Research article

Action of $ n $-derivations and $ n $-multipliers on ideals of (semi)-prime rings

  • Received: 30 January 2023 Revised: 27 April 2023 Accepted: 04 May 2023 Published: 17 May 2023
  • MSC : 16W25, 16R50, 16N60

  • The present paper aims to investigate the containment of nonzero central ideal in a ring $ \mathcal{R} $ when the trace of symmetric $ n $-derivations satisfies some differential identities. Lastly, we prove that in a prime ring $ \mathcal{R} $ of suitable torsion restriction, if $ \mathfrak{D}, \mathcal{G} : \mathcal{R}^n \rightarrow \mathcal{R} $ are two nonzero symmetric $ n $-derivations such that $ \mathcal{f}(\vartheta)\vartheta +\vartheta\mathcal{g}(\vartheta) = 0 $ holds $ \forall \; \vartheta \in \mathcal{W} $, a nonzero left ideal of $ \mathcal{R} $ where $ \mathcal{f} $ and $ \mathcal{g} $ are the traces of $ \mathfrak{D} $ and $ \mathcal{G} $, respectively, then either $ \mathcal{R} $ is commutative or $ \mathcal{G} $ acts as a left $ n $-multiplier. Finally, we characterize symmetric $ n $-derivations in terms of left $ n $-multipliers.

    Citation: Shakir Ali, Turki M. Alsuraiheed, Nazia Parveen, Vaishali Varshney. Action of $ n $-derivations and $ n $-multipliers on ideals of (semi)-prime rings[J]. AIMS Mathematics, 2023, 8(7): 17208-17228. doi: 10.3934/math.2023879

    Related Papers:

  • The present paper aims to investigate the containment of nonzero central ideal in a ring $ \mathcal{R} $ when the trace of symmetric $ n $-derivations satisfies some differential identities. Lastly, we prove that in a prime ring $ \mathcal{R} $ of suitable torsion restriction, if $ \mathfrak{D}, \mathcal{G} : \mathcal{R}^n \rightarrow \mathcal{R} $ are two nonzero symmetric $ n $-derivations such that $ \mathcal{f}(\vartheta)\vartheta +\vartheta\mathcal{g}(\vartheta) = 0 $ holds $ \forall \; \vartheta \in \mathcal{W} $, a nonzero left ideal of $ \mathcal{R} $ where $ \mathcal{f} $ and $ \mathcal{g} $ are the traces of $ \mathfrak{D} $ and $ \mathcal{G} $, respectively, then either $ \mathcal{R} $ is commutative or $ \mathcal{G} $ acts as a left $ n $-multiplier. Finally, we characterize symmetric $ n $-derivations in terms of left $ n $-multipliers.



    加载中


    [1] A. Ali, F. Shujat, S. Khan, On commuting traces of generalized biderivations of prime rings, Ital. J. Pure Appl. Math., 34 (2015), 123–132.
    [2] N. Argaç, On prime and semiprime rings with derivations, Algebra Colloq., 13 (2006), 371–380. https://doi.org/10.1142/S1005386706000320 doi: 10.1142/S1005386706000320
    [3] M. Ashraf, On symmetric bi-derivations in rings, Rend. Istit. Mat. Univ. Trieste, 31 (1999), 25–36.
    [4] M. Ashraf, A. Khan, M. R. Jamal, Traces of permuting generalized n-derivations of rings, Miskolc Math. Notes, 19 (2018), 731–740.
    [5] M. Ashraf, N. Parveen, On the traces of permuting $n$-derivations in rings, In: Algebra and analysis: theory and applications, New Delhi: Narosa Publishing House, 2015, 41–57.
    [6] M. Ashraf, M. R. Jamal, Traces of permuting n-additive maps and permuting n-derivations of rings, Mediterr. J. Math., 11 (2014), 287–297. https://doi.org/10.1007/s00009-013-0298-5 doi: 10.1007/s00009-013-0298-5
    [7] M. Ashraf, A. Ali, S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math., 31 (2007), 415–421.
    [8] M. Ashraf, N. Parveen, M. R. Jamal, Traces of permuting n-derivations and commutativity of rings, Southeast Asian Bull. Math., 38 (2014), 321–332.
    [9] M. Bre$\breve{s}$ar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385–394.
    [10] M. N. Daif, H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15 (1992), 205–206. https://doi.org/10.1155/S0161171292000255 doi: 10.1155/S0161171292000255
    [11] G. Maksa, On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci. Canada IX, 1987,303–308.
    [12] G. Maksa, A remark on symmetric bi-additive functions having nonnegative diagonalization, Glas. Math, 15 (1980), 279–282.
    [13] M. A. $\ddot{\text{O}}$zt$\ddot{\text{u}}$rk, Permuting tri-derivations in prime and semi-prime rings, East Asian Math. J., 15 (1999), 177–190.
    [14] K. H. Park, On prime and semi-prime rings with symmetric n-derivations, J. Chungcheong Math. Soc., 22 (2009), 451–458. https://doi.org/10.14403/jcms.2009.22.3.451 doi: 10.14403/jcms.2009.22.3.451
    [15] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093–1100.
    [16] E. Koç Sögütcü, S. Huang, Note on lie ideals with symmetric bi-derivations in semiprime rings, Indian J. Pure Appl. Math., 2022. https://doi.org/10.1007/s13226-022-00279-w
    [17] J. Vukman, Symmetric bi-derivations on prime and semiprime rings, Aeq. Math., 38 (1989), 245–254. https://doi.org/10.1007/BF01840009 doi: 10.1007/BF01840009
    [18] J. Vukman, Two results concerning symmetric bi-derivations on prime and semiprime rings, Aeq. Math., 40 (1990), 181–189. https://doi.org/10.1007/BF02112294 doi: 10.1007/BF02112294
    [19] H. Yazarli, M. A. $\ddot{\text{O}}$zt$\ddot{\text{u}}$rk, Y. B. Jun, Tri-additive maps and permuting tri-derivations, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 54 (2005), 1–8. https://doi.org/10.1501/Commua1_0000000320 doi: 10.1501/Commua1_0000000320
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1190) PDF downloads(54) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog