Research article

Sensitivity analysis of a non-Markovian feedback retrial queue, reneging, delayed repair with working vacation subject to server breakdown

  • Received: 15 April 2024 Revised: 25 May 2024 Accepted: 03 June 2024 Published: 28 June 2024
  • MSC : 60K25, 68M20, 90B22

  • This study investigated the steady-state characteristics of a non-Markovian feedback retrial queue with reneging, delayed repair, and working vacation. In this scenario, we assumed that consumers arrive through Poisson processes and the server provides service to consumers during both regular and working vacation periods. However, it is subject to breakdowns at any moment, resulting in a service interruption for a random duration. Additionally, the concept of delay time was also presented. The consumer that is dissatisfied with the service may re-enter the orbit to receive another service; this individual is considered a feedback consumer. The server will go on a working vacation if the orbit is empty after successfully serving a satisfied consumer. By utilizing the supplementary variable technique (SVT), we examined the steady-state probability generating function of the system and orbit sizes. Finally, numerical outcomes and a sensitivity analysis were given to verify the analytical findings of important performance indicators.

    Citation: S. Sundarapandiyan, S. Nandhini. Sensitivity analysis of a non-Markovian feedback retrial queue, reneging, delayed repair with working vacation subject to server breakdown[J]. AIMS Mathematics, 2024, 9(8): 21025-21052. doi: 10.3934/math.20241022

    Related Papers:

  • This study investigated the steady-state characteristics of a non-Markovian feedback retrial queue with reneging, delayed repair, and working vacation. In this scenario, we assumed that consumers arrive through Poisson processes and the server provides service to consumers during both regular and working vacation periods. However, it is subject to breakdowns at any moment, resulting in a service interruption for a random duration. Additionally, the concept of delay time was also presented. The consumer that is dissatisfied with the service may re-enter the orbit to receive another service; this individual is considered a feedback consumer. The server will go on a working vacation if the orbit is empty after successfully serving a satisfied consumer. By utilizing the supplementary variable technique (SVT), we examined the steady-state probability generating function of the system and orbit sizes. Finally, numerical outcomes and a sensitivity analysis were given to verify the analytical findings of important performance indicators.


    加载中


    [1] G. Falin, A survey of retrial queues, Queueing Syst., 7 (1990), 127–167. https://doi.org/10.1007/BF01158472 doi: 10.1007/BF01158472
    [2] J. R. Artalejo, Accessible bibliography on retrial queues: progress in 2000–2009, Math. Comput. Model., 51 (2010), 1071–1081. https://doi.org/10.1016/j.mcm.2009.12.011 doi: 10.1016/j.mcm.2009.12.011
    [3] J. G. C. Templeton, G. I. Falin, Retrial queues, New York: CRC Press, 1997. https://doi.org/10.1201/9780203740767
    [4] Z. Boussaha, N. Oukid, H. Zeghdoudi, S. Soualhi, N. Djellab, On the M/G/1 feedback retrial queuing with orbital search of customers, Advances in Mathematics: Scientific Journal, 11 (2022), 723–739. https://doi.org/10.37418/amsj.11.8.7 doi: 10.37418/amsj.11.8.7
    [5] I. Atencia, M. A. Galán-García, G. Aguilera-Venegas, J. L. Galán-García, A non markovian retrial queueing system, J. Comput. Appl. Math., 431 (2023), 115277. https://doi.org/10.1016/j.cam.2023.115277 doi: 10.1016/j.cam.2023.115277
    [6] K. Jeganathan, T. Harikrishnan, K. P. Lakshmi, D. Nagarajan, A multi-server retrial queueing-inventory system with asynchronous multiple vacations, Decision Analytics Journal, 9 (2023), 100333. https://doi.org/10.1016/j.dajour.2023.100333 doi: 10.1016/j.dajour.2023.100333
    [7] N. M. Mathavavisakan, K. Indhira, Nonlinear metaheuristic cost optimization and ANFIS computing of feedback retrial queue with two dependent phases of service under Bernoulli working vacation, Int. J. Mod. Phys. B, 2023 (2023), 2440004. https://doi.org/10.1142/S0217979224400046 doi: 10.1142/S0217979224400046
    [8] L. D. Servi, S. G. Finn, M/M/1 Queues with working vacations (M/M/1/WV), Perform. Evaluation, 50 (2002), 41–52. https://doi.org/10.1016/S0166-5316(02)00057-3 doi: 10.1016/S0166-5316(02)00057-3
    [9] D. A. Wu, H. Takagi, M/G/1 Queue with multiple working vacations, Perform. Evaluation, 63 (2006), 654–681. https://doi.org/10.1016/j.peva.2005.05.005 doi: 10.1016/j.peva.2005.05.005
    [10] S. Gao, J. T. Wang, W. W. Li, An M/G/1 retrial queue with general retrial times, working vacations and vacation interruption, Asia Pac. J. Oper. Res., 31 (2014), 1440006. https://doi.org/10.1142/S0217595914400065 doi: 10.1142/S0217595914400065
    [11] P. Rajadurai, A study on M/G/1 retrial queueing system with three different types of customers under working vacation policy, International Journal of Mathematical Modelling and Numerical Optimisation, 8 (2018), 393–417. https://doi.org/10.1504/IJMMNO.2018.094550 doi: 10.1504/IJMMNO.2018.094550
    [12] D. Y. Yang, C. H. Wu, Performance analysis and optimization of a retrial queue with working vacations and starting failures, Math. Comp. Model. Dyn., 25 (2019), 463–481. https://doi.org/10.1080/13873954.2019.1660378 doi: 10.1080/13873954.2019.1660378
    [13] T. Li, L. Y. Zhang, S. Gao, An M/G/1 retrial queue with single working vacation under Bernoulli schedule, RAIRO-Oper. Res., 54 (2020), 471–488. https://doi.org/10.1051/ro/2019008 doi: 10.1051/ro/2019008
    [14] A. A. Bouchentouf, A. Guendouzi, S. Majid, On impatience in Markovian M/M/1/N/DWV queue with vacation interruption, Croat. Oper. Res. Rev., 11 (2020), 21–37. https://doi.org/10.17535/crorr.2020.0003 doi: 10.17535/crorr.2020.0003
    [15] M. Jain, M. Singh, R. K. Meena, Time-dependent analytical and computational study of an M/M/1 uueue with disaster failure and multiple working vacations, In: Mathematical analysis and applications, Singapore: Springer, 2021,293–304. https://doi.org/10.1007/978-981-16-8177-6_21
    [16] S. P. B. Murugan, R. Keerthana, An M/G/1 retrial G-queue with multiple Working vacation and a waiting server, Commun. Math. Appl., 13 (2022), 893–909. https://doi.org/10.26713/cma.v13i3.2069 doi: 10.26713/cma.v13i3.2069
    [17] B. Shanmugam, M. C. Saravanarajan, Unreliable retrial queueing system with working vacation, AIMS Mathematics, 8 (2023), 24196–24224. https://doi.org/10.3934/math.20231234 doi: 10.3934/math.20231234
    [18] Z. Chen, H. Xu, H. Huo, Optimal queuing strategies for an M/G/1 retrial queue system with RWV and ISEV policies, ANZIAM J., 65 (2023), 384–410. https://doi.org/10.1017/S1446181124000014 doi: 10.1017/S1446181124000014
    [19] P. Rajadurai, M. C. Saravanarajan, V. M. Chandrasekaran, A study on M/G/1 feedback retrial queue with subject to server breakdown and repair under multiple working vacation policy, Alex. Eng. J., 57 (2018), 947–962. https://doi.org/10.1016/j.aej.2017.01.002 doi: 10.1016/j.aej.2017.01.002
    [20] M. Varalakshmi, V. M. Chandrasekaran, M. C. Saravanarajan, A single server queue with immediate feedback, working vacation and server breakdown, International Journal of Engineering & Technology, 7 (2018), 476–479. https://doi.org/10.14419/ijet.v7i4.10.21044 doi: 10.14419/ijet.v7i4.10.21044
    [21] P. Rajadurai, M. C. Saravanarajan, V. M. Chandrasekaran, Cost optimisation analysis of retrial queue with K optional phases of service under multiple working vacations and random breakdowns, International Journal of Industrial and Systems Engineering, 29 (2018), 193–222. https://doi.org/10.1504/IJISE.2018.091900 doi: 10.1504/IJISE.2018.091900
    [22] S. Gao, J. Zhang, X. C. Wang, Analysis of a retrial queue with two-type breakdowns and delayed repairs, IEEE Access, 8 (2020), 172428-172442. https://doi.org/10.1109/ACCESS.2020.3023191 doi: 10.1109/ACCESS.2020.3023191
    [23] J. C. Ke, T. H. Liu, S. P. Su, Z. G. Zhang, On retrial queue with customer balking and feedback subject to server breakdowns, Commun. Stat.-Theor. M., 51 (2022), 6049–6063. https://doi.org/10.1080/03610926.2020.1852432 doi: 10.1080/03610926.2020.1852432
    [24] T. H. Liu, H. Y. Hsu, J. C. Ke, F. M. Chang Preemptive priority Markovian queue subject to server breakdown with imperfect coverage and working vacation interruption, Computation, 11 (2023), 89. https://doi.org/10.3390/computation11050089 doi: 10.3390/computation11050089
    [25] C. J. Singh, M. Jain, S. Kaur, Performance analysis of bulk arrival queue with balking, optional service, delayed repair and multi-phase repair, Ain Shams Eng. J., 9 (2018), 2067–2077. https://doi.org/10.1016/j.asej.2016.08.025 doi: 10.1016/j.asej.2016.08.025
    [26] S. Abdollahi, M. R. S. Rad, Reliability and sensitivity analysis of a batch arrival retrial queue with k-phase services, feedback, vacation, delay, repair and admission, International Journal of Reliability, Risk and Safety: Theory and Application, 3 (2020), 27–40. https://doi.org/10.30699/IJRRS.3.2.4 doi: 10.30699/IJRRS.3.2.4
    [27] G. Malik, S. Upadhyaya, R. Sharma, Particle swarm optimization and maximum entropy results for mx/g/1 retrial g-queue with delayed repair, Int. J. Math. Eng. Manag., 6 (2021), 541–563. https://doi.org/10.33889/IJMEMS.2021.6.2.033 doi: 10.33889/IJMEMS.2021.6.2.033
    [28] M. M. N. GnanaSekar, I. Kandaiyan, Analysis of an M/G/1 retrial queue with delayed repair and feedback under working vacation policy with impatient customers, Symmetry, 14 (2022), 2024. https://doi.org/10.3390/sym14102024 doi: 10.3390/sym14102024
    [29] S. Keerthiga, K. Indhira, Two phase of service in M/G/1 queueing system with retrial customers, J. Anal., 2023 (2023), 1–27. https://doi.org/10.1007/s41478-023-00635-x doi: 10.1007/s41478-023-00635-x
    [30] S. Sundarapandiyan, S. Nandhini, Non-Markovian feedback retrial queue with two types of customers and delayed repair under Bernoulli working vacation. Contemp. Math., 5 (2024), 2093–2122. https://doi.org/10.37256/cm.5220243940 doi: 10.37256/cm.5220243940
    [31] P. Sharma, M/G/1 retrial queueing system with Bernoulli feedback and modified vacation, International Journal of Mathematics Trends and Technology, 61 (2018), 10–21. https://doi.org/10.14445/22315373/IJMTT-V61P502 doi: 10.14445/22315373/IJMTT-V61P502
    [32] F. M. Chang, T. H. Liu, J. C. Ke, On an unreliable-server retrial queue with customer feedback and impatience, Appl. Math. Model., 55 (2018), 171–182. https://doi.org/10.1016/j.apm.2017.10.025 doi: 10.1016/j.apm.2017.10.025
    [33] G. Ayyappan, J. Udayageetha, B. Somasundaram, Analysis of non-pre-emptive priority retrial queueing system with two-way communication, Bernoulli vacation, collisions, working breakdown, immediate feedback and reneging, International Journal of Mathematics in Operational Research, 16 (2020), 480–498. https://doi.org/10.1504/IJMOR.2020.108420 doi: 10.1504/IJMOR.2020.108420
    [34] S. Abdollahi, M. R. S. Rad, M. A. Farsi, Reliability and sensitivity analysis of retrial queue with optional k-phases services, vacation and feedback, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 1361–1374. https://doi.org/10.1007/s40995-021-01101-8 doi: 10.1007/s40995-021-01101-8
    [35] M. Jain, S. Kaur, Bernoulli vacation model for MX/G/1 unreliable server retrial queue with bernoulli feedback, balking and optional service, RAIRO-Oper. Res., 55 (2021), 2027–2053. https://doi.org/10.1051/ro/2020074 doi: 10.1051/ro/2020074
    [36] H. Wang, F. H. Memon, X. P. Wang, X. W. Li, N. Zhao, K. Dev, Machine learning-enabled MIMO-FBMC communication channel parameter estimation in IIoT: A distributed CS approach, Digit. Commun. Netw., 9 (2023), 306–312. https://doi.org/10.1016/j.dcan.2022.10.012 doi: 10.1016/j.dcan.2022.10.012
    [37] D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Math. Proc. Cambridge, 51 (1955), 433–441. https://doi.org/10.1017/S0305004100030437 doi: 10.1017/S0305004100030437
    [38] M. Jain, S. Kaur, P. Singh, Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI), Oper. Res. Int. J., 21 (2021), 2203–2246. https://doi.org/10.1007/s12351-019-00519-8 doi: 10.1007/s12351-019-00519-8
    [39] T. Deepa, A. Azhagappan, Analysis of state dependent M[X]/G(a, b)/1 queue with multiple vacation second optional service and optional re-service, International Journal of Operational Research, 44 (2022), 254–278. https://doi.org/10.1504/IJOR.2022.123393 doi: 10.1504/IJOR.2022.123393
    [40] K. B. Huang, Analysis and application of a batch arrival queueing model with the second optional service and randomized vacation policy, In: HCI in business, government and organizations (HCII 2023), Cham: Springer, 2023,320–333. https://doi.org/10.1007/978-3-031-36049-7_24
    [41] M. Jain, A. Kumar, Unreliable server M[x]/G/1 retrial feedback queue with balking, working vacation and vacation interruption, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 93 (2023), 57–73. https://doi.org/10.1007/s40010-022-00777-w doi: 10.1007/s40010-022-00777-w
    [42] A. G. Pakes, Some conditions for ergodicity and recurrence of Markov chains, Oper. Res., 17 (1969), 1058–1061. https://doi.org/10.1287/opre.17.6.1058 doi: 10.1287/opre.17.6.1058
    [43] L. I. Sennott, P. A. Humblet, R. L. Tweedie, Mean drifts and the non-ergodicity of Markov chains, Oper. Res., 31 (1983), 783–789. https://doi.org/10.1287/opre.31.4.783 doi: 10.1287/opre.31.4.783
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(560) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog