The present paper aims to investigate the containment of nonzero central ideal in a ring $ \mathcal{R} $ when the trace of symmetric $ n $-derivations satisfies some differential identities. Lastly, we prove that in a prime ring $ \mathcal{R} $ of suitable torsion restriction, if $ \mathfrak{D}, \mathcal{G} : \mathcal{R}^n \rightarrow \mathcal{R} $ are two nonzero symmetric $ n $-derivations such that $ \mathcal{f}(\vartheta)\vartheta +\vartheta\mathcal{g}(\vartheta) = 0 $ holds $ \forall \; \vartheta \in \mathcal{W} $, a nonzero left ideal of $ \mathcal{R} $ where $ \mathcal{f} $ and $ \mathcal{g} $ are the traces of $ \mathfrak{D} $ and $ \mathcal{G} $, respectively, then either $ \mathcal{R} $ is commutative or $ \mathcal{G} $ acts as a left $ n $-multiplier. Finally, we characterize symmetric $ n $-derivations in terms of left $ n $-multipliers.
Citation: Shakir Ali, Turki M. Alsuraiheed, Nazia Parveen, Vaishali Varshney. Action of $ n $-derivations and $ n $-multipliers on ideals of (semi)-prime rings[J]. AIMS Mathematics, 2023, 8(7): 17208-17228. doi: 10.3934/math.2023879
The present paper aims to investigate the containment of nonzero central ideal in a ring $ \mathcal{R} $ when the trace of symmetric $ n $-derivations satisfies some differential identities. Lastly, we prove that in a prime ring $ \mathcal{R} $ of suitable torsion restriction, if $ \mathfrak{D}, \mathcal{G} : \mathcal{R}^n \rightarrow \mathcal{R} $ are two nonzero symmetric $ n $-derivations such that $ \mathcal{f}(\vartheta)\vartheta +\vartheta\mathcal{g}(\vartheta) = 0 $ holds $ \forall \; \vartheta \in \mathcal{W} $, a nonzero left ideal of $ \mathcal{R} $ where $ \mathcal{f} $ and $ \mathcal{g} $ are the traces of $ \mathfrak{D} $ and $ \mathcal{G} $, respectively, then either $ \mathcal{R} $ is commutative or $ \mathcal{G} $ acts as a left $ n $-multiplier. Finally, we characterize symmetric $ n $-derivations in terms of left $ n $-multipliers.
[1] | A. Ali, F. Shujat, S. Khan, On commuting traces of generalized biderivations of prime rings, Ital. J. Pure Appl. Math., 34 (2015), 123–132. |
[2] | N. Argaç, On prime and semiprime rings with derivations, Algebra Colloq., 13 (2006), 371–380. https://doi.org/10.1142/S1005386706000320 doi: 10.1142/S1005386706000320 |
[3] | M. Ashraf, On symmetric bi-derivations in rings, Rend. Istit. Mat. Univ. Trieste, 31 (1999), 25–36. |
[4] | M. Ashraf, A. Khan, M. R. Jamal, Traces of permuting generalized n-derivations of rings, Miskolc Math. Notes, 19 (2018), 731–740. |
[5] | M. Ashraf, N. Parveen, On the traces of permuting $n$-derivations in rings, In: Algebra and analysis: theory and applications, New Delhi: Narosa Publishing House, 2015, 41–57. |
[6] | M. Ashraf, M. R. Jamal, Traces of permuting n-additive maps and permuting n-derivations of rings, Mediterr. J. Math., 11 (2014), 287–297. https://doi.org/10.1007/s00009-013-0298-5 doi: 10.1007/s00009-013-0298-5 |
[7] | M. Ashraf, A. Ali, S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math., 31 (2007), 415–421. |
[8] | M. Ashraf, N. Parveen, M. R. Jamal, Traces of permuting n-derivations and commutativity of rings, Southeast Asian Bull. Math., 38 (2014), 321–332. |
[9] | M. Bre$\breve{s}$ar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385–394. |
[10] | M. N. Daif, H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15 (1992), 205–206. https://doi.org/10.1155/S0161171292000255 doi: 10.1155/S0161171292000255 |
[11] | G. Maksa, On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci. Canada IX, 1987,303–308. |
[12] | G. Maksa, A remark on symmetric bi-additive functions having nonnegative diagonalization, Glas. Math, 15 (1980), 279–282. |
[13] | M. A. $\ddot{\text{O}}$zt$\ddot{\text{u}}$rk, Permuting tri-derivations in prime and semi-prime rings, East Asian Math. J., 15 (1999), 177–190. |
[14] | K. H. Park, On prime and semi-prime rings with symmetric n-derivations, J. Chungcheong Math. Soc., 22 (2009), 451–458. https://doi.org/10.14403/jcms.2009.22.3.451 doi: 10.14403/jcms.2009.22.3.451 |
[15] | E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093–1100. |
[16] | E. Koç Sögütcü, S. Huang, Note on lie ideals with symmetric bi-derivations in semiprime rings, Indian J. Pure Appl. Math., 2022. https://doi.org/10.1007/s13226-022-00279-w |
[17] | J. Vukman, Symmetric bi-derivations on prime and semiprime rings, Aeq. Math., 38 (1989), 245–254. https://doi.org/10.1007/BF01840009 doi: 10.1007/BF01840009 |
[18] | J. Vukman, Two results concerning symmetric bi-derivations on prime and semiprime rings, Aeq. Math., 40 (1990), 181–189. https://doi.org/10.1007/BF02112294 doi: 10.1007/BF02112294 |
[19] | H. Yazarli, M. A. $\ddot{\text{O}}$zt$\ddot{\text{u}}$rk, Y. B. Jun, Tri-additive maps and permuting tri-derivations, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 54 (2005), 1–8. https://doi.org/10.1501/Commua1_0000000320 doi: 10.1501/Commua1_0000000320 |