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Abstract: The present paper aims to investigate the containment of nonzero central ideal in a ring
R when the trace of symmetric n-derivations satisfies some differential identities. Lastly, we prove
that in a prime ring R of suitable torsion restriction, if D,G : Rn → R are two nonzero symmetric
n-derivations such that f(ϑ)ϑ + ϑg(ϑ) = 0 holds ∀ ϑ ∈ W, a nonzero left ideal of R where f and g
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Keywords: semiprime ring; ideal; derivation; symmetric n-derivation; n-multiplier
Mathematics Subject Classification: 16W25, 16R50, 16N60

1. Introduction

Throughout, R will be an associative ring with Z(R) as its center. A ring R is said to be prime if
ϑRℓ = {0} implies that either ϑ = 0 or ℓ = 0 and semiprime if ϑRϑ = {0} implies that ϑ = 0, where
ϑ, ℓ ∈ R. The symbols [ϑ, ℓ] and ϑ◦ℓ denote the commutator ϑℓ−ℓϑ and the anti-commutator ϑℓ+ℓϑ,
respectively, for any ϑ, ℓ ∈ R. A ring R is said to be n-torsion free if nϑ = 0 implies that ϑ = 0 ∀
ϑ ∈ R. If R is n!-torsion free, then it is m-torsion free for every divisor m of n!. An additive mapping
D : R → R is called a derivation if D(ϑℓ) = D(ϑ)ℓ + ϑD(ℓ) holds ∀ ϑ, ℓ ∈ R. In order to broaden
the scope of derivation, Maksa [12] introduced the notion of symmetric bi-derivations on rings, which
Vukman examined in greater detail in [17, 18]. A bi-additive map D : R × R → R is said to be a
bi-derivation if

D(ϑϑ′, ℓ) = D(ϑ, ℓ)ϑ′ + ϑD(ϑ′, ℓ),

D(ϑ, ℓℓ′) = D(ϑ, ℓ)ℓ′ + ℓD(ϑ, ℓ′)

hold for any ϑ, ϑ′, ℓ, ℓ′ ∈ R. The foregoing conditions are identical if D is also a symmetric map, that
is, if D(ϑ, ℓ) = D(ℓ, ϑ) for every ϑ, ℓ ∈ R. In this case, D is referred to as a symmetric bi-derivation
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on R. Several authors have studied symmetric bi-derivations on rings (see [3, 11, 16] and references
therein) and produced highly helpful outcomes.

The study of tri-derivation was initiated in [13], by Öztürk, in which he proved various results.
Several results have been obtained by various authors in this direction (see [13, 19] and references
therein). In light of the concepts of bi-derivation and tri-derivation, Park [14] introduced the concept
of permuting n-derivation as follows:

Definition 1.1. Let n ≥ 2 be a fixed integer, and Rn = R ×R × · · · ×R︸                ︷︷                ︸
n−times

. A map D : Rn → R is said

to be symmetric (permuting) if

D(ϑ1, ϑ2, . . . , ϑn) = D(ϑπ(1), ϑπ(2), . . . , ϑπ(n))

for all permutations π(t) ∈ S n and ϑt ∈ R, where t = 1, 2, . . . , n.

Definition 1.2. Let n ≥ 2 be a fixed integer. An n-additive mapping (i.e., additive in each argument)
D : Rn → R is called an n-derivation on R if the relations

D(ϑ1ϑ
′
1, ϑ2, . . . , ϑn) = D(ϑ1, ϑ2, . . . , ϑn)ϑ′1 + ϑ1D(ϑ′1, ϑ2, . . . , ϑn),

D(ϑ1, ϑ2ϑ
′
2, . . . , ϑn) = D(ϑ1, ϑ2, . . . , ϑn)ϑ′2 + ϑ2D(ϑ1, ϑ

′
2, . . . , ϑn),

...

D(ϑ1, ϑ2, . . . , ϑnϑ
′
n) = D(ϑ1, ϑ2, . . . , ϑn)ϑ′n + ϑnD(ϑ1, ϑ2, . . . , ϑ

′
n)

hold for all ϑt, ϑ
′
t ∈ R, t = 1, 2, . . . , n.

If, in addition, D is a permuting map, then all the above conditions are equivalent, and in that case
D is called a permuting n-derivation on R.

Of course, 1-derivation is a derivation, a 2-derivation is a symmetric bi-derivation, and for n = 3, D
is referred to as a permuting 3-derivation (or tri-derivation) on rings (see [17, 19] for details).

A map d : R → R defined by d(ϑ) = D(ϑ, ϑ, . . . , ϑ) is called the trace of D. If D : Rn → R is
permuting and n-additive, then the trace d of D satisfies the relation

d(ϑ + ℓ) = d(ϑ) + d(ℓ) +
n−1∑
k=1

nCk hk(ϑ; ℓ)

∀ ϑ, ℓ ∈ R, where nCk =
(

n
k

)
and

hk(ϑ; ℓ) = D(ϑ, . . . , ϑ︸   ︷︷   ︸
(n−k)−times

, ℓ, . . . , ℓ︸  ︷︷  ︸
k−times

).

Let S be a nonempty subset of R. A mapping d : R → R is said to be commuting (respectively,
centralizing) on R if [d(ϑ), ϑ] = 0 (respectively, [d(ϑ), ϑ] ∈ Z(R)) for all ϑ ∈ R. The study of
commuting and centralizing mappings on a prime ring was initiated by Posner [15], who proved that if
a prime ring R admits a nonzero centralizing derivation, then R is commutative. Being inspired by this
result, Bres̆ar [9, Theorem 4.1] proved this for left ideals. In fact, he proved that if R is a prime ring, W
is a nonzero left ideal of R, and d and g are nonzero derivations of R satisfying d(ϑ)ϑ−ϑg(ϑ) ∈ Z(R)
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∀ ϑ ∈W, then R is commutative. In [2], Argaç gave a partial extension of Bres̆ar’s result in the setting
of semiprime rings. Motivated by the classical result due to Posner [15], Vukman obtained some
results concerning the trace of symmetric bi-derivations in prime rings (see [17, 18] for more details).
In [3], Ashraf established similar results for semiprime rings. Further, Ashraf et al. [6, 8] obtained
commutativity of rings admitting n-derivations whose traces satisfy certain polynomial conditions.
Recently, Ashraf et al. [4] introduced the concepts of permuting n-multipliers and proved that for
a fixed integer n ≥ 2, if R is a non-commutative n!-torsion free prime ring admitting a permuting
generalized n-derivation G with associated n-derivation D such that the trace ω of G is commuting on
R, then G is a left n-multiplier on R. Many authors have studied various identities involving traces of
bi-derivations and n-derivations and have obtained several interesting results (viz., [3, 4, 6, 11, 16–18]
and references therein).

The primary aim of this paper is to prove analogous results related to permuting n-derivations in
the setting of prime and semiprime rings. In fact, we investigate the structure of (semi)prime rings
and describe the forms of maps (traces of n-derivations) satisfying certain functional identities. More
precisely, we prove that: let n ≥ 2 be a fixed integer, R be an n!-torsion free semiprime ring and W

be a nonzero ideal of R. If R admits two nonzero symmetric n-derivations D : Rn → R with trace
d : R → R and G : Rn → R with trace g : R → R satisfying d(ϑ)ℓ ± ϑg(ℓ) ∈ Z(R) ∀ ϑ, ℓ ∈ W,
then R has a nonzero central ideal (Theorem 2.5). Further, in the last section, we establish that if R is
an n!-torsion free prime ring admitting two symmetric n-derivations D : Rn → R and G : Rn → R

with traces f and g, respectively, satisfying f(ϑ)ϑ + ϑg(ϑ) = 0 ∀ ϑ ∈ W, a left ideal of R, then either
R is commutative or G acts as a left n-multiplier on W (Theorem 3.2). Moreover, we also characterize
the traces of q-iterations of n-derivations in prime rings and prove that for a fixed integer n ≥ 2, if
R is an n!-torsion free prime ring and q ≥ 1, a fixed integer admitting q-iterations of n-derivations
D1,D2, . . . ,Dq : Rn → R such that the product of the traces of D1,D2, . . . ,Dq, respectively, is zero on
a nonzero ideal of R, then either D1 = 0 or the rest of D′i s act as n-multipliers on R (Theorem 3.6).

2. Results

In the present section, we state and prove the main results of this article. In order to establish the
proofs of our main theorems, we first state a number of well-known results.

Lemma 2.1. [14] Let n be a fixed positive integer and R an n!-torsion free ring. Suppose that
a1, a2, . . . , an ∈ R satisfy λa1+λ

2a2+ · · ·+λ
nan = 0 (or ∈ Z(R)) for λ = 1, 2, . . . , n. Then, at = 0 (or ∈

Z(R)) for t = 1, 2, . . . , n.

Lemma 2.2. [10] If R is a semiprime ring, then the center of a nonzero ideal of R is contained in the
center of R.

Lemma 2.3. [16] Let R be a 2-torsion free semiprime ring and W be a nonzero ideal of R. If
[W,W] ⊆ Z(R), then R contains a nonzero central ideal.

Lemma 2.4. [16] Let R be a 2-torsion free semiprime ring and W be a nonzero ideal of R. If
W ◦W ⊆ Z(R), then R contains a nonzero central ideal.

The first main result of this paper is the following theorem:
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Theorem 2.5. Let n ≥ 2 be a fixed integer, R be an n!-torsion free semiprime ring and W be a nonzero
ideal of R. If R admits two nonzero symmetric n-derivations D : Rn → R with trace d : R → R

and G : Rn → R with trace g : R → R satisfying d(ϑ)ℓ ± ϑg(ℓ) ∈ Z(R) ∀ ϑ, ℓ ∈ W, then R has a
nonzero central ideal.

Proof. It is given that
d(ϑ)ℓ ± ϑg(ℓ) ∈ Z(R) ∀ ϑ, ℓ ∈W. (2.1)

Replacing ℓ by ℓ + mk for k ∈W and 1 ≤ m ≤ n − 1, we obtain

d(ϑ)(ℓ + mk) ± ϑg(ℓ + mk) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Solving further, we get

d(ϑ)ℓ + d(ϑ)mk ± ϑg(ℓ) ± ϑg(mk) ± ϑ
n−1∑
t=1

nCtG( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

) ∈ Z(R)

∀ ϑ, ℓ, k ∈W. Taking account of the given condition, we find that

ϑ

n−1∑
t=1

nCtG( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

) ∈ Z(R) ∀ ϑ, ℓ, k ∈W,

which implies that

m
(
n
1

)
ϑh1(ℓ; k) + m2

(
n
2

)
ϑh2(ℓ; k) + · · · + mn−1

(
n

n − 1

)
ϑhn−1(ℓ; k) ∈ Z(R),

where ht(ℓ; k) represents the term in which k appears t- times.
The application of Lemma 2.1 yields

nϑG(ℓ, . . . , ℓ, k) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Since R is n!-torsion free, we get

ϑG(ℓ, . . . , ℓ, k) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Replacing k by ℓ, we find that
ϑg(ℓ) ∈ Z(R) ∀ ϑ, ℓ ∈W.

Hence, by the hypothesis, we see that

d(ϑ)ℓ ∈ Z(R) ∀ ϑ, ℓ ∈W.

Now, on commuting with r where r ∈ R, we get

[d(ϑ)ℓ, r] = 0 ∀ ϑ, ℓ ∈W, r ∈ R,

or d(ϑ)[ℓ, r] + [d(ϑ), r]ℓ = 0 ∀ ϑ, ℓ ∈W, r ∈ R. (2.2)
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Replacing ℓ by ℓk where k ∈W in (2.2) and using (2.2), we get

d(ϑ)ℓ[k, r] = 0 ∀ ϑ, ℓ, k ∈W, r ∈ R.

Now, replacing r by d(ϑ) in the above equation, we obtain

d(ϑ)ℓ[k, d(ϑ)] = 0 ∀ ϑ, ℓ, k ∈W. (2.3)

Multiplying by k from left, we get

kd(ϑ)ℓ[k, d(ϑ)] = 0 ∀ ϑ, ℓ, k ∈W. (2.4)

Taking kℓ in place of ℓ in (2.3), we see that

d(ϑ)kℓ[k, d(ϑ)] = 0 ∀ ϑ, ℓ, k ∈W. (2.5)

Subtracting (2.5) from (2.4), we get

[k, d(ϑ)]ℓ[k, d(ϑ)] = 0 ∀ ϑ, ℓ, k ∈W,

i.e.,
[k, d(ϑ)]ℓr[k, d(ϑ)] = 0 ∀ ϑ, ℓ, k ∈W, r ∈ R,

i.e.,
[k, d(ϑ)]ℓR[k, d(ϑ)]ℓ = (0) ∀ ϑ, ℓ, k ∈W.

Since R is a semiprime ring, the last expression gives

[k, d(ϑ)]ℓ = 0 ∀ ϑ, ℓ, k ∈W.

Replacing ℓ by r[k, d(ϑ)], we get

[k, d(ϑ)]r[k, d(ϑ)] = 0 ∀ ϑ, k ∈W, r ∈ R.

From the semiprimeness of R, we see that

[k, d(ϑ)] = 0 ∀ ϑ, k ∈W. (2.6)

Invoking Lemma 2.2, we have

d(ϑ) ∈ Z(R) ∀ ϑ ∈W. (2.7)

Now, again replacing ϑ by ϑ + mw1 for w1 ∈W and 1 ≤ m ≤ n − 1 in (2.7) and using (2.7), we obtain

n−1∑
t=1

nCtD(ϑ, . . . , ϑ︸   ︷︷   ︸
(n−t)−times

,mw1, . . . ,mw1︸           ︷︷           ︸
t−times

) ∈ Z(R) ∀ ϑ,w1 ∈W,

which implies that

m
(
n
1

)
h1(ϑ; w1) + m2

(
n
2

)
h2(ϑ; w1) + · · · + mn−1

(
n

n − 1

)
hn−1(ϑ; w1) ∈ Z(R)
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∀ ϑ,w1 ∈W. Invoking Lemma 2.1 and using the fact that R is n!-torsion free, we get

D(w1, ϑ, . . . , ϑ) ∈ Z(R) ∀ ϑ,w1 ∈W. (2.8)

Replace ϑ by ϑ + mw2 for w2 ∈W and 1 ≤ m ≤ n − 1 in the above equation to get

D(w1, ϑ + mw2, . . . , ϑ + mw2) ∈ Z(R) ∀ ϑ,w1,w2 ∈W,

and on further solving and using torsion restriction, we get

D(w1,w2, ϑ, . . . , ϑ) ∈ Z(R) ∀ w1,w2, ϑ ∈W.

Continuing in the same manner, we get

D(w1,w2,w3, . . . ,wn) ∈ Z(R) ∀ w1,w2, . . . ,wn ∈W. (2.9)

On commuting with r, we get

[D(w1,w2,w3, . . . ,wn), r] = 0 ∀ w1,w2, . . . ,wn ∈W, r ∈ R.

After replacing w1 by w1w′1 in the above equation and using torsion restriction of R, we arrive at

[w1, r]D(w1,w2, . . . ,wn) = 0 ∀ w1,w2, . . . ,wn ∈W, r ∈ R.

Now taking r to be rr′ where r′ ∈ R, we get

[w1, r]r′D(w1,w2, . . . ,wn) = 0 ∀ r, r′ ∈ R,

i.e.,

[w1, r]RD(w1,w2, . . . ,wn) = {0} ∀ w1,w2, . . . ,wn ∈W, r ∈ R. (2.10)

Since R is a semiprime ring, it must contain a family of prime ideals of R whose intersection is zero.
Let P = {P j | j ∈ Λ} be the family of all prime ideals such that

⋂
P j = {0}. Let P be a typical member

of P. From (2.10), we conclude that for a fixed w1 ∈W,

either [w1, r] ∈ P or D(w1,w2, . . . ,wn) ∈ P ∀ w1,w2, . . . ,wn ∈W, r ∈ R.

Let us set U = {w1 ∈ W | [w1,R] ⊆ P} and V = {w1 ∈ W | D(w1,w2, . . . ,wn) ∈ P ∀ w2, . . . ,wn ∈ W}.
Both U and V are additive subgroups of W such that W = U ∪ V, but a group cannot be the union
of two of its proper subgroups. Hence, either W = U or W = V. Let us suppose that W , U.
Then, we have W = V, i.e., D(w1,w2, . . . ,wn) ∈ P ∀ w1,w2, . . . ,wn ∈ W. Replace w1 by w1r1, i.e.,
D(w1r1,w2, . . . ,wn) ∈ P for any r1 ∈ R. On solving, we get w1D(r1,w2, . . . ,wn) ∈ P. Using primeness
of P, we get either w1 ∈ P or D(r1,w2, . . . ,wn) ∈ P for all w1,w2, . . . ,wn ∈ W, r1 ∈ R. However,
w1 ∈ P implies that [w1,R] ⊆ P, which leads to a contradiction. Thus, we have D(r1,w2, . . . ,wn) ∈ P
for all w2, . . . ,wn ∈ W, r1 ∈ R. Again replace w2 by w2r2, and using the same procedure, we get
D(r1, r2,w3, . . . ,wn) ∈ P for all w3, . . . ,wn ∈ W, r1, r2 ∈ R. Continuing in a similar manner, we arrive
at

D(R,R, . . . ,R) ⊆ P for any P ∈ P.
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Since P was an arbitrary element of P,

D(R,R, . . . ,R) ⊆
⋂

P j = {0},

which implies that D(R,R, . . . ,R) = {0}. Hence, we arrive at a contradiction. Therefore, W = U, i.e.,
[w1,R] ⊆ P for all w1 ∈W or [W,R] ⊆

⋂
P j = {0}. That is, [W,R] = {0}. Therefore, W is a nonzero

central ideal of R. Hence, R has a nonzero central ideal. □

Theorem 2.6. For a fixed integer n ≥ 2, let R be an n!-torsion free semiprime ring and W be a
nonzero ideal of R. Suppose that R admits two nonzero symmetric n-derivations D : Rn → R with
trace d : R → R and G : Rn → R with trace g : R → R satisfying any one of the following
conditions:

(1) [d(ϑ), ℓ] = ± ϑ ◦ g(ℓ) ∀ ϑ, ℓ ∈W,

(2) d([ϑ, ℓ]) = [d(ϑ), ℓ] + [d(ℓ), ϑ] ∀ ϑ, ℓ ∈W,

(3) d(ϑ) ◦ ℓ = ± ϑ ◦ g(ℓ) ∀ ϑ, ℓ ∈W.

Then, R contains a nonzero central ideal.

Proof. (i) It is given that
[d(ϑ), ℓ] = ± ϑ ◦ g(ℓ) ∀ ϑ, ℓ ∈W.

Now, replace ℓ by ℓ + mk for k ∈W and 1 ≤ m ≤ n − 1, and we get

[d(ϑ), ℓ] + [d(ϑ),mk] = ± ϑ ◦ g(ℓ) ± ϑ ◦ g(mk) ± ϑ ◦
n−1∑
t=1

nCtG( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

)

∀ ϑ, ℓ, k ∈W. By using the hypothesis, we get

ϑ ◦

n−1∑
t=1

nCtG( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

) = 0 ∀ ϑ, ℓ, k ∈W,

which implies that

mP1(ϑ, ℓ, k) + m2P2(ϑ, ℓ, k) + · · · + mn−1Pn−1(ϑ, ℓ, k) = 0 ∀ ϑ, ℓ, k ∈W,

where
Pt(ϑ, ℓ, k) = ϑ ◦ nCtG( ℓ, . . . , ℓ︸  ︷︷  ︸

(n−t)−times

, k, . . . , k︸   ︷︷   ︸
t−times

)

denotes the sum of terms in which k appears t-times. The application of Lemma 2.1 yields that

n{ϑ ◦G(ℓ, . . . , ℓ, k)} = 0 ∀ ϑ, ℓ, k ∈W.

Using the torsion free restriction in R, we find that

ϑ ◦G(ℓ, . . . , ℓ, k) = 0 ∀ ϑ, ℓ, k ∈W.
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After replacing k by ℓ, we get
ϑ ◦ g(ℓ) = 0 ∀ ϑ, ℓ ∈W.

Again using the hypothesis, we get

[d(ϑ), ℓ] = 0 ∀ ϑ, ℓ ∈W

which is the same as (2.6). Hence, proceeding in the same pattern as we have done so far, we
conclude that R contains a nonzero central ideal.

(ii) It is given that
d([ϑ, ℓ]) = [d(ϑ), ℓ] + [d(ℓ), ϑ] ∀ ϑ, ℓ ∈W.

On replacing ℓ by ℓ + mk for k ∈W and 1 ≤ m ≤ n − 1, we get

d([ϑ, ℓ] + [ϑ,mk]) = [d(ϑ), ℓ] + [d(ϑ),mk] + [d(ℓ) + d(mk) +
n−1∑
t=1

nCtD( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

), ϑ]

∀ ϑ, ℓ, k ∈W. On simplifying, we get

d([ϑ, ℓ]) + d([ϑ,mk]) +
n−1∑
t=1

nCtD([ϑ, ℓ], . . . , [ϑ, ℓ]︸             ︷︷             ︸
(n−t)−times

, [ϑ,mk], . . . , [ϑ,mk]︸                   ︷︷                   ︸
t−times

)

= [d(ϑ), ℓ] + [d(ϑ),mk] + [d(ℓ), ϑ] + [d(mk), ϑ] +
[ n−1∑

t=1

nCtD( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

), ϑ
]

∀ ϑ, ℓ, k ∈W. Using the hypothesis, we get

n−1∑
t=1

nCtD([ϑ, ℓ], . . . , [ϑ, ℓ]︸             ︷︷             ︸
(n−t)−times

, [ϑ,mk], . . . , [ϑ,mk]︸                   ︷︷                   ︸
t−times

) =
[ n−1∑

t=1

nCtD( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

), ϑ
]

∀ ϑ, ℓ, k ∈W. This leads us to the following:

mP1(ϑ, ℓ, k) + m2P2(ϑ, ℓ, k) + · · · + mn−1Pn−1(ϑ, ℓ, k) = 0 ∀ ϑ, ℓ, k ∈W

where

Pt(ϑ, ℓ, k) = nCtD([ϑ, ℓ], . . . , [ϑ, ℓ]︸             ︷︷             ︸
(n−t)−times

, [ϑ, k], . . . , [ϑ, k]︸              ︷︷              ︸
t−times

) −
[nCtD( ℓ, . . . , ℓ︸  ︷︷  ︸

(n−t)−times

, k, . . . , k︸   ︷︷   ︸
t−times

), ϑ
]

denotes the sum of terms in which k appears t- times.
Taking account of Lemma 2.1 and the torsion free restriction in R, we get

D([ϑ, ℓ], . . . , [ϑ, ℓ], [ϑ, k]) = [D(ℓ, . . . , ℓ, k), ϑ] ∀ ϑ, ℓ, k ∈W.

Replacing k by ℓ, we get

d([ϑ, ℓ]) = [d(ℓ), ϑ] ∀ ϑ, ℓ ∈W.
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Using the hypothesis once again, we obtain

[d(ϑ), ℓ] = 0 ∀ ϑ, ℓ ∈W,

which is the same as (2.6). Hence, the result follows by using the same argument as discussed in
Theorem 2.5.

(iii) It is given that

d(ϑ) ◦ ℓ = ± ϑ ◦ g(ℓ) ∀ ϑ, ℓ ∈W.

On replacing ℓ by ℓ + mk for k ∈W and 1 ≤ m ≤ n − 1, we get

d(ϑ) ◦ (ℓ + mk) = ± ϑ ◦ g(ℓ + mk) ∀ ϑ, ℓ, k ∈W.

On simplifying, we get

d(ϑ) ◦ ℓ + d(ϑ) ◦ mk = ±ϑ ◦ g(ℓ) ± ϑ ◦ g(mk) ± ϑ ◦
n−1∑
t=1

nCtG( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

)

∀ ϑ, ℓ, k ∈W. On using the given condition, we find that

ϑ ◦

n−1∑
t=1

nCtG( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

) = 0 ∀ ϑ, ℓ, k ∈W.

Application of Lemma 2.1 gives

n(ϑ ◦G(ℓ, . . . , ℓ, k)) = 0 ∀ ϑ, ℓ, k ∈W.

Since R is n!-torsion free, we have

ϑ ◦G(ℓ, . . . , ℓ, k) = 0 ∀ ϑ, ℓ, k ∈W.

On replacing k by ℓ, we get

ϑ ◦ g(ℓ) = 0 ∀ ϑ, ℓ ∈W.

Using the hypothesis one more time, we see that

d(ϑ) ◦ ℓ = 0 ∀ ϑ, ℓ ∈W.

Replacing ℓ by ℓk where k ∈W, we find that

ℓ[k, d(ϑ)] = 0 ∀ ϑ, ℓ, k ∈W.

Replacing ℓ by [k, d(ϑ)]r in the above equation, we have

[k, d(ϑ)]r[k, d(ϑ)] = 0 ∀ ϑ, ℓ, k ∈W.

Since R is a semiprime ring, we get

[k, d(ϑ)] = 0 ∀ ϑ, k ∈W,

which is the same as (2.6). Hence, proceeding in the same way, we conclude that R contains a nonzero
central ideal. □
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In [7], Ashraf et al. proved that R is commutative if it satisfies any one of the following conditions:
(i) F(ϑℓ) ± ϑℓ ∈ Z(R), (ii) F(ϑℓ) ± ℓϑ ∈ Z(R), and (iii) F(ϑ)F(ℓ) − ϑℓ ∈ Z(R) ∀ ϑ, ℓ ∈ R, where
F is a generalized derivation on R. In our next result, we extend Theorems 2.1 and 2.3 of [7] for the
traces of permuting n-derivations on semiprime rings.

Theorem 2.7. Let n ≥ 2 be a fixed integer and let R be an n!-torsion free semiprime ring and W be
an nonzero ideal of R. Suppose that R admits a symmetric n-derivation D : Rn → R with trace
d : R → R such that any one of the following conditions hold:

(1) d(ϑℓ) ± ϑℓ ∈ Z(R) ∀ ϑ, ℓ ∈W,

(2) d(ϑℓ) ± ℓϑ ∈ Z(R) ∀ ϑ, ℓ ∈W,

(3) d(ϑℓ) ± [ϑ, ℓ] ∈ Z(R) ∀ ϑ, ℓ ∈W,

(4) d(ϑℓ) ± ϑ ◦ ℓ ∈ Z(R) ∀ ϑ, ℓ ∈W.

Then, R contains a nonzero central ideal.

Proof. (i) It is given that

d(ϑℓ) ± ϑℓ ∈ Z(R) ∀ ϑ, ℓ ∈W.

Replace ℓ by ℓ + mk for k ∈W and 1 ≤ m ≤ n − 1, and we get

d(ϑ(ℓ + mk)) ± ϑ(ℓ + mk) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

That is,

d(ϑℓ) + d(ϑmk) +
n−1∑
t=1

nCtD(ϑℓ, . . . , ϑℓ︸      ︷︷      ︸
(n−t)−times

, ϑmk, . . . , ϑmk︸            ︷︷            ︸
t−times

) ± ϑℓ ± ϑmk ∈ Z(R)

∀ ϑ, ℓ, k ∈W. On using the given condition, we see that

n−1∑
t=1

nCtD(ϑℓ, . . . , ϑℓ︸      ︷︷      ︸
(n−t)−times

,mϑk, . . . ,mϑk︸            ︷︷            ︸
t−times

) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Now, use Lemma 2.1 and the fact that R is n!- torsion free to get

D(ϑℓ, . . . , ϑℓ, ϑk) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Replace k by ℓ to get
d(ϑℓ) ∈ Z(R) ∀ ϑ, ℓ ∈W.

Again using the hypothesis, we get

ϑℓ ∈ Z(R) ∀ ϑ, ℓ ∈W. (2.11)

Commuting with r ∈ R, we obtain

[ϑℓ, r] = 0 ∀ ϑ, ℓ ∈W, r ∈ R,
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and so

ϑ[ℓ, r] + [ϑ, r]ℓ = 0 ∀ ϑ, ℓ ∈W, r ∈ R. (2.12)

Replacing ℓ by ℓk in (2.12) and using (2.12), we see that

ϑℓ[k, r] = 0 ∀ ϑ, ℓ, k ∈W, r ∈ R.

On replacing ϑ by [k, r], we get

[k, r]ℓ[k, r] = 0 ∀ ℓ, k ∈W, r ∈ R.

That is,
[k, r]ℓR[k, r]ℓ = (0) ∀ ℓ, k ∈W.

Since R is a semiprime ring, we have

[k, r]ℓ = 0 ∀ ℓ, k ∈W, r ∈ R.

Taking ℓ to be t[k, r], t ∈ R, we see that

[k, r]t[k, r] = 0.

By the semiprimeness of R, we get W ⊆ Z(R). Thus, R contains a nonzero central ideal.

(ii) Use similar arguments as used in (i) to get the required result.

(iii) It is given that

d(ϑℓ) ± [ϑ, ℓ] ∈ Z(R) ∀ ϑ, ℓ ∈W.

Replace ℓ by ℓ + mk for k ∈W and 1 ≤ m ≤ n − 1, and we get

d(ϑ(ℓ + mk)) ± [ϑ, ℓ + mk] ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

That is,

d(ϑℓ) + d(ϑmk) +
n−1∑
t=1

nCtD(ϑℓ, . . . , ϑℓ︸      ︷︷      ︸
(n−t)−times

, ϑmk, . . . , ϑmk︸            ︷︷            ︸
t−times

) ± [ϑ, ℓ] ± [ϑ,mk] ∈ Z(R)

∀ ϑ, ℓ, k ∈W. Using the hypothesis, we see that

n−1∑
t=1

nCtD(ϑℓ, . . . , ϑℓ︸      ︷︷      ︸
(n−t)−times

,mϑk, . . . ,mϑk︸            ︷︷            ︸
t−times

) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Invoking Lemma 2.1 and using the torsion free restriction of R, we get

D(ϑℓ, . . . , ϑℓ, ϑk) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.
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Replace k by ℓ, and we obtain
d(ϑℓ) ∈ Z(R) ∀ ϑ, ℓ ∈W.

On using the hypothesis, we see that

[ϑ, ℓ] ∈ Z(R) ∀ ϑ, ℓ ∈W.

That is, [W,W] ⊂ Z(R). Hence, by Lemma 2.3, R contains a nonzero central ideal.

(iv) It is given that
d(ϑℓ) ± ϑ ◦ ℓ ∈ Z(R) ∀ ϑ, ℓ ∈W.

Taking ℓ + mk in the place of ℓ for k ∈W and 1 ≤ m ≤ n − 1, we get

d(ϑ(ℓ + mk)) ± ϑ ◦ (ℓ + mk) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

That is,

d(ϑℓ) + d(ϑmk) +
n−1∑
t=1

nCtD(ϑℓ, . . . , ϑℓ︸      ︷︷      ︸
(n−t)−times

, ϑmk, . . . , ϑmk︸            ︷︷            ︸
t−times

) ± ϑ ◦ ℓ ± ϑ ◦ mk ∈ Z(R)

for all ϑ, ℓ, k ∈W. With the help of the given condition, we see that

n−1∑
t=1

nCtD(ϑℓ, . . . , ϑℓ︸      ︷︷      ︸
(n−t)−times

,mϑk, . . . ,mϑk︸            ︷︷            ︸
t−times

) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Now, using Lemma 2.1 and the fact that R is n!-torsion free, we obtain

D(ϑℓ, . . . , ϑℓ, ϑk) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Replace k by ℓ, and we get
d(ϑℓ) ∈ Z(R) ∀ ϑ, ℓ ∈W.

Making use of the hypothesis, we see that

ϑ ◦ ℓ ∈ Z(R) ∀ ϑ, ℓ ∈W.

That is, W ◦W ∈ Z(R). Hence, by using Lemma 2.4, R contains a nonzero central ideal. The proof
is complete. □

Based on the preceding findings, we obtain the following known result:

Corollary 2.8. [8] For any fixed integer n ≥ 2, let R be an n!-torsion free semiprime ring. If R
admits a nonzero permuting n-derivation ∆ : Rn → R with trace d : R → R satisfying any one of the
conditions

(1) d(ϑℓ) ± ϑℓ ∈ Z(R) ∀ ϑ, ℓ ∈ R,

(2) d(ϑℓ) ± ℓϑ ∈ Z(R) ∀ ϑ, ℓ ∈ R,
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then R is commutative.

Theorem 2.9. For a fixed integer n ≥ 2, let R be an n!-torsion free semiprime ring and W be a
nonzero ideal of R. Suppose that R admits two nonzero symmetric n-derivations D : Rn → R and
G : Rn → R with d : R → R and g : R → R as traces ofD and G satisfying any one of the following
conditions:

(1) g(ϑℓ) + d(ϑ)d(ℓ) ± ϑℓ ∈ Z(R) ∀ ϑ, ℓ ∈W,

(2) g(ϑℓ) + d(ϑ)d(ℓ) ± ℓϑ ∈ Z(R) ∀ ϑ, ℓ ∈W,

(3) g([ϑ, ℓ]) + [d(ϑ), d(ℓ)] ± [ϑ, ℓ] ∈ Z(R) ∀ ϑ, ℓ ∈W,

(4) g(ϑ ◦ ℓ) + d(ϑ) ◦ d(ℓ) ± ϑ ◦ ℓ ∈ Z(R) ∀ ϑ, ℓ ∈W.

Then, R contains a nonzero central ideal.

Proof. (i) It is given that
g(ϑℓ) + d(ϑ)d(ℓ) ± ϑℓ ∈ Z(R) ∀ ϑ, ℓ ∈W.

Replacing ℓ by ℓ + mk for k ∈W and 1 ≤ m ≤ n − 1, we arrive at

g(ϑℓ) + g(ϑmk) +
n−1∑
t=1

nCtG(ϑℓ, . . . , ϑℓ︸      ︷︷      ︸
(n−t)−times

, ϑmk, . . . , ϑmk︸            ︷︷            ︸
t−times

)+

d(ϑ)
(
d(ℓ) + d(mk) +

n−1∑
t=1

nCtD( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

)
)

± ϑℓ ± ϑmk ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Using the given condition, we get

n−1∑
t=1

nCtG(ϑℓ, . . . , ϑℓ︸      ︷︷      ︸
(n−t)−times

, ϑmk, . . . , ϑmk︸            ︷︷            ︸
t−times

) + d(ϑ)
n−1∑
t=1

nCtD( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

) ∈ Z(R)

∀ ϑ, ℓ, k ∈W. Using Lemma 2.1, we see that

nG(ϑℓ, . . . , ϑℓ, ϑk) + nd(ϑ)D(ℓ, . . . , ℓ, k) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Since R is n!-torsion free, we get

G(ϑℓ, . . . , ϑℓ, ϑk) + d(ϑ)D(ℓ, . . . , ℓ, k) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Writing ℓ in place of k, we get

g(ϑℓ) + d(ϑ)d(ℓ) ∈ Z(R) ∀ ϑ, ℓ ∈W.

Using the hypothesis, we obtain that

ϑℓ ∈ Z(R) ∀ ϑ, ℓ ∈W.
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On using the same arguments as after (2.11), we get the required result.

(ii) Following the same steps as in (i), we discover that R contains a nonzero central ideal.

(iii) It is given that
g([ϑ, ℓ]) + [d(ϑ), d(ℓ)] ± [ϑ, ℓ] ∈ Z(R) ∀ ϑ, ℓ ∈W.

Replacing ℓ by ℓ + mk for k ∈W and 1 ≤ m ≤ n − 1, we conclude that

g([ϑ, ℓ]) + g([ϑ,mk]) +
n−1∑
t=1

nCtG([ϑ, ℓ], . . . , [ϑ, ℓ]︸             ︷︷             ︸
(n−t)−times

, [ϑ,mk], . . . , [ϑ,mk]︸                   ︷︷                   ︸
t−times

)+

[d(ϑ), d(ℓ)] + [d(ϑ), d(mk)] + [d(ϑ),
n−1∑
t=1

nCtD( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

)]

± [ϑ, ℓ] ± [ϑ,mk] ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

On using the hypothesis, we get

n−1∑
t=1

nCtG([ϑ, ℓ], . . . , [ϑ, ℓ]︸             ︷︷             ︸
(n−t)−times

, [ϑ,mk], . . . , [ϑ,mk]︸                   ︷︷                   ︸
t−times

) +
[
d(ϑ),

n−1∑
t=1

nCtD( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

)
]
∈ Z(R)

∀ ϑ, ℓ, k ∈W. Using Lemma 2.1 and the fact that R is n!−torsion free, we have

G([ϑ, ℓ], . . . , [ϑ, ℓ], [ϑ, k]) + [d(ϑ),D(ℓ, . . . , ℓ, k)] ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Writing ℓ in place of k, we obtain

g([ϑ, ℓ]) + [d(ϑ), d(ℓ)] ∈ Z(R) ∀ ϑ, ℓ ∈W.

Using the hypothesis, we obtain that

[ϑ, ℓ] ∈ Z(R) ∀ ϑ, ℓ ∈W.

By Lemma 2.3, we conclude that R contains a nonzero central ideal.
(iv) It is given that

g(ϑ ◦ ℓ) + d(ϑ) ◦ d(ℓ) ± ϑ ◦ ℓ ∈ Z(R) ∀ ϑ, ℓ ∈W.

Replacing ℓ by ℓ + mk for k ∈W and 1 ≤ m ≤ n − 1, we arrive at

g(ϑ ◦ ℓ) + g(ϑ ◦ mk) +
n−1∑
t=1

nCtG(ϑ ◦ ℓ, . . . , ϑ ◦ ℓ︸            ︷︷            ︸
(n−t)−times

, ϑ ◦ mk, . . . , ϑ ◦ mk︸                  ︷︷                  ︸
t−times

)+

d(ϑ) ◦ d(ℓ) + d(ϑ) ◦ d(mk) + d(ϑ) ◦
n−1∑
t=1

nCtD( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

)

± ϑ ◦ ℓ ± ϑ ◦ mk ∈ Z(R) ∀ ϑ, ℓ, k ∈W.
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On using the hypothesis, we get

n−1∑
t=1

nCtG(ϑ ◦ ℓ, . . . , ϑ ◦ ℓ︸            ︷︷            ︸
(n−t)−times

, ϑ ◦ mk, . . . , ϑ ◦ mk︸                  ︷︷                  ︸
t−times

) + d(ϑ) ◦
n−1∑
t=1

nCtD( ℓ, . . . , ℓ︸  ︷︷  ︸
(n−t)−times

,mk, . . . ,mk︸        ︷︷        ︸
t−times

) ∈ Z(R)

∀ ϑ, ℓ, k ∈W. Using Lemma 2.1 and using the fact that R is n!−torsion free, we get

G(ϑ ◦ ℓ, . . . , ϑ ◦ ℓ, ϑ ◦ k) + d(ϑ) ◦D(ℓ, . . . , ℓ, k) ∈ Z(R) ∀ ϑ, ℓ, k ∈W.

Write ℓ in place of k to get

g(ϑ ◦ ℓ) + d(ϑ) ◦ d(ℓ) ∈ Z(R) ∀ ϑ, ℓ ∈W.

Using the hypothesis, we obtain that

ϑ ◦ ℓ ∈ Z(R) ∀ ϑ, ℓ ∈W.

We conclude by Lemma 2.4 that R contains a nonzero central ideal. The proof is complete. □

3. Permuting n-multipliers

This section deals with the study of permuting n-multipliers. The idea of a permuting n-multiplier
was initially suggested by Ashraf et al. in [4], and they proved some interesting results. In the present
section, we examine the action of symmetric n-derivations satisfying the functional identity f(i)i +
ig(i) = 0 ∀ i ∈ W, a nonzero left ideal of R where f and g are the traces of symmetric n-derivations D
and G, respectively. We begin with the following:

Definition 3.1. A permuting n-additive map Λ : Rn → R is called a permuting left n-multiplier (resp.,
permuting right n-multiplier) if

Λ(i1, i2, . . . , iti′t , . . . , in) = Λ(i1, i2, . . . , it, . . . , in)i′t

(resp., Λ(i1, i2, . . . , iti′t , . . . , in) = itΛ(i1, i2, . . . , i′t , . . . , in))

holds ∀ it, i′t ∈ R, t = 1, 2, . . . , n. If Λ is both a permuting left n-multiplier and a permuting right
n-multiplier, it is referred to as a permuting n-multiplier. For related results, see [4, 5].

According to Bres̆ar’s proof in [9, Theorem 4.1], if R is a prime ring, W is a nonzero left ideal
of R, and d and g are nonzero derivations of R satisfying d(i)i − ig(i) ∈ Z(R) ∀ i ∈ W, then R is
commutative. We expand the previous result by demonstrating the following theorem for the trace of
n-derivation of R.

Theorem 3.2. Let R be an n!-torsion free prime ring and W be a nonzero left ideal of R. Suppose
that R admits two symmetric n-derivations D : Rn → R and G : Rn → R with f and g as traces of
D and G, respectively. If f(i)i + ig(i) = 0 ∀ i ∈ W, then either R is commutative or G acts as a left
n-multiplier on W. Furthermore, in the last case, either D = 0 or W[W,W] = 0.
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Proof. By hypothesis, we have
f(i)i + ig(i) = 0 ∀ i ∈W.

Replacing i by i + mℓ for ℓ ∈W and 1 ≤ m ≤ n − 1, we get

f(i + mℓ)(i + mℓ) + (i + mℓ)g(i + mℓ) = 0 ∀ i, ℓ ∈W.

On using the definition of f and g, we see that

(
f(i) + f(mℓ) +

n−1∑
t=1

nCtD( i, . . . , i︸ ︷︷ ︸
(n−t)−times

,mℓ, . . . ,mℓ︸       ︷︷       ︸
t−times

)
)
(i + mℓ)+

(i + mℓ)
(
g(i) + g(mℓ) +

n−1∑
t=1

nCtG( i, . . . , i︸ ︷︷ ︸
(n−t)−times

,mℓ, . . . ,mℓ︸       ︷︷       ︸
t−times

)
)
= 0 ∀ i, ℓ ∈W.

On using the given condition, we get

f(i)mℓ + f(mℓ)i + ig(mℓ) + mℓg(i) +
( n−1∑

t=1

nCtD( i, . . . , i︸ ︷︷ ︸
(n−t)−times

,mℓ, . . . ,mℓ︸       ︷︷       ︸
t−times

)
)
(i + mℓ)+

(i + mℓ)
( n−1∑

t=1

nCtG( i, . . . , i︸ ︷︷ ︸
(n−t)−times

,mℓ, . . . ,mℓ︸       ︷︷       ︸
t−times

)
)
= 0

∀ i, ℓ ∈W. On using Lemma 2.1, we get

f(ℓ)i + nD(i, ℓ, . . . , ℓ)ℓ + ig(ℓ) + nℓG(i, ℓ, . . . , ℓ) = 0 (3.1)

∀ i, ℓ ∈W. Replace i by ik to obtain

f(ℓ)ik + niD(k, ℓ, . . . , ℓ)ℓ + nD(i, ℓ, . . . , ℓ)kℓ + ikg(ℓ)+ (3.2)
nℓiG(k, ℓ, . . . , ℓ) + nℓG(i, ℓ, . . . , ℓ)k = 0 ∀ i, ℓ, k ∈W.

On comparing (3.1) and (3.2), we get

−ig(ℓ)k − nD(i, ℓ . . . , ℓ)ℓk + niD(k, ℓ, . . . , ℓ)ℓ + nD(i, ℓ, . . . , ℓ)kℓ+
ikg(ℓ) + nℓiG(k, ℓ, . . . , ℓ) = 0 ∀ i, ℓ, k ∈W.

This implies that

i[k, g(ℓ)] + nD(i, ℓ, . . . , ℓ)[k, ℓ] + niD(k, ℓ, . . . , ℓ)ℓ + nℓiG(k, ℓ, . . . , ℓ) = 0 (3.3)

∀ i, ℓ, k ∈W. Substitute ri for i in (3.3) to get

ri[k, g(ℓ)] + nrD(i, ℓ, . . . , ℓ)[k, ℓ] + nD(r, ℓ, . . . , ℓ)i[k, ℓ]+
nriD(k, ℓ, . . . , ℓ)ℓ + nℓriG(k, ℓ, . . . , ℓ) = 0 (3.4)
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∀ i, ℓ, k ∈W, r ∈ R. Compare (3.4) and (3.3).

nD(r, ℓ, . . . , ℓ)i[k, ℓ] + nℓriG(k, ℓ, . . . , ℓ) − nrℓiG(k, ℓ, . . . , ℓ) = 0
∀ i, ℓ, k, ∈W, r ∈ R.

Since R is n!−torsion free, we obtain

D(r, ℓ, . . . , ℓ)i[k, ℓ] + [ℓ, r]iG(k, ℓ, . . . , ℓ) = 0 (3.5)

∀ i, ℓ, k ∈W, r ∈ R. Replacing ℓ by k in (3.5), we see that

[k, r]ig(k) = 0 ∀ i, k ∈W, r ∈ R.

Substituting ri for i, we get
[k, r]rig(k) = 0 ∀ i, k ∈W.

Since R is a prime ring, it yields that either [k, r] = 0 or ig(k) = 0. If [k, r] = 0 ∀ k ∈ W and r ∈ R,
then replacing k by sk, we get [s, r]k = 0 ∀ k ∈ W, r, s ∈ R. Again, replace k by rk such that
[s, r]rk = 0 ∀ k ∈ W, r, s ∈ R. Since R is a prime ring, we conclude that R is commutative. Next, if
ig(k) = 0 ∀ i, k ∈W, then replacing k by k + mℓ, we get

ig(k + mℓ) = 0 ∀ i, ℓ, k ∈W.

That is,

ig(k) + ig(mℓ) + i
n−1∑
t=1

nCtG(k, . . . , k︸   ︷︷   ︸
(n−t)−times

,mℓ, . . . ,mℓ︸       ︷︷       ︸
t−times

) = 0 ∀ i, ℓ, k ∈W.

By using Lemma 2.1 and the fact that R is n!−torsion free, we get

iG(k, ℓ . . . , ℓ) = 0 ∀ i, ℓ, k ∈W.

This implies that
G(ik, ℓ, . . . , ℓ) = G(i, ℓ, . . . , ℓ)k.

Hence, G acts as a left n-multiplier. Since iG(k, ℓ . . . , ℓ) = 0 ∀ i, ℓ, k ∈W, using (3.5), we arrive at

D(r, ℓ, . . . , ℓ)i[k, ℓ] = 0 ∀ i, ℓ, k, ∈W, r ∈ R.

Replace r by sr to get
D(s, ℓ, . . . , ℓ)Ri[k, ℓ] = 0 ∀ i, ℓ, k ∈W.

Primeness of R yields that either D(s, ℓ, . . . , ℓ) = 0 or i[k, ℓ] = 0 ∀ i, ℓ, k ∈ W, s ∈ R. If D , 0, the
latter results in W[W,W] = 0. □

Following the same vein, we can also demonstrate the following:

Theorem 3.3. Let R be an n!− torsion free prime ring and W be a nonzero right ideal of R. Assume
that D and G are two symmetric n-derivations of R with trace f and g, respectively. If f(i)i+ ig(i) = 0
∀ i ∈ W, then either R is commutative or D acts as a left n-multiplier on W. Furthermore, in the last
case, either G = 0 or W[W,W] = 0.
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In view of the above result, we obtain the following known results:

Corollary 3.4. [1] Let R be a prime ring of characteristic not two, W be a nonzero left ideal of R and
∆1, ∆2 be symmetric bi-derivations of R with traces d1 and d2, respectively. If ∆1(i, i)i + i∆2(i, i) = 0 ∀
i ∈W, then either R is commutative or ∆2 acts as a left bi-multiplier on W. Moreover, in the last case
either ∆1 = 0 or W[W,W] = 0.

Corollary 3.5. [1] Let R be a prime ring of characteristic not two, W be a nonzero right ideal of R
and ∆1, ∆2 be symmetric bi-derivations of R with traces d1 and d2, respectively. If ∆1(i, i)i+i∆2(i, i) = 0
∀ i ∈ W, then either R is commutative or ∆1 acts as a left bi-multiplier on W. Moreover, in the last
case either ∆2 = 0 or W[W,W] = 0.

The next result is the generalization of Vukman’s result [18]. Indeed, Vukman showed that if R is
a prime ring of characteristic different from two and three, and there exist symmetric bi-derivations
D1 : R × R → R and D2 : R × R → R, such that f1(a)f2(a) = 0, ∀ a ∈ R holds, where f1 and f2
are the traces of D1 and D2 respectively, then either D1 = 0 or D2 = 0. We extend this theorem for
q-iterations of n-derivations.

Theorem 3.6. Let R be an n!-torsion free prime ring, W be a nonzero ideal of R and q ≥ 1, be a fixed
integer. Consider D1,D2, . . . ,Dq : Rn → R to be n-derivations on R such that d1(i1)d2(i2) · · · dq(iq) =
0 ∀ i1, i2, . . . , iq ∈W where d′i s, are traces of D′i s, respectively. Then, one of the following holds:

(1) d1(i1) = 0 ∀ i1 ∈W;

(2) All Dp act as left n-multipliers on R for p = 2, 3, . . . , q.

Proof. We will prove it through induction. If we put q = 1 in our hypothesis, then it is obvious that
d1(i1) = 0 ∀ i1 ∈W. Now, consider q = 2, and by the hypothesis, we have

d1(i1)d2(i2) = 0 ∀ i1, i2 ∈W. (3.6)

Replacing i2 by i2 + mℓ2 for ℓ2 ∈W and 1 ≤ m ≤ n − 1, we get

d1(i1)d2(i2 + mℓ2) = 0 ∀ i1, i2, ℓ2 ∈W.

On simplifying, we get

d1(i1)d2(i2) + d1(i1)d2(mℓ2) + d1(i1)
n−1∑
t=1

nCtD2(i2, . . . , i2︸   ︷︷   ︸
(n−t)−times

,mℓ2, . . . ,mℓ2︸         ︷︷         ︸
t−times

) = 0 (3.7)

∀ i1, i2, ℓ2 ∈W. Compare (3.6) and (3.7) and use Lemma 2.1 to get

nd1(i1)D2(i2, . . . , i2, ℓ2) = 0 ∀ i1, i2, ℓ2 ∈W.

Since R is n!-torsion free, we obtain

d1(i1)D2(i2, . . . , i2, ℓ2) = 0 ∀ i1, i2, ℓ2 ∈W. (3.8)
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Replacing ℓ2 by ℓ2r in (3.8), we obtain

d1(i1)ℓ2D2(i2, . . . , i2, r) = 0 ∀ i1, i1, ℓ2 ∈W, r ∈ R,

i.e.,

d1(i1)ℓ2RD2(i2, . . . , i2, r) = (0) ∀ i1, i2, ℓ2 ∈W.

Since R is a prime ring, we can find either d1(i1)ℓ2 = 0 or D2(i2, . . . , i2, r) = 0. Consider the first
case, d1(i1)ℓ2 = 0. Again, R is a prime ring, and we get d1(i1) = 0. Now, consider the latter case,
D2(i2, . . . , i2, r) = 0 ∀ i2 ∈ W, r ∈ R. A straightforward modification shows that D2(i2, . . . , i2,w1r) =
D2(i2, . . . , i2,w1)r ∀ w1 ∈W, r ∈ R. Hence, D2 acts as a left n-multiplier as desired.

Next, suppose that it is true for n = q − 1, and we shall prove it for n = q. Let us assume the
hypothesis:

d1(i1)d2(i2) · · · dq(iq) = 0 ∀ i1, i2, . . . , iq ∈W. (3.9)

Replacing iq by iq + mℓq for ℓq ∈ W and 1 ≤ m ≤ n − 1 in (3.9) and taking account of Lemma 2.1, we
get

nd1(i1)d2(i2) · · · dq−1(iq−1)Dq(iq, . . . , iq, ℓq) = 0

∀ i1, i2, . . . , iq, ℓq ∈W. Since R is n!-torsion free, we see that

d1(i1)d2(i2) · · · dq−1(iq−1)Dq(iq, . . . , iq, ℓq) = 0. (3.10)

Substituting ℓqu for ℓq in (3.10) and using (3.10), we arrive at

d1(i1)d2(i2) · · · dq−1(iq−1)ℓqDq(iq, . . . , iq, u) = 0,

i.e.,

d1(i1)d2(i2) · · · dq−1(iq−1)ℓqRDq(iq, . . . , iq, u) = (0)

∀ i1, i2, . . . , iq, ℓq ∈ W, u ∈ R. Primeness of R gives that either d1(i1)d2(i2) · · · dq−1(iq−1) = 0 or
Dq(iq, . . . , iq, u) = 0 ∀ i1, i2, . . . , iq ∈ W, u ∈ R. If d1(i1)d2(i2) · · · dq−1(iq−1) = 0, then we are done by
the former case. If Dq(iq, . . . , iq, u) = 0 ∀ iq ∈ W, u ∈ R, then we can easily compute that
Dq(iq, . . . , iq,wq−1u) = Dq(iq, . . . , iq,wq−1)u ∀ iq,wq−1 ∈ W, u ∈ R. Hence, Dq acts as a left
n-multiplier on R as desired. The theorem’s proof is completed with this conclusion. □

4. Conclusions and further remarks

In this article, we discussed some results concerning the containment of a nonzero central ideal in
a ring R satisfying certain functional identities involving the traces d and g of symmetric
n-derivations D and G, respectively. Besides proving some results concerning the traces of permuting
n-derivations, some results related to permuting n-multipliers are also discussed in the last section. In
fact, we characterized symmetric n-derivations of prime rings in terms of left n-multipliers. In future,
it would be interesting to study these functional identities in the setting of generalized permuting
n-derivations and its related maps in rings with involution.
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