaintext images and conduct MLC tests. For this purpose, we choose three 256×256 

grayscale images of pepper, cameraman, and baboon. Figure 6 displays all images before and after 

encryption, while Table 13 lists the MLC outcomes. These results demonstrate the effectiveness of the 
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developed substitution box for image encryption and its strong cryptographic attributes, making it 

suitable for use in safe data transmission algorithms. 

 

              
(a) Cameraman 

               
(b) Pepper 

 

               

(c) Baboon 

Figure 6. Original and encrypted images. 

Table 13. MLC results. 

Images Entropy Contrast Correlation Energy Homogeneity 

Cameraman Image 

Before 

encryption 

7.1025 0.4785 0.9292 0.1679 0.8964 

After 

encryption 

7.9973 8.5093 - 0.0031 0.0161 0.3923 

Pepper Image 

Before 

encryption 

7.5498 0.2668 0.9365 0.1477 0.9191 

After 

encryption 

7.9958 8.4812 0.0003 0.0121 0.4032 

Baboon Image 

Before 

encryption 

7.1273 0.7179 0.6782 0.1025 0.7669 

After 

encryption 

7.9821 8.4728 - 0.0015 0.0160 0.4021 
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5.1. Differential analysis 

The two major criteria, unified average changing intensity (UACI) and number of pixel change 

rate (NPCR), are employed for quantifying the impact of a single pixel alteration on the image encoded. 

The disparity in pixel counts between the two encoded images is quantified by NPCR, while the mean 

intensity variance is assessed using UACI. The pixel variation between two initial images is merely 

one, with their associated encoded images represented as 𝐶1(𝑖, 𝑗) and 𝐶2(𝑖, 𝑗). The NPCR and UACI 

scores are computed using the subsequent equations: 

𝑁𝐶𝑃𝑅 =
1

𝑀 ×𝑁
∑∑𝐷(𝑖, 𝑗) × 100%

𝑁

𝑗=1

𝑀

𝑖=1

, 

𝑈𝐴𝐶𝐼 =
1

𝑀 × 𝑁
∑∑

|𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗)|

255

𝑁

𝑗=1

𝑀

𝑖=1

× 100%, 

where 𝐷(𝑖, 𝑗) = 0 if 𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗) and otherwise, 𝐷(𝑖, 𝑗) = 1. Also, 𝑀 is the width and 𝑁 is the 

height of the image. Table 14 provides a comprehensive overview of the UACI and NPCR measures. 

Table 14. NPCR and UACI analysis of pixel sensitivity for different encoded images. 

Image NCPR % UACI % 

Cameraman 99.4162 33.6588 

Pepper 99.8957 33.5347 

Baboon 99.1607 33.4927 

5.2. Histogram analysis 

Histograms depict the distribution of pixel grey level intensities within an image. A cryptanalyst 

may employ the provided information to execute histogram attacks if the distribution is non-uniform. 

Nonetheless, the methodology has been developed to withstand histogram assaults, rendering data 

unidentifiable if the histogram is homogeneous and flattening. Analysing the histograms of the 

encoded and initial images reveals the disparities in colour intensity between the two. We performed 

analyses on the histograms of both the original and encrypted images and discovered that the histogram 

distribution of the encoded image, produced using the suggested S-box, markedly diverges from that of 

the original image. Figure 7 displays the histograms of both the original and encrypted versions of selected 

photographs for encryption. The histogram of the encrypted image has a notably uniform distribution, 

validating the efficacy of the suggested technique. 
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   Histogram of Cameraman Image-(Original)                Histogram of Cameraman Image-(Encoded) 

 

      Histogram of Pepper Image-(Original)               Histogram of Pepper Image-(Encoded) 

 

       Histogram of Baboon Image-(Original)                Histogram of Baboon Image-(Encoded) 

Figure 7. Histogram analysis. 

6. Conclusions 

This article introduces an innovative strategy for constructing dependable and resilient S-boxes 

with significant nonlinearity. The approach investigates the principles underlying coset graphs, which 

are derived from 𝐺𝐹1(2
7) ∪ {∞}  and 𝐺𝐹2(2

7) ∪ {∞} , in addition to a particular type of column 

rearrangement. Initially, an S-box is constructed by selecting vertices from two distinct graphs and 

placing them at predetermined positions within the matrix representing the S-box. Following the initial 

step, a permutation group of large order enhances the robustness of the initial S-box, ensuring its 
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resistance against various cryptanalytic attacks. An execution evaluation quantifies the cryptographic 

quality of the generated S-box. When comparing the created S-box with other contemporary S-boxes, 

we see that it possesses superior cryptographic characteristics. Furthermore, the constructed S-box is 

applied to encrypt digital images, and the results obtained through the MLC indicate that the encrypted 

content exhibits favorable encryption quality. Therefore, the utilization of the suggested S-box in the 

domain of image encryption indicates its appropriateness for safeguarding data while it is being 

transmitted over an unsecured channel. 
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Supplementary 

Illustration and implementation details of step III in S-box construction 

In Step III of the proposed method for S-box construction, we demonstrate that applying the 

element 𝑎83𝑏5𝑐13𝑑4 to the initial S-box transforms it into the proposed S-box, achieving a nonlinearity 

score of 111.75. Here, we illustrate the process in detail. Since  

𝑎 = (1,148,162,24,38,93,152,90,78,41,13,54,35,213,155,89,98,127,192,211,5,200,186,117,96,99,206,3

7,208,229,250,109,203,181,25,107,170,246,14,33,207,150,77,232,97,240,112,231,95,122,182,252,7

4,57,66,129,6,30,102,251,23,165,9,151,120,134,234,55,12,184,256,239,218,188,244,104,216,233,13

1,177,224,164,214,220,195,15,42,227,48,198,50,31,118,83,156,88,147,124,179,47,80,222,19,111,16

9,32,221,76,139,67,140,245,110,238,132,103,56,115,63,125,161,201,86,194,167,20,39,199,128,79,1

26,84,176,226,58,119,28,49), 

𝑏 = (2,149,65,193,73,52,8), 

𝑐 = (3,105,254,43,174,175,166,137,7,17,173,133,145,144,51,138,75,249,253,64,146,197,159,235,191,

121,94,172,114,236,142,160,92,189,85,255,153,27,196,141,91,100,187,185,204,183,180,59,26,68,53,

219,36,82,71,178,60,10,157,11,44,4,248,45,202,106,61,72,243,168,87,22,225,136,101,163,209,21,190

,116,247,158,242,18,70,210,143,212,113,205,237,62,130,29,228,123,40,215,171,108,154,46,16), 

𝑑 =(34,81,241,230,69,217,135). 

Therefore,  

a83b5c13d4=(1,220,208,245,6,148,195,229,110,30,162,15,250,238,102,24,42,109,132,251,38,227,203,

103,23,93,48,181,56,165,152,198,25,115,9,90,50,107,63,151,78,31,170,125,120,41,118,246,161,134,

13,83,14,201,234,54,156,33,86,55,35,88,207,194,12,213,147,150,167,184,155,124,77,20,256,89,179,

232,39,239,98,47,97,199,218,127,80,240,128,188,192,222,112,79,244,211,19,231,126,104,5,111,95,

84,216,200,169,122,176,233,186,32,182,226,131,117,221,252,58,177,96,76,74,119,224,99,139,57,2

8,164,206,67,66,49,214,37,140,129)(2,52,193,149,8,73,65)(3,144,94,141,36,106,190,62,105,51,172,

91,82,61,116,130,254,138,114,100,71,72,247,29,43,75,236,187,178,243,158,228,174,249,142,185,6

0,168,242,123,175,253,160,204,10,87,18,40,166,64,92,183,157,22,70,215,137,146,189,180,11,225,2

10,171,7,197,85,59,44,136,143,108,17,159,255,26,4,101,212,154,173,235,153,68,248,163,113,46,13

3,191,27,53,45,209,205,16,145,121,196,219,202,21,237)(34,69,81,217,241,135,230). 

To illustrate the application of a83b5c13d4 on the initial S-box to generate the proposed S-box:  

• Since 1 is mapped to 220, we shift the 1st element (which is 2) of the initial S-box to the 

220th position (12th element in the 14th row, calculated as 13 × 16 + 12 = 220).  
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• Since 220 is mapped to 208, we shift the 220th element (207) of the initial S-box to the 208th 

position (16th element in the 13th row, 13 × 16 = 208).  

• Continuing in this manner, 135 is mapped to 230, so we shift the 135th element (59) to the 

230th position (6th element in the 15th row, 14 × 16 + 6 = 230).  

• Finally, since 230 is mapped to 34, we shift the 230th element (86) to the 34th position (2nd 

element in the 3rd row, 2 × 16 + 2 = 34). 

This iterative process continues for all mappings, thereby constructing the proposed S-box. 
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