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ξ,β, which involve the extended Mittag-Leffler function

and the Pascal distribution series. We also investigate and introduce a class MBF,s,γ
ξ,β (ρ) of analytic

and univalent functions in the open unit disc D by employing the newly defined operator Ms,γ
ξ,β. We
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found here.
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1. Introduction

Let K(D) denote the family of functions that are analytic in the open unit disk

D := {w : w ∈ C and |w| < 1} .

Note that C and N denote the set of complex numbers and the set of positive integers, respectively. For
a ∈ C and n ∈ N, define the class of functions as follows:

K[a, n] := { f : f ∈ K(D) and f (w) = a + anwn + · · · }.
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Suppose the classA of functions f ∈ K(D), which are analytic inD and normalized by

f (w) = w +
∞∑

k=2

akwk, (w ∈ D). (1.1)

Given two functions f , g ∈ K(D). If the functions f is subordinate to g, or g is superordinate to f ,
written by f (w) ≺ g(w), then there exists a function u ∈ D with u(0) = 0 and |u(w)| < 1 such that
f (w) = g(u(w)). Furthermore, if the function g is univalent inD, then

f (w) ≺ g(w)⇐⇒ f (0) = g(0)

and f (D) ⊂ g(D) (see, for details [1, 2]).
For the functions f , g ∈ A, the Hadamard product (or convolution) is defined by

( f ⋆ g)(w) := w +
∞∑

k=2

akbkwk =: (g ⋆ f )(w), (w ∈ D).

Mittag-Leffler [3, 4] introduced and studied the functions

Eξ(w) :=
∞∑

k=0

wk

Γ(ξk + 1)
and Eξ,β(w) :=

∞∑
k=0

wk

Γ(ξk + β)
, (w, ξ, β ∈ C; ℜ(ξ) > 0).

The Mittag-Leffler function of the two-parameter version contains several elementary functions as
well as their special cases, like the hyperbolic, trigonometric, and exponential functions. Many authors
studied the generalized Mittag-Leffler function, Attiya [5] some applications in the unit disk, Frasin
et al. [6] some properties of a linear operator, Srivastava et al. [7] fractional integral operators involving
a certain generalized multi-index Mittag-Leffler function and its properties studied by Agarwal [8] and
Wiman [9] and the references therein.

Moreover, Prabhakar [10] introduced the function Eγ
ξ,β(w) in the form

Eγ
ξ,β(w) :=

∞∑
k=0

(γ)k wk

Γ(ξk + β)k!
, (w, ξ, β, γ ∈ C; ℜ(ξ) > 0),

where (λ)n is the Pochhammer symbol

(λ)n =
Γ(λ + n)
Γ(λ)

=

1, n = 0;
λ(λ + 1)...(λ + n − 1).

For γ = 1, it becomes the Mittag-Leffler function. In order to study, we define the function Eγξ,β(w) by

E
γ
ξ,β(w) :=

Γ(ξ + β)
(γ)1

(
Eγ
ξ,β(w) −

1
Γ(β)

)
= w +

∞∑
k=2

Γ(γ + k)Γ(ξ + β) wk

k! Γ(γ + 1)Γ(ξk + β)
,
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where w, ξ, β, γ ∈ C andℜ(ξ) > 0. Throughout this paper, unless otherwise specified, we only take the
case when the values of parameters ξ, β, and γ are real-valued and for w ∈ D.

Moreover, a random variable y defines a Pascal distribution if it takes the non-negative integer values
k = 0, 1, 2, . . . accordingly with the formula

P(y = k) =
(
k + s − 1

s − 1

)
rk(1 − r)s, (k ∈ N0 = N ∪ {0}),

where 0 < r < 1 and the integers s > 0 are parameters. We denote Ps
r(w) the power series in which

coefficients are Pascal distribution probabilities

Ps
r(w) := w +

∞∑
k=2

(
k + s − 2

s − 1

)
rk−1(1 − r)swk, (k ∈ N0, s ≥ 1, 0 ≤ r ≤ 1).

The power series Ps
r(w) whose radius of convergence is at least 1

r ≥ 1 by the ratio test; therefore, the
series Ps

r(w) ∈ A.
We define the Mittag-Leffler-type Pascal distribution series by the Hadamard product

M
s,γ
ξ,β(w) = w +

∞∑
k=2

(
k + s − 2

s − 1

)
Γ(γ + k)Γ(ξ + β)

k! Γ(γ + 1)Γ(ξk + β)
rk−1(1 − r)swk.

Now, we introduce a new operatorMs,γ
ξ,β defined, for f (w) ∈ A by

M
s,γ
ξ,β f (w) :=Ms,γ

ξ,β(w) ⋆ f (w)

:= w +
∞∑

k=2

(
k + s − 2

s − 1

)
Γ(γ + k)Γ(ξ + β)

k! Γ(γ + 1)Γ(ξk + β)
rk−1(1 − r)sakwk,

where ξ, β, γ ∈ C; ℜ(ξ) > 0; β ∈ C \ Z−0 ; s ≥ 1; 0 ≤ r ≤ 1.
This investigation was motivated by several recent works [11–13] that exploited different

categories of probability distributions of the class of analytic functions like convex functions and
starlike functions, which are defined and normalized inD.

The main objective of the present article is to investigate several fruitful results of fuzzy differential
subordinations and fuzzy differential superordinations and their applications in geometric function
theory and that results are closely associated with the Mittag-Leffler-type Pascal distribution series.

In 1965, Zadeh [14] introduced the notation of fuzzy set theory. Now it has grown exponentially
and has applications in many areas, such as scientific and technological fields [15]. There has been
extensive research done on fractional calculus of fuzzy functions with fuzzy data, both theoretically
and experimentally. Oros and Oros [16] brought to light different usages of this idea in geometric
function theory with the notion of fuzzy differential subordination in 2012 [17, 18]. In 2017, Atshan
and Hussain [19] introduced the concept of fuzzy differential superordination. In this direction, many
researchers have studied different properties of analytic functions using the concepts of fuzzy
differential subordinations and superordinations: Wanas operator [20, 21], Sălăgean and Ruscheweyh
operators [22–24], generalized Noor-Salagean operator [25]. For more details on this subject, we refer
the reader to see fuzzy differential subordinations obtained for strong Janowski functions [26],
spiral-like functions [27], λ-pseudo starlike and λ-pseudo convex functions [28].
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Since Srivastavas general context was introduced in 1989 [29], many applications of quantum
calculus in geometric function theory have emerged in recent years. Some aspects of the application
of quantum calculus to geometric functions theory are highlighted in geometric function theory and
quantum calculus in [30], while other developments are highlighted in the work of Srivastava [31]
in 2020, as well as a large number of q-operators derived by including known differential and integral
operators. For example, q-analog operators involving analytic functions are studied regarding fuzzy
theory: q-hypergeometric function and fractional calculus [32], q-analogue of multiplier
transformation [33], q-difference operator [34]. Fuzzy differential subordinations were obtained using
fractional integrals applied to the Mittag-Leffler function [35], the fractional derivative [36], the
fractional integral of confluent hypergeometric function [37, 38], the Riemann-Liouville fractional
integral of the Ruscheweyh and Salagean operators [39], the Atangana-Baleanu fractional
integral [40], and the fractional integral of the Gaussian hypergeometric function [41].

This paper is divided into sections as follows: In Section 2, we reminded ourselves some useful
definitions and preliminaries that provide the foundation of our paper. New fuzzy differential
subordinations are proved, and the fuzzy best dominants are resolved in Section 3. Dual results
regarding fuzzy differential superordinations are established, and the fuzzy best subordinates are
given in Section 4. In Section 5, we present the sandwich-type results based on our work. Lastly, in
Section 6, we completed our study after giving the conclusion of the work.

2. Definitions and preliminaries

To prove our results, we shall need the following definitions and lemmas:

Definition 2.1. ([42]) Suppose X is a non-empty set. A pair (J , FJ ), where

FJ : X→ [0, 1]

and
J = {y ∈ X : 0 < FJ (y) ≤ 1} = supp(J , FJ )

be known as a fuzzy subset of X. The membership function of the fuzzy set (J , FJ ) is named after the
set function FJ .

We introduce and apply the concept of membership functions of moduli of complex-valued
functions on the set C given by

z = u + iv, (u, v ∈ R)

and
|z| =

√
u2 + v2 ≥ 0, (z ∈ C).

Definition 2.2. ([24]) Assume that E: C→ R+ is a function such that

EC(C) = |E(w)|, (w ∈ D).

The fuzzy subset of the set C of complex numbers is denoted by

EC(C) = {w : w ∈ C and 0 < |E(w)| ≤ 1} = supp(C, EC).
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We call the following subset:

FC(C) = {w : w ∈ C and 0 < |E(w)| ≤ 1} = DF(0, 1)

the fuzzy unit disk. Note that (C, FC) is the same as its fuzzy unit disk,DF(0, 1).

Definition 2.3. ([16]) Each of the following statements holds true.

(1) If (J , FJ ) = (V, FV), then J = V, where

J = supp(J , FJ ) andV = supp(V, FV).

(2) If (J , FJ ) ⊆ (V, FV), then J ⊆ V, where

J = supp(J , FJ ) andV = supp(V, FV).

Remark 2.4. [24] Set Π ⊂ C, and f and g are analytic functions in K(Π). We are usually signified
by

f (Π) = supp( f (Π), F f (Π)) = { f (w) : 0 < |F f (Π)( f (w))| ≤ 1,w ∈ Π} (2.1)

and
g(Π) = supp(g(Π), Fg(Π)) = {g(w) : 0 < |Fg(Π)(g(w))| ≤ 1,w ∈ Π}. (2.2)

Then, for w ∈ Π, we have the following properties:

(i) For any δ ∈ C, F(δ f )(Π)(δ f )(w) = F f (Π) f (w).

(ii) F( f+g)(Π)( f + g)(w) = F f (Π) f (w)+Fg(Π)g(w)
2 .

(iii) If 0 < |F f (Π) f (w)| ≤ 1 and 0 < |Fg(Π)g(w)| ≤ 1, then 0 < |F( f+g)(Π)( f + g)(w)| ≤ 1.

Definition 2.5. ([16]) Assume that w0 ∈ Π is a constant value, and f , g ∈ K(Π). We claim that f is a
fuzzy subordinate to g, written as f ≺F g or f (w) ≺F g(w), if the following requirements are satisfied:

(i) f (w0) = g(w0);

(ii) f (Π) ⊆ g(Π) and |F f (Π)( f (w))| ≤ |Fg(Π)(g(w))|, (w ∈ Π),

where (i) and (ii) are given in (2.1) and (2.2), respectively.

Definition 2.6. ([17]) Let χ: C3 × D → C and h be univalent in D. If p is analytic in D and the
(second-order) fuzzy differential subordination is satisfied

|Fχ(C3×D)(χ(p(w),wp′(w),w2 p′′(w); w))| ≤ |Fh(D)(h(w))|,

that is,

χ(p(w),wp′(w),w2 p′′(w); w) ≺F h(w), (w ∈ D), (2.3)

then p(w) is named a fuzzy solution of the fuzzy differential subordination. The univalent function q(w)
is named a fuzzy dominant of the fuzzy solutions of the fuzzy differential subordination, or simply a
fuzzy dominant, if

|Fp(D)(p(w))| ≤ |Fq(D)(q(w))|,
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i.e., p(w) ≺F q(w), (w ∈ D) for all functions p that satisfy (2.3). A fuzzy dominant q̃ satisfying the
following condition:

|Fq̃(U)(q̃(z))| ≤ |Fq(D)(q(w))|,

i.e., q̃(w) ≺F q(w), (w ∈ D) for all fuzzy dominants q of (2.3), is called the fuzzy best dominant
of (2.3).

Definition 2.7. ([19]) Let χ: C3×D → C and h be analytic inD. If p and χ(p(w),wp′(w),w2 p′′(w); w)
are univalent inD and satisfy the (second-order) fuzzy differential superordination

|Fh(D)(h(w))| ≤ |Fχ(C3×D)(χ(p(w),wp′(w),w2 p′′(w); w))|,

that is,

h(w) ≺F χ(p(w),wp′(w),w2 p′′(w); w) (w ∈ D), (2.4)

then p(w) is named a fuzzy solution of the fuzzy differential superordination. An analytic function
q(w) is named a fuzzy subordinant of the fuzzy solutions of the fuzzy differential superordination, or
simply a fuzzy subordinant, if

|Fq(D)(q(w))| ≤ |Fp(D)(p(w))|,

i.e., q(w) ≺F p(w), (w ∈ D) for all functions p that satisfy (2.4). A univalent fuzzy subordination q̃
that satisfy

|Fq(D)(q(w))| ≤ |Fq̃(U)(q̃(w))|,

i.e., q(w) ≺F q̃(w), (w ∈ D) for all fuzzy subordinate q of (2.4) is called the fuzzy best subordinate
of (2.4).

Denote by Q the set of all functions q(w) that are analytic and injective as a function of w on
D \ E(q(w)), where

E(q(w)) =
{
ζ ∈ ∂D : lim

z→ζ
q(w) = ∞

}
and are such that q′(ζ) , 0 for ζ ∈ ∂D \ E(q). The subclass of Q for which q(0) = a is denoted by Q(a).

We need the following lemmas to prove the main results:

Lemma 2.8. ([2]) Let ψ ∈ A and assume that

ϱ(w) =
1
w

∫ w

0
ψ(τ)dτ, (w ∈ D).

If

ℜ

(
1 +

wψ
′′

(w)
ψ′(w)

)
> −

1
2
, (w ∈ D),

then ϱ is a convex function.

Lemma 2.9. ([18]) Let g ∈ D be a convex function, and the function

h(w) = g(w) + nαwg′(w), (w ∈ D); α > 0,
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and let n be a positive integer. If the function

p(w) = g(0) + pnwn + pn+1wn+1 + · · ·

is holomorphic inD, and the fuzzy differential subordination

|Fp(D)(p(w) + αwp′(w))| ≤ |Fh(D)h(w)|,

then
|Fp(D)(p(w))| ≤ |Fg(D)g(w)|, i.e., p(w) ≺F g(w), (w ∈ D).

The result is sharp.

Lemma 2.10. ([18]) Let h be a univalent convex function inD with h(0) = a and β ∈ C, withℜ(β) ≥ 0.
If p(w) ∈ K[a, n] with p(0) = a and χ: C2 ×D → C,

χ(p(w),wp′(w); w) = p(w) +
1
β

wp′(w)

is univalent inD, and the fuzzy differential subordination∣∣∣∣∣Fχ(C2×D)[p(w) +
1
β

wp′(w)]
∣∣∣∣∣ ≤ |Fh(D)(h(w))| ⇒ p(w) +

1
β

wp′(w) ≺F h(w), (w ∈ D),

then

|Fp(D) p(w)| ≤ |Fq(D)q(w)| ≤ |Fh(D)h(w)| ⇒ p(w) ≺F q(w), (w ∈ D),

where

q(w) =
β

nw
β
n

∫ ∞

0
h(t)t

β
n−1dt

is convex, and the fuzzy best dominant.

Lemma 2.11. ([19]) Let h be a univalent convex function inD with h(0) = a and β ∈ C, withℜ(β) ≥ 0.
If p(w) ∈ Q ∩ K[a, n] and χ: C2 ×D → C,

χ(p(w),wp′(w); w) = p(w) +
1
β

wp′(w)

is univalent inD, and satisfy the fuzzy differential superordination∣∣∣Fh(D)(h(w))
∣∣∣ ≤ ∣∣∣∣∣Fχ(C2×D)[p(w) +

1
β

wp′(w)]
∣∣∣∣∣⇒ h(w) ≺F p(w) +

1
β

wp′(w), (w ∈ D),

then

|Fh(D)h(w)| ≤ |Fq(D)q(w)| ≤ |Fp(D) p(w)| ⇒ q(w) ≺F p(w), (w ∈ D),

where

q(w) =
β

nw
β
n

∫ ∞

0
h(t)t

β
n−1dt

is convex and the fuzzy best subordinant.

In this paper, we have used the generalized Mittag-Leffler functions with the general Pascal-type
probability distribution, which is symmetric in D. We derive several fuzzy differential subordinations
and fuzzy differential superordinations from the results of analytic functions involving the operator
M

s,γ
ξ,β. Afterward, some sandwich-type results are also presented.
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3. Fuzzy differential subordination

In this section, we first defined the new class of normalized analytic functions in the open unit disk
by the operatorMs,γ

ξ,β.

Definition 3.1. The function f (w) ∈ A, given by (1.1), is said to be in the class MBF,s,γ
ξ,β (ρ) with

0 ≤ ρ < 1 if ∣∣∣∣∣F(
M

s,γ
ξ,β f

)′
(D)

(
M

s,γ
ξ,β f (w)

)′∣∣∣∣∣ > ρ, (w ∈ D). (3.1)

We establish the convexity of the classMBF,s,γ
ξ,β (ρ).

Theorem 3.2. The classMBF,s,γ
ξ,β (ρ) is a convex set.

Proof. Suppose that
f1, f2 ∈ MB

F,s,γ
ξ,β (ρ)

and
f (w) = b1 f1(w) + b2 f2(w),

where b1, b2 are positive numbers with
b1 + b2 = 1.

We have to prove that f ∈ MBF,s,γ
ξ,β (ρ), (w ∈ D). Now

f ′(w) = b1 f ′1(w) + b2 f ′2(w)

and (
M

s,γ
ξ,β f (w)

)′
= b1

(
M

s,γ
ξ,β f1(w)

)′
+ b2

(
M

s,γ
ξ,β f2(w)

)′
.

Since
f1, f2 ∈ MB

F,s,γ
ξ,β (ρ),

we have
ρ <

∣∣∣∣∣F(
M

s,γ
ξ,β f1

)′
(D)

(
M

s,γ
ξ,β f1(w)

)′∣∣∣∣∣ ≤ 1

and
ρ <

∣∣∣∣∣F(
M

s,γ
ξ,β f2

)′
(D)

(
M

s,γ
ξ,β f2(w)

)′∣∣∣∣∣ ≤ 1,

which implies

ρ = (b1 + b2)ρ <

∣∣∣∣∣∣∣∣∣
F(
M

s,γ
ξ,β f1

)′
(D)

(
M

s,γ
ξ,β f1(w)

)′
+ F(

M
s,γ
ξ,β f2

)′
(D)

(
M

s,γ
ξ,β f2(w)

)′
2

∣∣∣∣∣∣∣∣∣ ≤ 1. (3.2)

Again, by applying fuzzy theory, we get

F(
M

s,γ
ξ,β f

)′
(D)

(
M

s,γ
ξ,β f (w)

)′
= F(

M
s,γ
ξ,β(b1 f1+b2 f2)

)′
(D)

(
M

s,γ
ξ,β(b1 f1 + b2 f2)(w)

)′
(3.3)

= F(
M

s,γ
ξ,β(b1 f1+b2 f2)

)′
(D)

(
b1

(
M

s,γ
ξ,β f1(w)

)′
+ b2

(
M

s,γ
ξ,β f2(w)

)′)
AIMS Mathematics Volume 9, Issue 8, 21053–21078.
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=

F(
b1M

s,γ
ξ,β f1

)′
(D)

(
b1

(
M

s,γ
ξ,β f1(w)

)′)
+ F(

b2M
s,γ
ξ,β f2

)′
(D)

(
b2

(
M

s,γ
ξ,β f2(w)

)′)
2

=

F(
M

s,γ
ξ,β f1

)′
(D)

(
M

s,γ
ξ,β f1(w)

)′
+ F(

M
s,γ
ξ,β f2

)′
(D)

(
M

s,γ
ξ,β f2(w)

)′
2

.

From Definition 3.1, along with Eqs (3.2) and (3.3), we obtain the required result. □

We next investigate the fuzzy differential subordination results involving the convex functions and
the operatorMs,γ

ξ,β.

Theorem 3.3. Suppose that h ∈ K(D) is a convex function with h(0) = 1 such that

ℜ

(
1 +

wh′′(w)
h′(w)

)
> −

1
2
, (w ∈ D). (3.4)

If f ∈ A satisfies the fuzzy differential subordination∣∣∣∣∣F(
M

s,γ
ξ,β f

)′
(D)

(
M

s,γ
ξ,β f (w)

)′∣∣∣∣∣ ≤ ∣∣∣Fh(D)h(w)
∣∣∣ =⇒ (

M
s,γ
ξ,β f (w)

)′
≺F h(w), (w ∈ D), (3.5)

then ∣∣∣∣∣∣∣FMs,γ
ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣ ≤ ∣∣∣Fg(D)g(w)
∣∣∣ =⇒ Ms,γ

ξ,β f (w)

w
≺F g(w), (w ∈ D),

where

g(w) =
1
w

∫ w

0
h(t)dt

is a convex function, and the fuzzy is the best dominant.

Proof. Let the function

p(w) =
M

s,γ
ξ,β f (w)

w
= 1 +

∞∑
k=2

(
k + s − 2

s − 1

)
Γ(γ + k)Γ(ξ + β)

k! Γ(γ + 1)Γ(ξk + β)
rk−1(1 − r)sakzk−1. (3.6)

It is clear that p(w) ∈ K[1, 1]. We observe that

p(w) + wp′(w) =
(
M

s,γ
ξ,β f (w)

)′
, (w ∈ D). (3.7)

Further, suppose h ∈ K(D) with h(0) = 1 such that

ℜ

(
1 +

wh′′(w)
h′(w)

)
> −

1
2
, (w ∈ D).

In view of the Lemma 2.8, we obtain

g(w) =
1
w

∫ w

0
h(t)dt, (w ∈ D).
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Hence, g(w) is the convex univalent function inD, and we can easily compute that

g(w) + wg′(w) = h(w).

The fuzzy differential subordination (3.5) can be written as∣∣∣Fp(D)(p(w) + wp′(w))
∣∣∣ ≤ ∣∣∣Fg(D)g(w) + wg′(w)

∣∣∣ , (w ∈ D).

By using Lemma 2.9, we have

∣∣∣Fp(D) p(w)
∣∣∣ ≤ ∣∣∣Fg(D)g(w)

∣∣∣ =⇒ ∣∣∣∣∣∣∣FMs,γ
ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣ ≤ ∣∣∣Fg(D)g(w)
∣∣∣ ,

implies that

M
s,γ
ξ,β f (w)

w
≺F g(w), (w ∈ D),

where

g(w) =
1
w

∫ w

0
h(t)dt

is the fuzzy best dominant. The proof of Theorem 3.3 is completed. □

Taking

h(w) =
1 + (2α − 1)w

1 + w
, (w ∈ D)

in Theorem 3.3, we can get the following result:

Corollary 3.4. Let

h(w) =
1 + (2α − 1)w

1 + w
, h(0) = 1

be the normalized convex function, and 0 ≤ α < 1. If f ∈ A satisfies the fuzzy differential
subordination: ∣∣∣∣∣F(

M
s,γ
ξ,β f

)′
(D)

(
M

s,γ
ξ,β f (w)

)′∣∣∣∣∣ ≤ ∣∣∣Fh(D)h(w)
∣∣∣ =⇒ (

M
s,γ
ξ,β f (w)

)′
≺F h(w), (3.8)

then ∣∣∣∣∣∣∣FMs,γ
ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣ ≤ ∣∣∣Fg(D)g(w)
∣∣∣ =⇒ Ms,γ

ξ,β f (w)

w
≺F g(w), (w ∈ D),

where

g(w) = 2α − 1 +
2(1 − α)

w
log(1 + w)

is convex, and the fuzzy is best dominant.

AIMS Mathematics Volume 9, Issue 8, 21053–21078.



21063

Proof. Following from Theorem 3.3, the relation (3.8) can be expressed as∣∣∣Fp(D)(p(w) + wp′(w))
∣∣∣ ≤ ∣∣∣Fh(D)h(w)

∣∣∣ , (w ∈ D).

Application of Lemma 2.9, we obtain ∣∣∣Fp(D) p(w)
∣∣∣ ≤ ∣∣∣Fg(D)g(w)

∣∣∣ ,
that means ∣∣∣∣∣∣∣FMs,γ

ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣ ≤ ∣∣∣Fg(D)g(w)
∣∣∣ , (w ∈ D),

where

g(w) =
1
w

∫ w

0
h(t)dt

=
1
w

∫ w

0

1 + (2α − 1)t
t + 1

dt

= 2α − 1 +
2(1 − α)

w
log(1 + w)

is the convex function and the fuzzy best dominant. □

Example 3.5. Let

h(w) =
1 − w
w + 1

be a convex function inD with h(0) = 1. Suppose that

f (w) = w + w2, w ∈ D.

For ξ = 0, β = γ = r = 1, k = 2 and s = 1
2 , we have

M
1,1
0,1 f (w) = w +

1
4

w2.

Then
(M1,1

0,1 f (w))′ = 1 +
1
2

w

and
M

1,1
0,1 f (w)

w
= 1 +

1
4

w.

Because

g(w) =
1
w

∫ w

0

1 − t
t + 1

dt = −1 +
2ln(w + 1)

w
.

From Theorem 3.3, we obtain

1 +
1
2

w ≺F
1 − w
w + 1

,

then
1 +

1
4

w ≺F −1 +
2 ln(w + 1)

w
, (w ∈ D).
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By using Lemma 2.9, we obtain the following theorem:

Theorem 3.6. Suppose g is a convex function with

g(0) = 1 and h(w) = g(w) + wg′(w), (w ∈ D).

If f ∈ A satisfies the fuzzy differential subordination:∣∣∣∣∣F(
M

s,γ
ξ,β f

)′
(D)

(
M

s,γ
ξ,β f (w)

)′∣∣∣∣∣ ≤ ∣∣∣Fh(D)h(w)
∣∣∣ =⇒ (

M
s,γ
ξ,β f (w)

)′
≺F h(w), (w ∈ D),

then ∣∣∣∣∣∣∣FMs,γ
ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣ ≤ ∣∣∣Fg(D)g(w)
∣∣∣ =⇒ Ms,γ

ξ,β f (w)

w
≺F g(w), (w ∈ D).

This result is seen to be sharp when the inequality is satisfied for a suitably specified function.

Proof. The proof follows from Theorem 3.3 by taking

h(w) = g(w) + wg′(w), (w ∈ D)

and relation (3.7). Hence, by applying Lemma 2.9 with α = 1, we deduce the required result. This
result is sharp. Thus, the proof of Theorem 3.6 is complete. □

We now have the following theorem:

Theorem 3.7. Suppose g is a normalized convex function and

h(w) = g(w) +
1

b + 2
wg′(w), (w ∈ D; b > −2).

Let

G(w) = T b f (w) =
b + 2
wb+1

∫ w

0
tb f (t)dt, (w ∈ D). (3.9)

If f ∈ MBF,s,γ
ξ,β (ρ) and satisfies the fuzzy differential subordination:∣∣∣∣∣F(

M
s,γ
ξ,β f

)′
(D)

(
M

s,γ
ξ,β f (w)

)′∣∣∣∣∣ ≤ ∣∣∣Fh(D)h(w)
∣∣∣ =⇒ (

M
s,γ
ξ,β f (w)

)′
≺F h(w), (3.10)

then ∣∣∣∣∣F(
M

s,γ
ξ,βG

)′
(D)

(
M

s,γ
ξ,βG(w)

)′∣∣∣∣∣ ≤ ∣∣∣Fg(D)g(w)
∣∣∣ =⇒ (

M
s,γ
ξ,βG(w)

)′
≺F g(w), (w ∈ D),

where g(w) is the fuzzy best dominant.

Proof. From (3.9), we write

wb+1G(w) = (b + 2)
∫ w

0
tb f (t)dt, (w ∈ D). (3.11)
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Differentiating (3.11) with respect to w, we have

(b + 1)G(w) + wG′(w) = (b + 2) f (w). (3.12)

Thus, by applying the operatorMs,γ
ξ,β on both sides of (3.12) and differentiating, after simplifications,

we get (
M

s,γ
ξ,βG(w)

)′
+

1
b + 2

w
(
M

s,γ
ξ,βG(w)

)′′
=

(
M

s,γ
ξ,β f (w)

)′
, (w ∈ D). (3.13)

The fuzzy differential subordination (3.10) can be written as follows:∣∣∣∣∣∣F(
M

s,γ
ξ,β f

)′
(D)

((
M

s,γ
ξ,βG(w)

)′
+

1
b + 2

w
(
M

s,γ
ξ,βG(w)

)′′)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣Fh(D)

(
g(w) +

1
b + 2

wg′(w)
)∣∣∣∣∣∣ . (3.14)

Let
p(w) =

(
M

s,γ
ξ,βG(w)

)′
. (3.15)

Then p is an analytic function with p(0) = 1. By substituting (3.15) into (3.14), yields∣∣∣∣∣∣F(
M

s,γ
ξ,β f

)′
(D)

(
p(w) +

1
b + 2

wp′(w)
)∣∣∣∣∣∣ ≤

∣∣∣∣∣∣Fh(D)

(
g(w) +

1
b + 2

wg′(w)
)∣∣∣∣∣∣ .

Now, applying Lemma 2.10, we have∣∣∣∣∣F(
M

s,γ
ξ,βG

)′
(D)

(
M

s,γ
ξ,βG(w)

)′∣∣∣∣∣ ≤ ∣∣∣Fg(D)g(w)
∣∣∣ .

Therefore, (
M

s,γ
ξ,βG(w)

)′
≺F g(w),

where g is the fuzzy best dominant. Thus, the proof of Theorem 3.7 is complete. □

The following result is an immediate consequence of Theorem 3.7.

Theorem 3.8. Suppose h ∈ K(D) is a convex function with h(0) = 1. Let the operator T b be given
by (3.9). If f ∈ MBF,s,γ

ξ,β (ρ) and satisfies the fuzzy differential subordination∣∣∣∣∣F(
M

s,γ
ξ,β f

)′
(D)

(
M

s,γ
ξ,β f (w)

)′∣∣∣∣∣ ≤ ∣∣∣Fh(D)h(w)
∣∣∣ =⇒ (

M
s,γ
ξ,β f (w)

)′
≺F h(w),

then ∣∣∣∣∣F(
M

s,γ
ξ,βG

)′
(D)

(
M

s,γ
ξ,βG(w)

)′∣∣∣∣∣ ≤ ∣∣∣Fg(D)g(w)
∣∣∣ =⇒ (

M
s,γ
ξ,βG(w)

)′
≺F g(w), (w ∈ D),

where

g(w) =
b + 2
wb+2

∫ w

0
tb+1h(t)dt

is the convex function, and the fuzzy best dominant.
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Example 3.9. Let

h(w) =
1 − w
w + 1

be a convex function inD with h(0) = 1. Suppose that

f (w) = w + w2, w ∈ D.

For ξ = 0, β = γ = r = 1, k = 2, and s = 1
2 , we have

M
1,1
0,1 f (w) = w +

1
4

w2.

Then
(M1,1

0,1 f (w))′ = 1 +
1
2

w.

Now for b = 4, we get

G(w) = T 4 f (w) =
6

w5

∫ w

0
t4(t + t2)dt = w +

6
7

w2.

Hence,

M
1,1
0,1G(w) = w +

3
14

w2

and
(M1,1

0,1G(w))′ = 1 +
3
7

w.

We deduce that

g(w) =
6

w6

∫ w

0

1 − t
t + 1

t5dt = −
12 ln(1 + w)

w6 −
48
w5 −

66
w4 −

16
w3 −

3
w2 +

12
5w
− 1.

Using Theorem 3.7, we obtain

1 +
1
2

w ≺F
1 − w
w + 1

implies

1 +
3
7

w ≺F −
12 ln(1 + w)

w6 −
48
w5 −

66
w4 −

16
w3 −

3
w2 +

12
5w
− 1, (w ∈ D).

Our next result will demonstrate some significant inclusion relation for the classMBF,s,γ
ξ,β (ρ).

Theorem 3.10. Suppose that the function

h(w) =
1 + (2η − 1)w

1 + w
, η ∈ [0, 1)

and b > 0. Let the operator T b be given by (3.9). Then

T b
[
MB

F,s,γ
ξ,β (ρ)

]
⊂ MB

F,s,γ
ξ,β (ρ⋆), (3.16)

where

ρ⋆ := 2η − 1 + 2(b + 2)(1 − η)
∫ 1

0

tb+2

t + 1
dt.
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Proof. Since h ∈ D is the convex function and uses the same line as in the proof of Theorem 3.7, we
obtain from the hypothesis of Theorem 3.10 that∣∣∣∣∣∣Fp(D)

(
p(w) +

1
b + 2

wp′(w)
)∣∣∣∣∣∣ ≤ ∣∣∣Fh(D)h(w)

∣∣∣ ,
where p(w) is defined by (3.15). By applying Lemma 2.10, we have∣∣∣Fp(D) p(w)

∣∣∣ ≤ ∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣Fh(D)h(w)

∣∣∣ ,
implies that ∣∣∣∣∣F(

M
s,γ
ξ,βG

)′
(D)

(
M

s,γ
ξ,βG(w)

)′∣∣∣∣∣ ≤ ∣∣∣Fg(U)g(w)
∣∣∣ ≤ ∣∣∣Fh(U)h(w)

∣∣∣ ,
where g(w) is given by

g(w) =
b + 2
wb+2

∫ w

0
tb+1 1 + (2η − 1)t

1 + t
dt

= (2η − 1) +
2(b + 2)(1 − η)

wb+2

∫ w

0

tb+1

1 + t
dt,

belongs to the convex function class C inD, and g(D) is symmetric with respect to the real axis. Thus,
we get ∣∣∣∣∣F(

M
s,γ
ξ,βG

)′
(D)

(
M

s,γ
ξ,βG(w)

)′∣∣∣∣∣ ≥ min
|w|=1

{∣∣∣Fg(D)g(w)
∣∣∣} = ∣∣∣Fg(D)g(1)

∣∣∣
and

ρ⋆ := g(1) = 2η − 1 + (b + 2)(2 − 2η)
∫ 1

0

tb+2

t + 1
dt.

This completes the proof of Theorem 3.10. □

4. Fuzzy differential superordination

In this section, we state and prove the following fuzzy differential superordination results involving
the convex function and the operatorMs,γ

ξ,β.

Theorem 4.1. Considering h as a convex function with h(0) = 1. Suppose that (Ms,γ
ξ,β f (w))′ is a

univalent function inD and
M

s,γ
ξ,β f (w)

w
∈ Q ∩ K[1, 1].

If f ∈ A satisfies the fuzzy differential superordination:∣∣∣Fh(D)h(w)
∣∣∣ ≤ ∣∣∣∣F(Ms,γ

ξ,β f )′(D)(M
s,γ
ξ,β f (w))′

∣∣∣∣ =⇒ h(w) ≺F (Ms,γ
ξ,β f (w))′, (w ∈ D), (4.1)
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then

∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣∣∣∣∣FMs,γ

ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣ =⇒ g(w) ≺F

M
s,γ
ξ,β f (w)

w
, (w ∈ D),

where the convex function

g(w) =
1
w

∫ w

0
h(t)dt

is the fuzzy best subordinant.

Proof. Let the function p(w) be defined by (3.6). Using the relation (3.7) in (4.1), we have∣∣∣Fg(D)g(w) + wg′(w)
∣∣∣ ≤ ∣∣∣Fp(D)(p(w) + wp′(w))

∣∣∣ , (w ∈ D).

Since h ∈ K(D) with h(0) = 1 such that

ℜ

(
1 +

wh′′(w)
h′(w)

)
> −

1
2
, (w ∈ D).

From Lemma 2.8, we obtain

g(w) =
1
w

∫ w

0
h(t)dt, (w ∈ D).

Hence, g(w) is the convex univalent function inD and we can easily compute that

g(w) + wg′(w) = h(w).

By using Lemma 2.11, we have

∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣Fp(D) p(w)

∣∣∣⇒ ∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣∣∣∣∣FMs,γ

ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣
implies that

g(w) ≺F

M
s,γ
ξ,β f (w)

w
, (w ∈ D),

where

g(w) =
1
w

∫ w

0
h(t)dt

is the fuzzy best subordinant. This completes the proof of Theorem 4.1. □

Taking

h(w) =
1 + (2η − 1)w

1 + w
, (w ∈ D)

in Theorem 4.1, we get the following result:
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Corollary 4.2. Let the function

h(w) =
1 + (2η − 1)w

1 + w
, η ∈ [0, 1), w ∈ D.

Suppose that (Ms,γ
ξ,β f (z))′ is a univalent function inD and

M
s,γ
ξ,β f (w)

w
∈ Q ∩ K[1, 1].

If f ∈ A satisfies the fuzzy differential superordination:∣∣∣Fh(D)h(w)
∣∣∣ ≤ ∣∣∣∣F(Ms,γ

ξ,β f )′(D)(M
s,γ
ξ,β f (w))′

∣∣∣∣ =⇒ h(w) ≺F (Ms,γ
ξ,β f (w))′, (w ∈ D), (4.2)

then

∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣∣∣∣∣FMs,γ

ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣ =⇒ g(w) ≺F

M
s,γ
ξ,β f (w)

w
, (w ∈ D),

where the convex function

g(w) = 2α − 1 + 2(1 − α)
ln(1 + w)

w
is the fuzzy best subordinant.

Proof. Following from Theorem 4.1, the fuzzy differential subordination (4.2) in the form∣∣∣Fh(D)h(w)
∣∣∣ ≤ ∣∣∣Fp(D)(p(w) + wp′(w))

∣∣∣ , (w ∈ D).

Application of Lemma 2.11, we have ∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣Fp(D) p(w)

∣∣∣ ,
that means

∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣∣∣∣∣FMs,γ

ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣ , (w ∈ D),

where

g(w) =
1
w

∫ w

0
h(t)dt

=
1
w

∫ w

0

1 + (2α − 1)t
t + 1

dt

= 2α − 1 +
2(1 − α)

w
log(1 + w)

is the convex function and the fuzzy best subordinant. □
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Example 4.3. Let

h(w) =
1 − w
w + 1

be a convex function inD with h(0) = 1. Suppose that

f (w) = w + w2, w ∈ D.

For ξ = 0, β = γ = r = 1, k = 2, and s = 1
2 , we have

M
1,1
0,1 f (w) = w +

1
4

w2.

Then,

(M1,1
0,1 f (w))′ = 1 +

1
2

w

is univalent inD and
M

1,1
0,1 f (w)

w
= 1 +

1
4

w ∈ Q ∩ K[1, 1].

We deduce that

g(w) =
1
w

∫ w

0

1 − t
t + 1

dt = −1 +
2ln(w + 1)

w
.

From Theorem 4.1, we obtain
1 − w
w + 1

≺F 1 +
1
2

w,

then
−1 +

2 ln(w + 1)
w

≺F 1 +
1
4

w, (w ∈ D).

We next establish a series of fuzzy differential superordination results involving the convex
functions and the operatorMs,γ

ξ,β.

Theorem 4.4. Let g be a convex function inD, and the function

h(w) = g(w) + wg′(w).

Suppose that (Ms,γ
ξ,β f (w))′ is a univalent function inD and

M
s,γ
ξ,β f (w)

w
∈ Q ∩ K[1, 1].

If f ∈ A satisfies the fuzzy differential superordination:∣∣∣Fh(D)h(w)
∣∣∣ ≤ ∣∣∣∣F(Ms,γ

ξ,β f )′(D)(M
s,γ
ξ,β f (w))′

∣∣∣∣ =⇒ h(w) ≺F (Ms,γ
ξ,β f (w))′, (w ∈ D),

then ∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣∣∣∣∣FMs,γ

ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣ =⇒ g(w) ≺F

M
s,γ
ξ,β f (w)

w
, (w ∈ D).

This result is sharp.
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Proof. Using arguments similar to those in the proof of Theorem 4.1, we have∣∣∣Fg(D)g(w) + wg′(w)
∣∣∣ ≤ ∣∣∣Fp(D)(p(w) + wp′(w))

∣∣∣ , (w ∈ D),

then by applying Lemma 2.11, we obtain the required result. This result is seen to be sharp when the
inequality satisfies a suitably specific function. Thus, the proof of the Theorem 4.4 is completed. □

We now have the following theorem:

Theorem 4.5. Suppose g is a convex function and

h(w) = g(w) +
wg′(w)
b + 2

,

withℜ(b) > −2, w ∈ D. Suppose G(w) is defined in (3.9). Let (Ms,γ
ξ,β f (w))′ be a univalent function in

D, and
(Ms,γ

ξ,βG(w))′ ∈ Q ∩ K[1, 1].

If f ∈ A satisfies the fuzzy differential superordination:∣∣∣Fh(D)h(w)
∣∣∣ ≤ ∣∣∣∣F(Ms,γ

ξ,β f )′(D)(M
s,γ
ξ,β f (w))′

∣∣∣∣ =⇒ h(w) ≺F (Ms,γ
ξ,β f (w))′, (w ∈ D), (4.3)

then ∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣∣F(Ms,γ

ξ,βG)′(D)(M
s,γ
ξ,βG(w))′

∣∣∣∣ =⇒ g(w) ≺F (Ms,γ
ξ,βG(w))′, (w ∈ D)

where the convex function g(w) = b+2
wb+2

∫ w

0
tb+1h(t)dt is the fuzzy best subordinant.

Proof. The proof of this theorem is similar to that of Theorem 3.7. By using the relations (3.13)
and (3.15), the fuzzy differential superordination (4.3) can be written as follows:∣∣∣∣∣∣Fh(D)

(
g(w) +

1
b + 2

wg′(w)
)∣∣∣∣∣∣ ≤

∣∣∣∣∣∣F(Ms,γ
ξ,β f )′(D)

(
p(w) +

1
b + 2

wp′(w)
)∣∣∣∣∣∣ .

Now applying Lemma 2.11 with
ℜ(β) = b + 2 > 0,

we have ∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣∣F(Ms,γ

ξ,βG)′(D)(M
s,γ
ξ,βG(w))′

∣∣∣∣ .
Therefore,

g(w) ≺F M
s,γ
ξ,βG(w))′,

where g is the fuzzy best dominant. Thus, the proof of Theorem 4.5 is complete. □

We now have the following theorem:

AIMS Mathematics Volume 9, Issue 8, 21053–21078.



21072

Theorem 4.6. Let
h(w) =

1 + (2η − 1)w
1 + w

, η ∈ [0, 1).

Suppose G(z) is defined in (3.9), (Ms,γ
ξ,β f (z))′ is a univalent function inD, and

(Ms,γ
ξ,βG(z))′ ∈ Q ∩ K[1, 1].

If f ∈ A satisfies the fuzzy differential superordination:∣∣∣Fh(D)h(w)
∣∣∣ ≤ ∣∣∣∣F(Ms,γ

ξ,β f )′(D)(M
s,γ
ξ,β f (w))′

∣∣∣∣ =⇒ h(w) ≺F (Ms,γ
ξ,β f (w))′, (w ∈ D), (4.4)

then ∣∣∣Fg(D)g(w)
∣∣∣ ≤ ∣∣∣∣F(Ms,γ

ξ,βG)′(D)(M
s,γ
ξ,βG(w))′

∣∣∣∣ =⇒ g(w) ≺F (Ms,γ
ξ,βG(w))′, (w ∈ D),

where the convex function

g(w) = 2η − 1 +
(b + 2)(2 − 2η)

wb+2

∫ w

0

tb+1

1 + t
dt

is the fuzzy best subordinant.

Proof. Since

G(w) = T b f (w) =
b + 2
wb+1

∫ w

0
tb f (t)dt.

We can be written as
wb+1G(w) = (b + 2)

∫ w

0
tb f (t)dt, (w ∈ D). (4.5)

Differentiating (4.5) with respect to w, we have

(b + 1)G(w) + wG′(w) = (b + 2) f (w). (4.6)

Thus, by applying operatorMs,γ
ξ,β on both sides of (4.6) and differentiating, after simplifications, we get

(
M

s,γ
ξ,βG(w)

)′
+

1
b + 2

w
(
M

s,γ
ξ,βG(w)

)′′
=

(
M

s,γ
ξ,β f (w)

)′
, (w ∈ D).

The fuzzy differential suerordination (4.4) can be written as follows:∣∣∣Fh(D)h(w)
∣∣∣ ≤ ∣∣∣∣∣∣F(

M
s,γ
ξ,β f

)′
(D)

((
M

s,γ
ξ,βG(w)

)′
+

1
b + 2

w
(
M

s,γ
ξ,βG(w)

)′′)∣∣∣∣∣∣ . (4.7)

Set
p(w) =

(
M

s,γ
ξ,βG(w)

)′
. (4.8)

By substituting (4.8) into (4.7), yields∣∣∣Fh(D)h(w)
∣∣∣ ≤ ∣∣∣∣∣∣Fp(D)

(
p(w) +

1
b + 2

wp′(w)
)∣∣∣∣∣∣ .
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Thus, by applying Lemma 2.10, we have∣∣∣Fh(D)h(w)
∣∣∣ ≤ ∣∣∣Fg(D)g(w)

∣∣∣ ≤ ∣∣∣Fp(D) p(w)
∣∣∣

implies that ∣∣∣Fh(D)h(w)
∣∣∣ ≤ ∣∣∣Fg(D)g(w)

∣∣∣ ≤ ∣∣∣∣∣F(
M

s,γ
ξ,βG

)′
(D)

(
M

s,γ
ξ,βG(w)

)′∣∣∣∣∣ ,
where g(w) is given by

g(w) =
b + 2
wb+2

∫ w

0
tb+1 1 + (2η − 1)t

1 + t
dt

= (2η − 1) +
2(b + 2)(1 − η)

wb+2

∫ w

0

tb+1

1 + t
dt,

belongs to convex function class C in D, and g(D) is symmetric with respect to the real axis. This
completes the proof of the theorem. □

Example 4.7. Let

h(w) =
1 − w
w + 1

be a convex function inD with h(0) = 1. Suppose that

f (w) = w + w2, w ∈ D.

For ξ = 0, β = γ = r = 1, k = 2, and s = 1
2 , we have

M
1,1
0,1 f (w) = w +

1
4

w2.

Then
(M1,1

0,1 f (w))′ = 1 +
1
2

w

is univalent inD. Now for b = 4, we get

G(w) = T 4 f (w) =
6

w5

∫ w

0
t4(t + t2)dt = w +

6
7

w2.

Hence,

M
1,1
0,1G(w) = w +

3
14

w2 and (M1,1
0,1G(w))′ = 1 +

3
7

w ∈ Q ∩ K[1, 1].

We deduce that

g(w) =
6

w6

∫ w

0

1 − t
t + 1

t5dt = −
12 ln(1 + w)

w6 −
48
w5 −

66
w4 −

16
w3 −

3
w2 +

12
5w
− 1.

Using Theorem 4.6, we obtain
1 − w
w + 1

≺F 1 +
1
2

w

implies

−
12 ln(1 + w)

w6 −
48
w5 −

66
w4 −

16
w3 −

3
w2 +

12
5w
− 1 ≺F 1 +

3
7

w, (w ∈ D).
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5. Sandwich-type results

In this section, two sandwich-type results are introduced. By combining the results of Theorem 3.3
with Theorem 4.1 and we get the following sandwich-type result:

Theorem 5.1. Let g1 and g2 be univalent convex functions inD. Suppose that h1 and h2 are univalent
convex functions inD with h1(0) = h2(0) = 1 and satisfy (3.4). Furthermore, suppose

(
M

s,γ
ξ,β f (w)

)′
is a

univalent function inD and
M

s,γ
ξ,β f (w)

w
∈ Q ∩ K[1, 1].

If f ∈ A satisfies the following conditions:∣∣∣Fh1(D)h1(w)
∣∣∣ ≤ ∣∣∣∣∣F(

M
s,γ
ξ,β f

)′
(D)

(
M

s,γ
ξ,β f (w)

)′∣∣∣∣∣ ≤ ∣∣∣Fh2(D)h2(w)
∣∣∣

=⇒ h1(w) ≺F

(
M

s,γ
ξ,β f (w)

)′
≺F h2(w), (w ∈ D),

then ∣∣∣Fg1(D)g1(w)
∣∣∣ ≤ ∣∣∣∣∣∣∣FMs,γ

ξ,β f (D)

M
s,γ
ξ,β f (w)

w

∣∣∣∣∣∣∣ ≤ ∣∣∣Fg2(D)g2(w)
∣∣∣

=⇒ g1(w) ≺F

M
s,γ
ξ,β f (w)

w
≺F g2(w), (w ∈ D),

where g1 and g2 are the fuzzy best subordinant and the fuzzy best dominant, respectively.

Combining Theorem 3.7 with Theorem 4.5, we obtain the following sandwich-type result:

Theorem 5.2. Let g1 and g2 be univalent convex functions inD. Suppose that h1 and h2 are univalent
convex functions inD with

h1(0) = h2(0) = 1

and satisfy (3.4). Furthermore, suppose that G(w) is defined in (3.9),(
M

s,γ
ξ,βG(w)

)′
∈ Q ∩ K[1, 1]

and
(
M

s,γ
ξ,β f (w)

)′
is a univalent function inD. If f ∈ A satisfies

∣∣∣Fh1(D)h1(w)
∣∣∣ ≤ ∣∣∣∣∣F(

M
s,γ
ξ,β f

)′
(D)

(
M

s,γ
ξ,β f (w)

)′∣∣∣∣∣ ≤ ∣∣∣Fh2(D)h2(w)
∣∣∣

=⇒ h1(w) ≺F

(
M

s,γ
ξ,β f (w)

)′
≺F h2(w), (w ∈ D),

then ∣∣∣Fg1(D)g1(w)
∣∣∣ ≤ ∣∣∣∣FMs,γ

ξ,βG(D)

(
M

s,γ
ξ,βG(w)

)′∣∣∣∣ ≤ ∣∣∣Fg2(D)g2(w)
∣∣∣

=⇒ g1(w) ≺F

(
M

s,γ
ξ,βG(w)

)′
≺F g2(w), (w ∈ D),

where g1 and g2 are, respectively, the fuzzy best subordinant and the fuzzy best dominant.
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6. Conclusions

In this investigation, we have derived many fuzzy differential subordinations, fuzzy differential
superordinations, and sandwich results for analytic functions in the open unit disk associated with the
Mittag-Leffler type Pascal distribution operator Ms,γ

ξ,β. We used the convolution technique to define
a new operator Ms,γ

ξ,β for analytic functions. Using the newly defined class, we have proven some
important results. We have also proven the inclusion relation for this class. This study is expected
to make effective contributions to the fields of geometric function theory and fuzzy set theory. It is
recommended to study these results with q-calculus. This investigation will play a very important role
in doing further research in the fields of fuzzy differential techniques in the modern era.
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34. S. A. Shah, E. E. Ali, A. Cătaş, A. M. Albalahi, On fuzzy differential subordination associated with
q-difference operator, AIMS Math., 8 (2023), 6642–6650. https://doi.org/10.3934/math.2023336

35. A. K. Wanas, A. H. Majeed, Fuzzy subordination results for fractional integral associated with
generalized Mittag-Leffler function, Eng. Math. Lett., 2019 (2019), 10.

36. A. K. Wanas, S. Bulut, Some results for fractional derivative associated with fuzzy differential
subordinations, J. Al-Qadisiyah Comput. Sci. Math., 12 (2020), 27–36.
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