Damages due to pitting corrosion of metals cost industry billions of dollars per year and can put human lives at risk. The design and implementation of an adaptive moving mesh method is provided for a moving boundary problem related to pitting corrosion. The adaptive mesh is generated automatically by solving a mesh PDE coupled to the nonlinear potential problem. The moving mesh approach is shown to enable initial mesh generation, provide automatic mesh adjustment (or recovery) and is able to smoothly tackle changing pit geometry. Materials with varying crystallography are considered. Changing mesh topology due to the merging of pits is also handled. The evolution of the pit shape, the pit depth, and the pit width are computed and compared to existing results in the literature. Mesh quality results are also included.
Citation: Abu Naser Sarker, Ronald D. Haynes, Michael D. Robertson. Moving mesh simulations of pitting corrosion[J]. AIMS Mathematics, 2024, 9(12): 35401-35431. doi: 10.3934/math.20241682
Damages due to pitting corrosion of metals cost industry billions of dollars per year and can put human lives at risk. The design and implementation of an adaptive moving mesh method is provided for a moving boundary problem related to pitting corrosion. The adaptive mesh is generated automatically by solving a mesh PDE coupled to the nonlinear potential problem. The moving mesh approach is shown to enable initial mesh generation, provide automatic mesh adjustment (or recovery) and is able to smoothly tackle changing pit geometry. Materials with varying crystallography are considered. Changing mesh topology due to the merging of pits is also handled. The evolution of the pit shape, the pit depth, and the pit width are computed and compared to existing results in the literature. Mesh quality results are also included.
[1] | X. Yu, F. Wan, Y. Guo, Micromechanics modeling of skin panel with pitting corrosion for aircraft structural health monitoring, 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), (2016), 1–8. IEEE. https://doi.org/10.1109/ICPHM.2016.7542831 |
[2] | L. B. Simon, M. Khobaib, T. E. Matikas, C. Jeffcoate, M. Donley, Influence of pitting corrosion on structural integrity of aluminum alloys, Nondestructive Evaluation of Aging Materials and Composites III, 3585 (1999), 40–47. SPIE. https://doi.org/10.1117/12.339861 doi: 10.1117/12.339861 |
[3] | S. Sharland, A review of the theoretical modelling of crevice and pitting corrosion, Corros. Sci., 27 (1987), 289–323. https://doi.org/10.1016/0010-938X(87)90024-2 doi: 10.1016/0010-938X(87)90024-2 |
[4] | A. S. H. Makhlouf, V. Herrera, E. Muñoz, Corrosion and protection of the metallic structures in the petroleum industry due to corrosion and the techniques for protection, Handbook of Materials Failure Analysis, (2018), 107–122. Elsevier. https://doi.org/10.1016/B978-0-08-101928-3.00006-9 |
[5] | P. R. Roberge, Corrosion Engineering, McGraw-Hill Education, 2008. |
[6] | F. Cattant, D. Crusset, D. Féron, Corrosion issues in nuclear industry today, Mater. Today, 11 (2008), 32–37. https://doi.org/10.1016/S1369-7021(08)70205-0 doi: 10.1016/S1369-7021(08)70205-0 |
[7] | V. G. DeGiorgi, N. Kota, A. C. Lewis, S. M. Qidwai, Numerical modeling of pit growth in microstructure, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 55850 (2013), 1–7. American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2013-12074 doi: 10.1115/DETC2013-12074 |
[8] | S. Sharland, A mathematical model of crevice and pitting corrosion—Ⅱ. the mathematical solution, Corros. Sci., 28 (1988), 621–630. https://doi.org/10.1016/0010-938X(88)90028-5 doi: 10.1016/0010-938X(88)90028-5 |
[9] | S. Scheiner, C. Hellmich, Finite volume model for diffusion-and activation-controlled pitting corrosion of stainless steel, Comput. Method. Appl. Mech. Eng., 198 (2009), 2898–2910. https://doi.org/10.1016/j.cma.2009.04.012 doi: 10.1016/j.cma.2009.04.012 |
[10] | N. J. Laycock, D. P. Krouse, S. C. Hendy, D. E. Williams, Computer simulation of pitting corrosion of stainless steels, The Electrochemical Society Interface, 23 (2014), 65–71. https://doi.org/10.1149/2.F05144IF doi: 10.1149/2.F05144IF |
[11] | D. Krouse, N. Laycock, C. Padovani, Modelling pitting corrosion of stainless steel in atmospheric exposures to chloride containing environments, Corros. Eng. Sci. Techn., 49 (2014), 521–528. https://doi.org/10.1179/1743278214Y.0000000221 doi: 10.1179/1743278214Y.0000000221 |
[12] | D. De Meo, E. Oterkus, Finite element implementation of a peridynamic pitting corrosion damage model, Ocean Eng., 135 (2017), 76–83. https://doi.org/10.1016/j.oceaneng.2017.03.002 doi: 10.1016/j.oceaneng.2017.03.002 |
[13] | J. C. Walton, Mathematical modeling of mass transport and chemical reaction in crevice and pitting corrosion, Corros. Sci., 30 (1990), 915–928. https://doi.org/10.1016/0010-938X(90)90013-U doi: 10.1016/0010-938X(90)90013-U |
[14] | S. Sharland, P. Tasker, A mathematical model of crevice and pitting corrosion-Ⅰ. The physical model, Corros. Sci., 28 (1988), 603–620. https://doi.org/10.1016/0010-938X(88)90027-3 doi: 10.1016/0010-938X(88)90027-3 |
[15] | S. Jafarzadeh, Z. Chen, F. Bobaru, Computational modeling of pitting corrosion, Corros. Rev., 37 (2019), 419–439. https://doi.org/10.1515/corrrev-2019-0049 doi: 10.1515/corrrev-2019-0049 |
[16] | N. Kota, S. M. Qidwai, A. C. Lewis, V. G. DeGiorgi, Microstructure-based numerical modeling of pitting corrosion in 316 stainless steel, ECS Transactions, 50 (2013), 155–164. https://doi.org/10.1149/05031.0155ecst doi: 10.1149/05031.0155ecst |
[17] | R. Duddu, Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method, Comput. Mech., 54 (2014), 613–627. https://doi.org/10.1007/s00466-014-1010-8 doi: 10.1007/s00466-014-1010-8 |
[18] | A. Turnbull, D. Horner, B. Connolly, Challenges in modelling the evolution of stress corrosion cracks from pits, Eng. Fract. Mech., 76 (2009), 633–640. https://doi.org/10.1016/j.engfracmech.2008.09.004 doi: 10.1016/j.engfracmech.2008.09.004 |
[19] | S. Scheiner, C. Hellmich, Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary, Corros. Sci., 49 (2007), 319–346. https://doi.org/10.1016/j.corsci.2006.03.019 doi: 10.1016/j.corsci.2006.03.019 |
[20] | K. Wang, C. Li, Y. Li, J. Lu, Y. Wang, X. Luo, Multi-physics coupling analysis on the time-dependent localized corrosion behavior of carbon steel in CO$_2$-H$_2$O environment, J. Electrochem. Soc., 167 (2019), 013505–013505. https://doi.org/10.1149/2.0052001JES doi: 10.1149/2.0052001JES |
[21] | J. Donea, A. Huerta, J.-P. Ponthot, A. Rodríguez-Ferran, Arbitrary Lagrangian-Eulerian methods, Encyclopedia of Computational Mechanics, (2004). |
[22] | W. Huang, R. D. Russell, Adaptive Moving Mesh Methods, vol. 174. Springer Science & Business Media, 2010. |
[23] | C. W. Hirt, A. A. Amsden, J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14 (1974), 227–253. https://doi.org/10.1016/0021-9991(74)90051-5 doi: 10.1016/0021-9991(74)90051-5 |
[24] | C. Hirt, A. Amsden, J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 135 (1997), 203–216. https://doi.org/10.1006/jcph.1997.5702 doi: 10.1006/jcph.1997.5702 |
[25] | L. G. Margolin, Introduction to "an arbitrary Lagrangian-Eulerian computing method for all flow speeds", J. Comput. Phys., 135 (197), 198–202. https://doi.org/10.1006/jcph.1997.5727 |
[26] | F. Nobile, L. Formaggia, A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West Journal of Numerical Mathematics, 7 (1999), 105–132. |
[27] | P. M. Knupp, L. G. Margolin, M. Shashkov, Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods, J. Comput. Phys., 176 (2002), 93–128. https://doi.org/10.1006/jcph.2001.6969 doi: 10.1006/jcph.2001.6969 |
[28] | B. Wells, M. J. Baines, P. Glaister, Generation of arbitrary Lagrangian–Eulerian (ALE) velocities, based on monitor functions, for the solution of compressible fluid equations, Int. J. Numer. Meth. Fl., 47 (2005), 1375–1381. https://doi.org/10.1002/fld.915 doi: 10.1002/fld.915 |
[29] | J. F. Thompson, F. C. Thames, C. W. Mastin, Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies, J. Comput. Phys., 15 (1974), 299–319. https://doi.org/10.1016/0021-9991(74)90114-4 doi: 10.1016/0021-9991(74)90114-4 |
[30] | A. M. Winslow, Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh, J. Comput. Phys., 1 (1966), 149–172. https://doi.org/10.1016/0021-9991(66)90001-5 doi: 10.1016/0021-9991(66)90001-5 |
[31] | A. M. Winslow, Adaptive-mesh zoning by the equipotential method, tech. rep., Lawrence Livermore National Lab., CA (USA), 1981. https://doi.org/10.2172/6227449 |
[32] | J. U. Brackbill, J. S. Saltzman, Adaptive zoning for singular problems in two dimensions, J. Comput. Phys., 46 (1982), 342–368. https://doi.org/10.1016/0021-9991(82)90020-1 doi: 10.1016/0021-9991(82)90020-1 |
[33] | O.-P. Jacquotte, A mechanical model for a new grid generation method in computational fluid dynamics, Comput. Method. Appl. Mech. Eng., 66 (1988), 323–338. https://doi.org/10.1016/0045-7825(88)90005-9 doi: 10.1016/0045-7825(88)90005-9 |
[34] | O.-P. Jacquotte, Generation, optimization and adaptation of multiblock grids around complex configurations in computational fluid dynamics, Int. J. Numer. Meth. Eng., 34 (1992), 443–454. https://doi.org/10.1002/nme.1620340204 doi: 10.1002/nme.1620340204 |
[35] | O.-P. Jacquotte, G. Coussement, Structured mesh adaption: space accuracy and interpolation methods, Comput. Method. Appl. Mech. Eng., 101 (1992), 397–432. https://doi.org/10.1016/0045-7825(92)90031-E doi: 10.1016/0045-7825(92)90031-E |
[36] | P. M. Knupp, Mesh generation using vector fields, J. Comput. Phys., 119 (1995), 142–148. https://doi.org/10.1006/jcph.1995.1122 doi: 10.1006/jcph.1995.1122 |
[37] | P. M. Knupp, Jacobian-weighted elliptic grid generation, SIAM J. Sci. Comput., 17 (1996), 1475–1490. https://doi.org/10.1137/S1064827594278563 doi: 10.1137/S1064827594278563 |
[38] | W. Huang, R. D. Russell, A high dimensional moving mesh strategy, Appl. Numer. Math., 26 (1998), 63–76. https://doi.org/10.1016/S0168-9274(97)00082-2 doi: 10.1016/S0168-9274(97)00082-2 |
[39] | W. Cao, W. Huang, R. D. Russell, A study of monitor functions for two-dimensional adaptive mesh generation, SIAM J. Sci. Comput., 20 (1999), 1978–1994. https://doi.org/10.1137/S1064827597327656 doi: 10.1137/S1064827597327656 |
[40] | W. Huang, Variational mesh adaptation: isotropy and equidistribution, J. Comput. Phys., 174 (2001), 903–924. https://doi.org/10.1006/jcph.2001.6945 doi: 10.1006/jcph.2001.6945 |
[41] | Y. Ren, R. D. Russell, Moving mesh techniques based upon equidistribution, and their stability, SIAM Journal on Scientific and Statistical Computing, 13 (1992), 1265–1286. https://doi.org/10.1137/0913072 doi: 10.1137/0913072 |
[42] | W. Huang, Y. Ren, R. D. Russell, Moving mesh partial differential equations (MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal., 31 (1994), 709–730. https://doi.org/10.1137/0731038 doi: 10.1137/0731038 |
[43] | W. Huang, R. D. Russell, Moving mesh strategy based on a gradient flow equation for two-dimensional problems, SIAM J. Sci. Comput., 20 (1998), 998–1015. https://doi.org/10.1137/S1064827596315242 doi: 10.1137/S1064827596315242 |
[44] | W. Cao, On the error of linear interpolation and the orientation, aspect ratio, and internal angles of a triangle, SIAM J. Numer. Anal., 43 (2005), 19–40. https://doi.org/10.1137/S0036142903433492 doi: 10.1137/S0036142903433492 |
[45] | W. Huang, An introduction to MMPDElab, arXiv Preprint arXiv: 1904.05535, 2019. |
[46] | C. Xie, F. Wei, P. Wang, H. Huang, Modeling of corrosion pit growth for prognostics and health management, Prognostics and Health Management (PHM), 2015 IEEE Conference on, (2015), 1–7. IEEE. https://doi.org/10.1109/ICPHM.2015.7245024 |
[47] | S. Sharland, C. Jackson, A. Diver, A finite-element model of the propagation of corrosion crevices and pits, Corros. Sci., 29 (1989), 1149–1166. https://doi.org/10.1016/0010-938X(89)90051-6 doi: 10.1016/0010-938X(89)90051-6 |
[48] | A. J. Bard, L. R. Faulkner, J. Leddy, C. G. Zoski, Electrochemical Methods: Fundamentals and Applications, vol. 2, Wiley New York, 1980. |
[49] | A. J. Bard, L. R. Faulkner, H. S. White, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, 2022. |
[50] | S. Chattoraj, L. Shi, C. C. Sun, Understanding the relationship between crystal structure, plasticity and compaction behaviour of theophylline, methyl gallate, and their 1: 1 co-crystal, CrystEngComm, 12 (2010), 2466–2472. https://doi.org/10.1039/c000614a doi: 10.1039/c000614a |
[51] | M. B. Boisen, G. V. Gibbs, Mathematical Crystallography, vol. 15, Walter de Gruyter GmbH & Co KG, 2018. |
[52] | M. Robertson, K. Raffel, Imaging crystals, Microscopical Society of Canada Bulletin, 36 (2008), 13–18. |
[53] | W. Huang, Metric tensors for anisotropic mesh generation, J. Comput. Phys., 204 (2005), 633–665. https://doi.org/10.1016/j.jcp.2004.10.024 doi: 10.1016/j.jcp.2004.10.024 |
[54] | D. R. Adams, L. I. Hedberg, Function Spaces and Potential Theory, vol. 314, Springer Science & Business Media, 1999. |
[55] | G. Beckett, J. A. Mackenzie, M. Robertson, A moving mesh finite element method for the solution of two-dimensional Stefan problems, J. Comput. Phys., 168 (2001), 500–518. https://doi.org/10.1006/jcph.2001.6721 doi: 10.1006/jcph.2001.6721 |
[56] | J. Mackenzie, M. Robertson, The numerical solution of one-dimensional phase change problems using an adaptive moving mesh method, J. Comput. Phys., 161 (2000), 537–557. https://doi.org/10.1006/jcph.2000.6511 doi: 10.1006/jcph.2000.6511 |
[57] | R. E. Melchers, Predicting long-term corrosion of metal alloys in physical infrastructure, npj Mat. Degrad., 3 (2019), 1–7. https://doi.org/10.1038/s41529-018-0066-x doi: 10.1038/s41529-018-0066-x |