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Abstract: This study investigated the steady-state characteristics of a non-Markovian feedback
retrial queue with reneging, delayed repair, and working vacation. In this scenario, we assumed
that consumers arrive through Poisson processes and the server provides service to consumers during
both regular and working vacation periods. However, it is subject to breakdowns at any moment,
resulting in a service interruption for a random duration. Additionally, the concept of delay time
was also presented. The consumer that is dissatisfied with the service may re-enter the orbit to
receive another service; this individual is considered a feedback consumer. The server will go on
a working vacation if the orbit is empty after successfully serving a satisfied consumer. By utilizing
the supplementary variable technique (SVT), we examined the steady-state probability generating
function of the system and orbit sizes. Finally, numerical outcomes and a sensitivity analysis were
given to verify the analytical findings of important performance indicators.
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1. Introduction

Retrial queues (RQs) with unreliable servers have been extensively investigated due to their wide
range of applications in domains such as consumer service centers, computer and communications
networks, and systems for production. Retrial queues can serve as an indication of consumer service
demands. When consumers find an inaccessible server, they have the option to join a retry group,
referred to as an orbit, and make a request for their desired services at another moment in time.
To access survey papers, bibliographic information, and books, readers are referred to Falin [1],
Artalejo [2], Falin and Templeton [3], and the references provided in these sources. Boussaha et al. [4]
explored feedback retrial queues and orbit search with the M/G/1 queueing system. Atencia et al. [5]
examined a non-Markovian retrial queue and discussed the customer’s sojourn time in the server,
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system, and orbit. Jeganathan et al. [6] conducted an analysis of asynchronous multiple vacations
using a multi-server retrial queueing inventory system. Micheal and Indhira [7] have analyzed a
retrial queueing model with two-phase service under Bernoulli working vacations (BWV). They
introduced adaptive neuro-fuzzy inference system (ANFIS) computation and cost optimization of
nonlinear metaheuristics to validate their model and also compared the results with other methods,
such as artificial bee colonies, genetic algorithms, and particle swarm optimization.

Queuing situations where idle servers may engage in vacations can be discovered in IT networks,
machinery, and manufacturing systems, among several other domains. During a working vacation
(WV) time, the server delivers its service to consumers at a slow rate, but during an ordinary vacation
period, the server completely stops its service to consumers. Servi and Finn [8] presented a single-
srever Markovian queueing system with WV. Wu and Takagi [9] expanded the Markovian queue with
working vacation into the non-Markovian queue with WV. Gao et al. [10] introduced an M/G/1 retrial
queue model that takes into account retrial times of a general nature, WV, and vacation interruptions.
Rajadurai [11] examined the non-Markovian retrial queue and considered the three consumer-type
categories, which are positive, negative, and priority consumers under WV policy. Yang et al. [12]
presented a retrial queue model with WV and examined the occurrence of server failures at the start of
service. Li et al. [13] investigated the M/G/1 type retrial queueing model, which incorporates single
working vacation under Bernoulli schedule. Bouchentouf et al. [14] explored Markovian queues
with finite capacity and differentiated working vacation (DWV). Jain et al. performed a study on
Markovian queues with disaster failure and MWVs [15]. Murugan and Keerthana [16] investigated
a single-server retrial queueing model that incorporates G-queue and MWV concepts. Bharathy and
Saravanarajan [17] examined the unreliable retrial queue and two essential services using WV. Chen
et al. [18] investigated random working vacation and improved service efficiency vacation policies
using an M/G/1 queueing model.

In reality, we frequently encounter situations in which servers fail but may be repaired.
Furthermore, it is thought that server failures are the most common reason for service interruptions.
Similarly, there are numerous instances that take place in the domains of digital networks,
manufacturing systems, production control, and other related areas. Limited maintenance capabilities
and service station breakdowns can have a significant impact on system performance. Therefore,
queueing systems with unreliable service stations are worth investigating from a performance
prediction perspective. Rajadurai et al. [19] explored non-Markovian type retrial queue with multiple
WV incorporating server breakdown. Varalakshmi et al. [20] analyzed immediate feedback single
server queues with working vacations and server breakdowns and used the supplementary variable
technique to find steady-state results. Rajadurai et al. [21] investigated the cost optimization technique
of a retrial queue with K-phase optional type of service with multiple working vacations subject to
server breakdown. Gao et al. [22] investigated a retrial queue with active and passive breakdowns and
delayed repairs. Ke et al. [23] studied the feedback retrial queue and balking, including the server
breakdown. In addition, the author used the Probabilistic Global Search Lausanne approach to solve
the optimization problem. Liu et al. [24] presented a Markovian queue that incorporates preemptive
priority and WV interruption. Recently, a multitude of authors have extensively examined the concept
of delayed repair from various perspectives [25–30].

Many queueing scenarios involve consumers being serviced repeatedly for a specific purpose. If a
consumer is dissatisfied with the service, they can attempt it multiple times until it is successfully
completed. These queueing models are used in stochastic modeling of various real-world, such
as in data transmission and packet switching networks. Sharma [31] presented Bernoulli feedback
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retrial queue with modified vacation subject to random breakdowns. Chang et al. [32] investigated
unreliable retrial queue, which included impatient and feedback customers. The author also examined
the methods used to perform the optimization tasks, including the Nelder-Mead simplex direct search
method, the pattern search method, and the quasi-Newton approach. Ayyappan et al. [33] analyzed the
concept of a single server queue and considered the customer priority type, reneging, and immediate
feedback under WV. Abdollahi et al. [34] investigated single-server retrial queues, first essential, and
k-phase optional services that incorporate server vacation and feedback policies. Jain and Kaur [35]
explored a bulk arrival retrial model incorporating optional service and Bernoulli feedback and
utilized the maximum entropy principle (MEP) to find steady state probability and waiting time; the
Quasi Newton method was also used to find the optimal cost. Wang et al. [36] studied the machine
learning-based compressed sensing channel estimation method for wireless communications, which
is important for industrial internet of things (IIoT) uses. They explored a distributed compressed
sensing-based method for the sparse correlation between channels in multiple-input multiple-output
filter bank multicarrier (MIMO-FBMC) with offset quadrature amplitude modulation (OQAM)
systems.

Supplementary variables, representing elapsed and remaining times, determine the forward
and backward Chapman-Kolmogorov equations that govern the relevant model. To manage
the elapsed time, we can introduce supplementary variables that match each non-exponential
governing random variable. This procedure transforms the non-Markovian process into a Markovian
process by acquiring all essential information, ensuring that its present state alone determines its
future. Numerous queue theorists have employed the supplementary variable technique, a widely
recognized methodology in queueing theory, to address non-Markovian congestion issues in both
everyday and industrial contexts. Using the approach of SVTs, Cox (1955) has examined a non-
Markovian approach [37]. Jain et al. [38] surveyed the supplemental variable approach for studying
M/G/1 queues with service interruptions caused by vacation or server breakdowns. Deepa and
Azhagappan [39] used the SVT method to analyze the bulk arrival queue with optional second-phase
service, including the optional re-service concept. Huang [40] presented an analysis of a batch arrival
queue and service pattern in an optional phase with a randomized vacation concept using the SVT
method.

This study presents a novel approach to modeling an unreliable server in a single arrival feedback
retrial queue with reneging, and delayed repair under working vacation. The current study enhances
the previous research conducted by Madhu Jain [41] by incorporating the novel concepts of (1)
single arrival, (2) reneging, and (3) delayed repair during busy and WV periods. To the authors,
best knowledge, there is no existing literature in the field of the queueing model that discusses
non-Markovian queues incorporating the concepts of general retry times, single arrival, feedback,
reneging, and delayed repair in both RS and WV circumstances. Our study specifically considers
the problem of an unreliable service in the RS and WV modes. The fundamental motivation
for developing the suggested generalized model is its potential application in real-world queueing
scenarios such as communication networks and consumer care.

This article’s next sections are organized as follows: Section 2 provides a detailed explanation of
the system model and includes a real-life example. Section 3 presents the steady-state probabilities.
Section 4 discusses the performance characteristics of the model. Section 5 examines special cases.
Section 6 presents an analysis of cost optimization. Section 7 presents numerical examples that
demonstrate the effects of different system performance factors. Finally, Section 8 provides the
article’s conclusion.
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2. Formulation of the model

In this section, we consider an M/G/1 feedback retrial queue with reneging, delayed repair, and
WV subject to server breakdown. The following is an explanation of our proposed model (Figure 1),
provided by

• Consumers arrival process: The consumers arrive at the queueing system following a Poisson
process, with rates of λ in the busy state and λv in the working vacation state.
• The retrial rule: If the arriving primary consumer discovers that the server is available, the

consumer starts his service instantly. However, the consumer has the option to join the orbit’s
retry group if the server is busy, or working vacation, or breakdown. They attempt to make
repeated service requests at random times based on the “First In-First Out” discipline; this
indicates that only the single customer at the head of the orbit queue can access the server.
In the event that the primary customer comes first, the retrial customer is able to cancel their
request and proceed to either rejoin the retrial queue with probability (prob.) r or exit the system
with prob. (1 − r). This is the behavior of the retrial consumer, also known as reneging. It
was considered that the inter-retrial time is indicated by the distribution function A(t), while the
Laplace Stieltjes Transform (LST) is denoted as A∗(υ̂).
• Working vacation policy: When the orbit appears to be empty, the server commences its

working vacation (WV), and the vacation time follows an exponential distribution with the
characteristic parameter θ. When primary consumers arrive during a working vacation, the server
delivers service at a slow rate. If there is any consumer present in the system during the slow
speed service completion in the vacation state, the server will stop the vacation and resume the
regular busy period, causing an interruption of the vacation. When a vacation period ends and
there are still consumers in orbit, the server starts up normally. Otherwise, the server will take
another vacation. The service time takes the form of a distribution function Nv(t) during the WV
period and its LST is represented as N∗v (υ̂).
• Regular service process: Upon the arrival of a new consumer or a retry consumer at the

service station, if the server is free, it immediately commences rendering regular service to
the consumers. The service time is denoted by the general distribution and its function Nb(t)
and LST are represented as N∗b(υ̂) and E(Nb), E(Nb)2 denote the first and second moments,
respectively.
• Feedback rule: Following the completion of each consumer’s service, dissatisfied consumers

i.e., customers who are not satisfied with their service, may join the retry group with a prob. of
f (0 ≤ f ≤ 1) or leave the system with a prob. of f = 1 − f .

• Server breakdown event: In fact, the server operating both in normal service mode and in
working vacation mode is vulnerable to failures occurring at any moment, resulting in an
unpredictable disruption of the service time. The durations of breakdowns in both scenarios,
namely the regular and working vacation states, are followed by exponential distributions with
rates δ and δv, respectively.
• Repair process: The server repair task commences instantly upon the server’s failure, whether

it occurs during peak activity or on a working vacation. While undergoing repairs, the server
temporarily stop its services until the repair process is finished. Note that the consumer is waiting
for the remaining services after receiving assistance from the server during a breakdown. When a
server encounters a failure, it undergoes repair. During the breakdown time, the server is unable
to serve the consumers and is waiting for the repair process to begin, which we refer to as the
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server’s waiting time. We define the waiting period as the delay period. The delay timings are
represented by the functions Db(t) and Dv(t), their Laplace-Stieltjes transforms are D∗b(y) and
D∗v(y), and its first two moments are assumed to be w(1), w(2), and wv(1), wv(2), depending on
the busy and working periods, respectively. Similarly, the repair times are evaluated using the
distribution functions Gb(t) and Gv(t), with their Laplace-Stieltjes transforms denoted as G∗b(y)
and G∗v(y), and its two moments are assumed to be g(1) and g(2), whereas the subsequent two
moments are represented as gv(1) and gv(2), which correspond to the busy and working vacation
states, respectively.

Figure 1. Diagram of our proposed model.

2.1. Application

Our approach has practical application in various domains like data processing, internet access,
manufacturing and industrial production systems, management of inventory systems, software, and
experiments. Let’s take a network of telecommunications as an example. Call centers have a
significant impact on several industries and businesses in the field of telecommunications. Consumers
are initiating contact with call centers by engaging in conversation with a consumer care representative
(CCR). An incoming voice call is taken immediately by the idle CCR. During a voice call, if the CCR
is unavailable because it is busy with other calls, the call will be temporarily held in a retrial buffer
(orbit) with a finite capacity. If there is space available, the call will be handled at a later time (retrial
time), according to the FCFS principle. The caller attempts to retry the call from orbit, but if they
do not receive a response, they may choose to cancel their effort for service and exit the system, a
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process known as reneging. The service may experience electronic fails during the regular service
mode (breakdown RS). Upon the end of call processing, the internet service may need the CCR to
provide the same service again (feedback) in the event of any failures in the previous process. If the
CCR does not detect any voice calls, it will carry out a series of maintenance tasks, such as doing virus
scans (WV) on the system. During the repair time, the conventional center is equipped with various
components, including an automatic call distributor (ACD) and an interactive voice response (IVR)
unit (referred to as the WV server). These components are capable of handling calls at a slower rate
during the working vacation period. However, it is possible that this server may experience technical
issues during this period (referred to as Breakdown WV). When a server experiences a failure, it is
taken out of service for repairs. This results in a temporary interruption of consumer service, termed
the server’s waiting time (referred to as delayed (RS, WV)). We define the duration of waiting as a
period of delay. This type of retrial queue, which incorporates working vacations, serves as a reliable
approximation of such for telecommunication processing systems. The suggested method can be
used in modern culture, particularly in healthcare systems that use telephone consultations.

3. Steady-state probabilities

The steady-state governing equations are derived using the SVT. The probability-generating
function (PGF) was obtained for the server states and also for the number of consumers in the orbit
and system.

We consider that A(0) = 0, A(∞) = 1, Nb(0) = 0, Nb(∞) = 1, Nv(0) = 0, Nv(∞) =
1, Wb(0) = 0, Wb(∞) = 1, Wv(0) = 0, Wv(∞) = 1, are continuous at υ̂ = 0
Gb(0) = 0, Gb(∞) = 1 and Gv(0) = 0, Gv(∞) = 1 are continuous at y = 0. We assume the
hazard rate functions as ȧ (υ̂), βb(υ̂), βv(υ̂), χb(y), χv(y), γb(y), and γv(y) for retrial, regular
service, slow rate service, delay repair (RS, WV) and for the maintainance (RS, WV) in that order,
respectively.

ȧ(υ̂) d(υ̂) =
d(A(υ̂))

(1 − A(υ̂))
; βb(υ̂)dυ̂ =

d(Nb(υ̂))
(1 − Nb(υ̂))

; βv(υ̂)dυ̂ =
d (Nv(υ̂))

(1 − Nv(υ̂))
;

χb(y)dy =
d(Wb(y))

(1 −Wb(y))
; χv(y)dy =

d(Wv(y))
(1 −Wv(y))

; γb(y)dy =
d(Gb(y))

(1 −G(y))
;

γv(y)dy =
d(Gv(y))

(1 −G(y))
.

In addition, let A0,N0
b ,N

0
v ,W

0
b ,W

0
v ,G

0
band G0

v be the expired retrial, busy, working vacation (WV),
delay to repair, and repair times shown at period t. We also assume the random variable (RV),

S (t) =



0, server is unoccupied
1, server is unoccupied and in RS mode
2, server is occupied and in RS mode
3, server is occupied and in lower-service mode
4, server is waiting for repair in WV mode
5, server is waiting for repair RS mode
6, the server is undergoing maintenance WV mode
7, the server is undergoing maintenance RS mode
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{S (t),C(t); t ≥ 0} show the bivariate Markov process, where C(t) is the number of consumers in the
orbit at time t. The function S (t) denotes the server states (0, 1, 2, 3, 4, 5, 6, 7) depending on if the
server is unoccupied, RS, WV, delayed repair (WV, RS), and under repair (WV, RS). Let us assume
that the limiting probabilities P0(t) = Prob.S (t) = 0,C(t) = 0 and the prob. densities are

In(υ̂, t)dυ̂ = lim
t→∞

Prob.{S (t) = 1,C(t) = n, υ̂ ≤ A0(t) < υ̂ + dυ̂}

Bb,n(υ̂, t)dυ̂ = lim
t→∞

Prob.{S (t) = 2,C(t) = n, υ̂ ≤ N0
b (t) < υ̂ + dυ̂}

ϕv,n(υ̂, t)dυ̂ = lim
t→∞

Prob.{S (t) = 3,C(t) = n, υ̂ ≤ N0
v (t) < υ̂ + dυ̂}

Db,n(υ̂, y, t)dυ̂ = lim
t→∞

Prob.{S (t) = 4,C(t) = n, y ≤ W0
b (t) < y + dy/N0

b (t) = υ̂}

Dv,n(υ̂, y, t)dυ̂ = lim
t→∞

Prob.{S (t) = 5,C(t) = n, y ≤ W0
v (t) < y + dy/N0

v (t) = υ̂}

Řb(υ̂, y, t)dυ̂ = lim
t→∞

Prob.{S (t) = 6,C(t) = n, y ≤ G0
b(t) < y + dy/N0

b (t) = υ̂}

Řv(υ̂, y, t)dυ̂ = lim
t→∞

Prob.{S (t) = 7,C(t) = n, y ≤ G0
v(t) < y + dy/N0

b (t) = υ̂}

∀ t ≥ 1, υ̂ ≥ 1, n ≥ 1.

The time (tn; n = 1, 2, ...) represents a sequence of epochs that correspond to the completion times
of WV, or the point at which the delay is resolved and the repair period concludes. A Markov chain
is created by a set of random vectors ψn = {S (tn+),C(tn+)} forms a Markov chain that is embedded
in the RQ system. It follows from Appendix A that {πn; n ∈ N} is ergodic if and only if Γ < 1 for our
system to be stable, where Γ = f + r(1 − A∗(λ) + E(Nb)(λ + λδ(w1 + g1))).

3.1. Steady-state conditions

The governing equations are formulated using the supplementary variable approach.

(λv + θ)P0 = θP0 + f
(∫ ∞

0
Bb,0(υ̂)βb(υ̂)dυ̂ +

∫ ∞

0
ϕv,0(υ̂)βv(υ̂)dυ̂

)
. (3.1)

d
dυ̂

In(υ̂) = −[λ + ȧ(υ̂)]In(υ̂), n ≥ 1. (3.2)

d
dυ̂

Bb,0(υ̂) = −[λ + δ + βb(υ̂)]Bb,0(υ̂), n = 0. (3.3)

d
dυ̂

Bb,n(υ̂) = −[λ + δ + βb(υ̂)]Bb,n(υ̂) + λBb,n−1(υ̂) +
∫ ∞

0
Řb,n(υ̂, y)γb(y)dy, n ≥ 1. (3.4)

d
dυ̂
ϕv,0(υ̂) = −[λv + δv + βv(υ̂)]ϕv,0(υ̂), n = 0. (3.5)

d
dυ̂
ϕv,n(υ̂) = −[λv + δv + βv(υ̂)]ϕv,n(υ̂) + λvϕv,n−1(υ̂) +

∫ ∞

0
Řv,n(υ̂, y)γv(y)dy, n ≥ 1. (3.6)

d
dy

Db,0(υ̂, y) = −[λ + χb(y)]Db,0(υ̂, y), n = 0. (3.7)

d
dy

Db,n(υ̂, y) = −[λ + χb(y)]Db,n(υ̂, y) + λvDb,n−1(υ̂, y), n ≥ 1. (3.8)

d
dy

Dv,0(υ̂, y) = −[λv + χv(y)]Dv,0(υ̂, y), n = 0. (3.9)

d
dy

Dv,n(υ̂, y) = −[λv + χv(y)]Dn(υ̂, y) + λvDv,n−1(υ̂, y), n ≥ 1. (3.10)
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d
dy

Řb,0(υ̂, y) = −(λ + γb(y))Řb,0(υ̂, y), n = 0. (3.11)

d
dy

Řb,n(υ̂, y) = −[λ + γb(y)]Řn(υ̂, y) + λυ̂b,n−1(υ̂, y), n ≥ 1. (3.12)

d
dy

Řv,0(υ̂, y) = −(λv + γv(y))Řv,0(υ̂, y), n = 0. (3.13)

d
dy

Řv,n(υ̂, y) = −[λv + γv(y)]Řn(υ̂, y) + λvυ̂v,n−1(υ̂, y), n ≥ 1. (3.14)

When υ̂ = 0 and y = 0, the associated boundary conditions are stated as:

In(0) = f
(∫ ∞

0
Bb,n(υ̂)βb(υ̂)dυ̂ +

∫ ∞

0
ϕv,n(υ̂)βv(υ̂)dυ̂

)
+ f

(∫ ∞

0
Bb,n−1(υ̂)βb(υ̂)dυ̂ +

∫ ∞

0
ϕv,n−1(υ̂)βv(υ̂)dυ̂

)
n ≥ 1. (3.15)

Bb,0(0) =
(∫ ∞

0
I1(υ̂)ȧ(υ̂)dυ̂ + λ(1 − r)

∫ ∞

0
I1(υ̂)dυ̂ + θ

∫ ∞

0
ϕv,0(υ̂)dυ̂

)
, n = 0. (3.16)

Bb,n(0) =
∫ ∞

0
In+1(υ̂)ȧ(υ̂)dυ̂ + λr

∫ ∞

0
I1(υ̂)dυ̂ + λ(1 − r)

∫ ∞

0
In+1(υ̂)dυ̂ (3.17)

+ θ

∫ ∞

0
ϕv,n(υ̂)dυ̂, n ≥ 1.

ϕv,n(0) =

λvP0, n = 0;
0, n ≥ 1.

(3.18)

Db,n(υ̂, 0) = δ
∫ ∞

0
Bb,n(υ̂)dυ̂, n ≥ 0. (3.19)

Dv,n(υ̂, 0) = δv

∫ ∞

0
ϕv,n(υ̂)dυ̂, n ≥ 0. (3.20)

Řb,n(υ̂, 0) =
∫ ∞

0
Db,n(υ̂, y)χb(y)dy, n ≥ 0. (3.21)

Řv,n(υ̂, 0) =
∫ ∞

0
Dv,n(υ̂, y)χv(y)dy, n ≥ 0. (3.22)

The expression for normalizing condition is given as

P0 +

∞∑
n=1

∫ ∞

0
In(υ̂)dυ̂ +

∞∑
n=0



∫ ∞

0
Bb,n(υ̂)dυ̂ +

∫ ∞

0
ϕv,n(υ̂)dυ̂

+

∫ ∞

0

∫ ∞

0
Řb,n(υ̂, y)dυ̂dy +

∫ ∞

0

∫ ∞

0
Řv,n(υ̂, y)dυ̂dy

+

∫ ∞

0

∫ ∞

0
Db,n(υ̂, y)dυ̂dy +

∫ ∞

0

∫ ∞

0
Dv,n(υ̂, y)dυ̂dy


= 1. (3.23)

3.2. Steady-state solution

In this section, we derive the equation illustrating the steady-state of the RQ model by utilizing the
prob. generating functions (PGFs) approach. To solve the above equations, the PGFs are defined for
|ς| ≤ 1 in the following manner:
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I(υ̂, ς) =
∞∑
n=1

In(υ̂) ςn; I(0, ς) =
∞∑
n=1

In(0) ςn;

Bb(υ̂, ς) =
∞∑
n=0

Bb,n(υ̂) ςn; Bb(0, ς) =
∞∑
n=0

Bb,n(0) ςn;

ϕv(υ̂, ς) =
∞∑
n=0

ϕv,n(υ̂) ςn; ϕv(0, ς) =
∞∑
n=0

ϕv,n(0) ςn;

Db(υ̂, y, ς) =
∞∑
n=0

Db,n(υ̂, y) ςn; Db(υ̂, 0, ς) =
∞∑
n=0

Db,n(υ̂, 0) ςn;

Dv(υ̂, y, ς) =
∞∑
n=0

Dv,n(υ̂, y) ςn; Dv(υ̂, 0, ς) =
∞∑
n=0

Dv,n(υ̂, 0) ςn;

Řb(υ̂, y, ς) =
∞∑
n=0

Řb,n(υ̂, y) ςn; Řb(υ̂, 0, ς) =
∞∑
n=0

Řb,n(υ̂, 0) ςn;

Řv(υ̂, y, ς) =
∞∑
n=0

Řv,n(υ̂, y) ςn; Řv(υ̂, 0, ς) =
∞∑
n=0

Řv,n(υ̂, 0) ςn.

By multiplying equations Eqs (3.1)–(3.22) with ςn, and summing over n (where n = 0, 1, 2, ... ),
we obtain:

∂

∂υ̂
I(υ̂, ς) = −[λ + ȧ(υ̂)] I(υ̂, ς); (3.24)

∂

∂υ̂
Bb(υ̂, ς) = −[λ(1 − ς) + δ + βb(υ̂)] Bb(υ̂, ς); (3.25)

∂

∂υ̂
ϕv(υ̂, ς) = −[λv(1 − ς) + δv + βv(υ̂)] ϕv(υ̂, ς); (3.26)

∂

∂y
Db(υ̂, y, ς) = −[λ(1 − ς) + χb(y)] Db(υ̂, y, ς); (3.27)

∂

∂y
Dv(υ̂, y, ς) = −[λv(1 − ς) + χv(y)] Dv(υ̂, y, ς); (3.28)

∂

∂y
Řb(υ̂, y, ς) = −[λ(1 − ς) + γb(y)] Řb(υ̂, y, ς); (3.29)

∂

∂y
Řv(υ̂, y, ς) = −[λv(1 − ς) + γv(y)] Řv(υ̂, y, ς); (3.30)

I(0, ς) = ( f ς + f )
(∫ ∞

0
Bb(υ̂, ς)βb(υ̂)dυ̂ +

∫ ∞

0
ϕv(υ̂, ς)βv(υ̂)dυ̂

)
; (3.31)

Bb(0, ς) =
1
ς

∫ ∞

0
I(υ̂, ς)ȧ(υ̂)dυ̂ + λr

∫ ∞

0
I(υ̂, ς)dυ̂ + λ

(1 − r)
ς

∫ ∞

0
I(υ̂, ς)dυ̂;

+ θ

∫ ∞

0
ϕv(υ̂, ς)dυ̂; (3.32)

ϕv(0, ς) = λvP0; (3.33)

Db,n(υ̂, 0, ς) = δ
∫ ∞

0
Bb,n(υ̂)dυ̂; (3.34)
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Dv,n(υ̂, 0, ς) = δv

∫ ∞

0
ϕv,n(υ̂)dυ̂; (3.35)

Řb,n(υ̂, 0, ς) =
∫ ∞

0
Db,n(y)γ(y)dy; (3.36)

Řv,n(υ̂, 0, ς) =
∫ ∞

0
Dv,n(y)γ(y)dy. (3.37)

Solving the partial differential Eqs (3.24)–(3.29), we get

I(υ̂, ς) = I(0, ς) [1 − A(υ̂)] exp {−λυ̂} ; (3.38)
Bb(υ̂, ς) = Bb(0, ς) [1 − Nb(υ̂)] exp {−Ab(ς)υ̂} ; (3.39)
ϕv(υ̂, ς) = ϕv(0, ς) [1 − Nv(υ̂)] exp {−Av(ς)υ̂} ; (3.40)
Řb(υ̂, y, ς) = Ř(υ̂, 0, ς) [1 −Gb(υ̂)] exp {−b(ς)y} ; (3.41)
Řv(υ̂, y, ς) = Ř(υ̂, 0, ς) [1 −Gv(υ̂)] exp {−bv(ς)y} ; (3.42)
Db(υ̂, y, ς) = Dy(υ̂, 0, ς) [1 −Wb(υ̂)] exp {−b(ς)y} , (3.43)
Dv(υ̂, y, ς) = Dy(υ̂, 0, ς) [1 −Wv(υ̂)] exp {−bv(ς)y} . (3.44)

where Ab(ς) = (λ(1 − ς) + δ(1 −W∗
b(b(ς))G∗b(b(ς))),

Av(ς) = (λv(1 − ς) + θ + δv(1 −W∗
v (bv(ς))G∗v(bv(ς))), b(ς) = λ (1 − ς), and bv(ς) = λv (1 − ς).

By substituting Eqs (3.38) and (3.40) into Eq (3.32), and subsequently applying certain
modifications, we obtain the following expression:

Bb(0, ς) = (I(0, ς)/ς) (A∗(λ) + (1 − r + rς) (1 − A∗(λ))) + λvP0V(ς), (3.45)

where

V(ς) =
θ

[
1 − N∗v (Av(ς))

]
Av(ς)

.

Using Eqs (3.39) and (3.40) in Eq (3.31), gives

I(0, ς) = ( f ς + f )
(
Bb(0, ς) N∗b (Ab(ς)) + ϕv(0, ς) N∗v (Av(ς))

)
− λvP0. (3.46)

Using Eq (3.39) in Eq (3.34), we get

Db(υ̂, 0, ς) = δBb(0, ς)
(
1 − N∗b (Ab(ς))

Ab(ς)

)
. (3.47)

Inserting Eq (3.40) in Eq (3.35), we obtain

Dv(υ̂, 0, ς) = δvλvP0

(
1 − N∗v (Av(ς))

Av(ς)

)
. (3.48)

Inserting the Eq (3.43) in Eq (3.36), we obtain

Řb(υ̂, 0, ς) = Db(υ̂, 0, ς)(χ∗(b(ς))). (3.49)
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Using the Eq (3.44) in Eq (3.37), gives

Řv(υ̂, 0, ς) = Dv(υ̂, 0, ς)(χ∗(bv(ς))). (3.50)

Using Eq (3.33) and (3.45) in Eq (3.46), we obtain

I(0, ς) =
Nu(ς)
De(ς)

. (3.51)

Where

Nu(ς) = ςλvP0 ×
{
( f ς + f )

(
N∗b (Ab(ς)) V(ς) + N∗v (Av(ς))

)
− 1

}
;

De(ς) =
[
ς − ( f ς + f ) (A∗(λ) + (1 − r + rς)(1 − A∗(λ))) N∗b(Ab(ς))

]
.

Using Eq (3.51) in Eq (3.45), we get

Bb(0, ς) =
P0

De(ς)
λv ×

{
( f ς + f )

(
(N∗v (Ab(ς)) − 1) (A∗(λ) + (1 − r + rς)(1 − A∗(λ))) + ςV(ς)

)}
.(3.52)

Using Eq (3.52) in Eq (3.47), we get

Db(υ̂, 0, ς) =
δλvP0

(
1 − N∗b (Ab(ς))

)
Ab(ς) × De(ς)

( f ς + f )
 (N∗v (Ab(ς)) − 1)
(A∗(λ) + (1 − r + rς)(1 − A∗(λ)))

 + ςV(ς)

 .(3.53)

Using Eq (3.53) in Eq (3.49), we get

Řb(υ̂, 0, ς) =
δP0

(
1 − N∗b (Ab(ς))

)
W∗

b(b(ς))

Ab(ς) × De(ς)


( f ς + f )

 (N∗v (Ab(ς)) − 1)
(A∗(λ) + (1 − r + rς)(1 − A∗(λ)))


+ςV(ς)

 . (3.54)

Using Eq (3.48) in Eq (3.50), we get

Řv(υ̂, 0, ς) =
δvλvP0

(
1 − N∗v (Av(ς))

)
W∗

v (bv(ς))
Av(ς)

. (3.55)

Likewise, Eq (3.33), Eq (3.48), and Eqs (3.51)–(3.55) are inserted into Eqs (3.38)–(3.44). Next,
we calculate the findings for the following PGFs: I(υ̂, ς), Bb(υ̂, ς), ϕv(υ̂, ς) Db(υ̂, 0, ς),Dv(υ̂, 0, ς),
Řb(υ̂, 0, ς), and Řv(υ̂, 0, ς).

Theorem 1. The prob. distributions of the number of consumers in orbit and the server states have
the following PGFs.

I(ς) =
Nu(ς)
De(ς)

; (3.56)

Nu(ς) = ςλvP0(1 − A∗(λ)/λ) ×
{
( f ς + f )

(
N∗b (Ab(ς)) V(ς) + N∗v (Av(ς))

)
− 1

}
;

De(ς) =
[
ς − ( f ς + f ) (A∗(λ) + (1 − r + rς)(1 − A∗(λ))) N∗b(Ab(ς))

]
.
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Bb(ς) =
P0λv(1 − N∗b(Ab(ς)))

Ab(ς)De(ς)

( f ς + f )
 (N∗v (Ab(ς)) − 1)
(A∗(λ) + (1 − r + rς)(1 − A∗(λ)))

 + ςV(ς)

 ;(3.57)

ϕv(ς) = {λPV0V(ς)/θ} ; (3.58)

Db(ς) =
δλP0

(
1 − N∗b (Ab(ς))

)
(1 −W∗

b(b(ς)))

Ab(ς) × b(ς) × De(ς)
×{

( f ς + f )
(
(N∗v (Ab(ς)) − 1) (A∗(λ) + (1 − r + rς)(1 − A∗(λ)))

)
+ ςV(ς)

}
; (3.59)

Dv(ς) = δvλvP0

(
(1 −W∗

v (bv(ς)))(1 − N∗v Av(ς))
bv(ς)Av(ς)

)
; (3.60)

Řb(ς) =
δP0

(
1 − N∗b (Ab(ς))

)
(1 −G∗b(b(ς)))W∗

b(b(ς))

b(ς) × Ab(ς) × De(ς)
×{

( f ς + f )
(
(N∗v (Ab(ς)) − 1) (A∗(λ) + (1 − r + rς)(1 − A∗(λ)))

)
+ ςV(ς)

}
;(3.61)

Řv(ς) =
δvλvP0

(
1 − N∗v (Av(ς)) (1 −G∗v(Nv(ς)))

)
W∗

v (Nv(ς))
b(ς)Av(ς)

. (3.62)

where

P0 =
1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))

1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))

+λvE(Nb)
 f N∗v (θ) + (N∗v (θ) − 1)r(1 − A∗(λ)) + 1 − N∗v (θ)

−(1 − N∗v (θ))(−λ − λδv(w1 + (g1))/θ)

 × (1 + δv(w1 + g1))

+λv

 1 − f − r(1 − A∗(λ)
−E(Nb)(λ + λδ(w1 + g1)))

 (1 − N∗b(θ)/θ) × (1 + δv(w1
v + g1

v))

+( f + (1 − N∗v (θ))(λ + δ(w1λ + (g1λ)))) × (E(Nb) + 1/θ)



(3.63)

Proof. By integrating equations (3.38) to (3.44) with respect to υ̂, we may determine the PGFs.

I(ς) =
∫ ∞

0
I(υ̂, ς)dυ̂, Bb(ς) =

∫ ∞
0

Bb(υ̂, ς)dυ̂, ϕv(ς) =
∫ ∞

0
ϕv(υ̂, ς)dυ̂,

Řb(ς) =
∫ ∞

0

∫ ∞
0

Řb(υ̂, y, ς)dυ̂dy, Řv(ς) =
∫ ∞

0

∫ ∞
0

Řv(υ̂, y, ς)dυ̂dy,

Db(ς) =
∫ ∞

0

∫ ∞
0

Db(υ̂, y, ς)dυ̂dy, Dv(ς) =
∫ ∞

0

∫ ∞
0

Dv(υ̂, y, ς)dυ̂dy

The prob. of the server being idle, denoted as P0, can be calculated using the normalized condition.
Therefore, by substituting ς = 1 into Eqs (3.56) to (3.62) and following L’Hospital’s rule when
appropriate, we may derive P0 + I(1) + Bb(1) + ϕv(1) + Řb(1) + Řv(1) + Db(1) + Dv(1) = 1. □

3.3. Corollary

Under the system stability condition ( f + r(1 − A∗(λ) + E(Nb)(λ + λδ(w1 + g1)))) < 1, the server
is unoccupied, down, WV, delayed repair or under repair; then, the PGF for the number of consumers
in the orbit and system is denoted as Ko(ς) and Ks(ς), respectively.

Ko(ς) =
Nuq(ς)
Deq(ς)

= P0 + I(ς) + Bb(ς) + ϕv(ς) + Řb(ς) + Řv(ς) + Db(ς) + Dv(ς), (3.64)
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where

Nu0(ς) =



(1 − N∗b(Ab(ς))) ×

( f ς + f )
 (N∗v (Ab(ς)) − 1)
(A∗(λ) + (1 − r + rς)(1 − A∗(λ)))

 + ςV(ς)


+λ(1 − ς)(ς(1 − A∗λ))(( f ς + (1 − f ))N∗b(Ab(ς))V(ς) + N∗v (Av(ς)) − 1)
+λ(1 − ς)(ς − ( f ς + (1 − f ))(A∗λ) + (1 − r + rς)(1 − A∗(λ)))N∗b Ab(ς)

+λ(1 − ς)
(
(ς − ( f ς + (1 − f ))(A∗λ) + (1 − r + rς)(1 − A∗(λ)))B∗bAb(ς)V(ς)

)
×(λv/θ + δv/θ)(1 −G∗vbv(ς)W∗

v bv(ς))


.

Deq(ς) = b(ς) × +λ(1 − ς)(ς − ( f ς + (1 − f ))(A∗λ) + (1 − r + rς)(1 − A∗(λ)))N∗b Ab(ς).

Ks(ς) =
Nus(ς)
Deq(ς)

= P0 + I(ς) + ς(Bb(ς) + ϕv(ς)) + Řb(ς) + Db(ς) + Řv(ς) + Dv(ς). (3.65)

Nus(ς) =



ς(1 − N∗b(Ab(ς))) ×

( f ς + f )
 (N∗v (Ab(ς)) − 1)
(A∗(λ) + (1 − r + rς)(1 − A∗(λ)))

 + ςV(ς)


+λ(1 − ς)(ς(1 − A∗λ))(( f ς + (1 − f ))N∗b(Ab(ς))V(ς) + N∗v (Av(ς)) − 1)
+λ(1 − ς)(ς − ( f ς + (1 − f ))(A∗λ) + (1 − r + rς)(1 − A∗(λ)))N∗b Ab(ς)

+ςλ(1 − ς)
(
(ς − ( f ς + (1 − f ))(A∗λ) + (1 − r + rς)(1 − A∗(λ)))N∗b Ab(ς)V(ς)

)
×(λv/θ)

+λ(1 − ς)
(
(ς − ( f ς + (1 − f ))(A∗λ) + (1 − r + rς)(1 − A∗(λ)))N∗b Ab(ς)V(ς)

)
×(δv/θ)(1 −G∗vbv(ς)W∗

v bv(ς))



.

4. Performance characteristic

In this section, we examine the probabilities of the system states the server being unoccupied,
RS, WV, delayed repair (RS, WV) and under maintenance (RS, WV). Also, we examine the average
number of consumers in orbit Lq, the average number of consumers in the system Ls, mean availability
S Av, system failure occur Fail f , average busy time H(Tbs), and average busy cycle H(Tbc) of our
model.

4.1. Probabilities of the system state

The outcomes derived from Eqs (3.56)–(3.62) are obtained by substituting ς → 1 and thereafter
applying L-Hospital’s rule as appropriate.

1) The prob. of the server remaining idle during the retrial period:

I(1) = λvP0(1 − A∗(λ)) ×
{

( f + (1 − N∗v (θ))(λ + δ(w1λ + (g1λ)))) × (E(Nb) + 1/θ)
1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))

}
. (4.1)
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2) The prob. that the server is in RS period.:

Bb(1) = λvP0E(Nb)



 f N∗v (θ) + (N∗v (θ) − 1)r(1 − A∗(λ)) + 1 − N∗v (θ)
−(1 − N∗v (θ))(−λ − λδv(w1 + (g1))/θ)


1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))


. (4.2)

3) The prob. of the server operating at a reduced service rate:

ϕv(1) =
{
λvP0(1 − N∗v (θ))/θ

}
. (4.3)

4) The prob. that the server is delayed repair in RS:

Db(1) = λvP0δE(Nb)w(1) ×



 f N∗v (θ) + (N∗v (θ) − 1)r(1 − A∗(λ)) + 1 − N∗v (θ)
−(1 − N∗v (θ))(−λ − λδv(w1 + (g1))/θ)


1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))


. (4.4)

5) The prob. that the server is delayed repair in WV:

Dv(1) = λvP0δv ×

(
(1 − N∗v (θ))

θ

)
w(1)

v . (4.5)

6) The prob. that the server is undergoing maintenance in RS is determined by:

Řb(1) = P0δλvE(Nb)g(1) ×



 f N∗v (θ) + (N∗v (θ) − 1)r(1 − A∗(λ)) + 1 − N∗v (θ)
−(1 − N∗v (θ))(−λ − λδv(w1 + (g1))/θ)


1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))


. (4.6)

7) The prob. that the server is undergoing maintenance in WV is determined by:

Řb(1) = λvP0δv ×

(
(1 − N∗v (θ))

θ

)
g(1)

v . (4.7)

4.2. Average orbit size and system size

i) To get the number of consumers in the orbit Lq, we differentiate Eq (3.64) with respect to ς and
evaluate it at ς = 1.

Lq = K
′

0(1) = lim
ς→1

K
′

0(ς) = P0

Nu
′′′

q (1)De
′′

q(1) − De
′′′

q (1)Nu
′′

q(1)

3(De′′q(1))2

 , (4.8)

where

Nu
′′

q(1) = −2λ



E(Nb)

 f N∗v (θ) − N∗
′

v (θ)(λv + δ(w1λv + g1λv)) + (N∗v (θ) − 1)r(1 − A∗(λ))

+V(1) + V
′

(ς)


+(1 − f − r(1 − A∗(λ)))(1 +

1 − N∗vλv

θ
)

+(1 − A∗(λ))

 f + E(Nb)(λ + δ(w1λ + g1λ))V(1) + V
′

(ς)

−(N∗
′

v (θ)(λv + δ(w1λv + g1λv)))




.
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Nu
′′′

q (1) = 6λ



(1 − f − r(1 − A∗(λ)))E(Nb)λ + δ(w1λ + g1λ)

−(1 − A∗(λ)) f E(Nb)(λ + δλ(w1 + g1))(1 − N∗v (θ)) + V
′

(ς) + N∗
′

v (λv + δλv(w1 + g1))+

(1 − A∗(λ))E(Nb)(λ + δλ(w1 + g1))V
′

(ς)

−(1 − A∗(λ)) f + E(Nb)(λ + δλ(w1 + g1))(1 − N∗v (θ)) + V
′

(ς) + N∗
′

v (λv + δλv(w1 + g1))

−E(Nb)

 f N∗
′

v (θ)(λv + δλv(w1 + g1)) +

 f N∗v (θ)

−N∗
′

v (θ)(λv + δλv(w1 + g1))

 × r(1 − A∗(λ))


+(1 − A∗(λ))V

′

(ς) + f r(1 − A∗(λ))
(
1 −

λv(1 − N∗v )(θ)
θ

)
−λv(1 − f − r(1 − A∗(λ)))

V ′

− E(Nb)(λ + δλ(w1 + g1))(1 − N∗v (θ))
−(1 − N∗v (θ))δvλ(w1

v + g1
v)




−3λ(1 − A∗(λ))


E(Nb)2(λ + δλ(w1 + g1))(1 − N∗v (θ))

−E(Nb)δλ2(w2 + g2 − 2w1g1)(1 − N∗v (θ))

+V
′′

(ς) + N∗
′′

v (θ)(λv + δλv(w1
v + g1

v)2) + N∗
′

v (θ)δ(λ2
v(w1

v + g1
v) − 2(w1g1))


−3λ2E(Nb)2

 f N∗v (θ) − N∗
′

v (θ)(λv + δλv(w1 + g1)) + (1 − N∗v (θ)) × r(1 − A∗)

+(1 − N∗v (θ)) + V
′

(ς)


−3E(Nb)λ

(
N∗

′′

v (θ)(λv + δλv(w1
v + g1

v)2) + N∗
′

v (θ)δ(λ2
v(w2

v + g2
v) − 2(w1g1))

)
.

De
′′

q(1) = −2λ
(
(1 − f − r(1 − A∗(λ))) − E(Nb)λ + δ(w1λ + g1λ)

)
.

De
′′′

q (1) = 6λ f r(1 − A∗(λ)) + 6λE(Nb)(λ + δ(w1λ + g1λ))[ f + r(1 − A∗(λ))].
−3λE(Nb)2(λ + δ(w1λ + g1λ)) + 3λδE(Nb)(λ2(w2 + g2) − 2w1g1),

where

V
′

(ς) = B∗
′

(θ)(λv + δv(w1λv + g1λv)) + (1 − N∗v (θ))(λv + δv(w1λv + g1λv))/θ.

V
′′

(ς) = −B∗
′′

(θ)(λv + δv(w1λv + g1λv))2 − B∗
′

δv((w2 + g2) − 2(w1g1)) + 2B∗
′

(λv + δv(w1λv + g1λv))2/θ

+2(1 − B∗(θ))(λv + δv(w1λv + g1λv))2/θ2 − (1 − B∗(θ))δv((w2 + g2) − 2(w1g1))/θ.

ii) By differentiating Eq (3.65) with respect to ς and evaluating it at ς = 1, we may find the number
of consumers in the system, denoted as Ls.

Ls = K
′

s(1) = lim
ς→1

K
′

s(ς) = P0

Nu
′′′

s (1)De
′′

q(1) − De
′′′

q (1)Nu
′′

q(1)

3(De′′q(1))2

 . (4.9)

Where

Nu
′′′

s (1) = Nu
′′′

q (1) −
6λ
θ

(1 − f − r(1 − A∗))(1 − N∗b(θ))λv.

iii) The average time of a consumer waiting in the system Ws =
Ls
λe f f

and the average time of a

consumer waiting in the orbit Wq =
Lq

λe f f
is obtained by using the Little’s formula.

Where λe f f = λ(I(1) + Bb(1) + Db(1) + Rb(1)) + λv(ϕv(1) + Dv(1) + Rv(1)).
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4.3. Reliability measures

To enhance the reliability of a system that is susceptible to breakdowns, it is important to decide
on the reliability measurements of the model. These measures offer major details into the average
server availability and other relevant indices.

1) The server’s mean availability (S Av) is determined by

S Av = 1 − lim
ς→1

(Db(ς) + Dv(ς) + Řb(ς) + Řv(ς)) = 1 − (Db(1) + Dv(1) + Řb(1) + Řv(1))

= 1 −


P0δλvE(Nb)(g(1) + w1) ×



 f N∗v (θ) + (N∗v (θ) − 1)r(1 − A∗(λ)) + 1 − N∗v (θ)
−(1 − N∗v (θ))(−λ − λδv(w1 + (g1))/θ)


1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))


+λvP0δv

((
1 − N∗v (θ)

)
θ

)
(w1

v + g1
v)


.

2) The steady-state system failure occurrence in RS is as follows:

Fail f = δ ∗ λvP0E(Nb)



 f N∗v (θ) + (N∗v (θ) − 1)r(1 − A∗(λ)) + 1 − N∗v (θ)
−(1 − N∗v (θ))(−λ − λδv(w1 + (g1))/θ)


1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))


.

4.4. Average busy time and the busy cycle

Let the average length of the busy cycle and busy period H(Tbs) and H(Tbc) be taken using the
following method:

P0 =
H(T0)

H(T0) + H(Tbs)
, H(Tbs) =

1
λ

( 1
P0
− 1

)
, and H(Tbc) =

1
(λ)P0

= H(T0) + H(Tbs), (4.10)

where the length of the system in the empty state is represented by T0, and H(T0) = (1/λ). By
inserting Eq (3.53) in Eq (4.10), we obtain the anticipated outcome to be

H(Tbs) =
1
λ



E(Nb)λv

 f N∗v (θ) + (N∗v (θ) − 1)r(1 − A∗(λ)) + 1 − N∗v (θ)
−(1 − N∗v (θ))(−λ − λδv(w1 + (g1))/θ)

 × (1 + δv(w1 + g1))

+λv

(1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1))))
(1 − N∗v (θ)/θ)

 × (1 + δv(w1
v + g1

v))

+( f + (1 − N∗v (θ))(λ + δ(w1λ + (g1λ)))) × (E(Nb) + 1/θ)

1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))



.
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H (Tbc) =



1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))

+E(Nb)λv

 f N∗v (θ) + (N∗v (θ) − 1)r(1 − A∗(λ)) + 1 − N∗v (θ)
−(1 − N∗v (θ))(−λ − λδv(w1 + (g1))/θ)

 × (1 + δv(w1 + g1))

+λv

(1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1))))
(1 − N∗v (θ)/θ)

 × (1 + δv(w1
v + g1

v))

+( f + (1 − N∗v (θ))(λ + δ(w1λ + (g1λ)))) × (E(Nb) + 1/θ)

(
1 − f − r(1 − A∗(λ) − E(Nb)(λ + λδ(w1 + g1)))

) .

5. Special cases

In this section, we analyze certain specific cases of our model that coincide with the current
research.
Case (i) M/G/1 model with balking consumer in multiple WV mode. Choose δv = δ; r = 0; λv =

λ, and ζ = 0. In this case, we get

Ks(ς) =

P0


b(1 − ς)

[(
ς − ((1 − f ) + f ς) (A∗(λ) + ς1 − A∗(λ)) N∗b (hb(ς))

) (
1 + ςλθ−1V(ς)

)
+λvς

(
(1 − A∗(λ))

(
−1 + ((1 − f ) + f ς)

(
V(ς)N∗b (hb(ς)) + N∗v (hv(ς))

)))]
+ς(1 − N∗b (hb(ς)))

(
ςV(ς) + (A∗(λ) + ς(1 − A∗(λ)))

(
−1 + ((1 − f ) + f ς)N∗v (hv(ς))

))


b(1 − ς)
(
ς − ((1 − f ) + f ς) (A∗(λ) + ς(1 − A∗(λ))) N∗b (hb(ς))

) .

This matches the outcome obtained by Rajadurai et al. [19].
Case (ii) No delayed repair and reneging. Let ζ = r = 0, our approach can be simplified to a MX/G/1
RQ with retrial feedback queue with Balking, WVs and VI. Here, Ks(ς) was obtained as

Ks(ς) =

P0



bNvλ(1 −C(ς))
[(
ς − ( f + (1 − f )ς) (A∗(λ) + V(1 − A∗(λ))) N∗b (hb(ς))

) (
1 + ςλvV(ς)θ−1

)
+λv

(
ς(1 − A∗(λ))

(
−1 + ((1 − f ) + f ς)

(
V(ς)N∗b (hb(ς)) + N∗v (hv(ς))

)))]
+λvNvς(1 − N∗b (hb(ς)))

(
ςV(ς) + (A∗(λ) + ς(1 − A∗(λ)))

(
−1 + ((1 − f ) + f ς)N∗v (hv(ς))

))
+ςαvλbV(ς)θ−1(1 − N∗v (bvλv(1 −C(ς))))

 ς − ((1 − f )
+ f ς) (A∗(λ) + ς(1 − A∗(λ))) N∗b (hb(ς))




bbvλ(1 −C(ς))

(
ς − ((1 − f ) + f ς) (A∗(λ) + ς(1 − A∗(λ))) N∗b (hb(ς))

) .

This matches the outcome obtained by Jain [41].
Case (iii) M/G/1 model without feedback, deleyed repair, and reneging. Choose δv = 0, δ = 0, r =
0, and f = 0. In this case, we obtain:

Ks(ς) =

P0


(1 − ς)

[(
ς − ((1 − f ) + f ς) (A∗(λ) + ς(1 − A∗(λ))) N∗b (hb(ς))

) (
1 + ςV(ς)

θ

)
+ς

(
(1 − A∗(λ))

(
−1 + ((1 − f ) + f ς)

(
V(ς)N∗b (hb(ς)) + N∗v (hv(ς))

)))]
+(1 − N∗b (hb(ς)))

(
ςV(ς) − (A∗(λ) + ς(1 − A∗(λ))) (1 − N∗v (hv(ς)))

)


(1 − ς)
(
ς − ((1 − f ) + f ς) (A∗(λ) + ς(1 − A∗(λ))) N∗b (hb(ς))

) .

(5.1)

This matches the outcome obtained by Gao et al. [10].
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6. Cost optimization

To design a retrial queueing system to perform cost analysis, the most effective course is to
determine the optimal system parameters, such as the optimal mean service rate or the optimal number
of servers. In this section, we discuss the optimal structure for the single-server feedback retrial queue
with working vacations subject to server failure. We obtain the total expected cost function per unit
time using the following definitions of cost elements (Ch,C0,Cs, and Ca) and the cost structure:

TC = ChLs +C0
H(Tbs)
H(Tbc)

+Cs
1

H(Tbc)
+Ca

H(T0)
H(Tbc)

= ChLs +C0(1 − P0) +Csλ +CaP0.

Where Ch,C0,Cs, and Ca represent the holding costs per unit of time for each customer in the system,
the cost per unit of time to keep the server in and on operations, the setup cost per busy cycle, and
the startup cost per unit of time for setting up the server in order to begin providing the service,
respectively. For the following values of the cost elements and other parameters, such as λ&λv =

1, ȧ = 2,Nb = 6,Nv = 4, θ = 2, χv&χb = 5; γv&γb = 3, f = 0.2, δv&δ = 0.1, r = 0.2,Ch = 5,Co =

80,Cs = 600, and Ca = 80, we find the total expected cost per unit of time, TC = 440.4952, assuming
exponential retrial times, service times, working vacation times, and repair times. Furthermore, Tables
1–3 show the impacts of (Ch; Co), (Co; Ca), and (Cs; Ca) on the expected cost function, respectively. It
is evident that when cost parameters increase, the expected cost function trends upward linearly.

Table 1. The effect of (Ch,C0) on the expected cost function TC with Cs = $600, and
Ca = $80.

(Ch,C0) (5,80) (5,90) (5,100) (10,80) (15,80)
TC 440.4952 444.3521 448.2090 440.9905 441.4857

Table 2. The effect of (C0,Ca) on the expected cost function TC with Ch = $5, and Cs =

$600.

(C0,Ca) (80,80) (85,80) (90,80) (80,90) (80,95)
TC 440.4952 442.4237 444.3521 446.6383 449.7099

Table 3. The effect of (Ca,Cs) on the expected cost function TC with Ch = $5, and C0 =

$80.

(Ca,Cs) (80,600) (85,600) (90,600) (80,650) (80,700)
TC 440.4952 443.5668 446.6383 470.4952 500.4952

Similarly, we can conduct a sensitivity study on specific system parameters. After establishing
the above-mentioned base values, one parameter can be changed at a time to calculate the appropriate
objective function value. The graphs from Figures 2–4 display the effect of specific system parameters
(ȧ, λ,Nv) on the overall expected cost per unit of time.
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Figure 2. TC Versus ȧ.

Figure 3. TC Versus ȧ.

Figure 4. TC Versus Nv.
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7. Numerical example

In this section, we will analyze the impact of numerous variables on the efficiency indicators of
our system using various numerical demonstrations.

The examples are predicated on the assumption that all instances of retrial, RS, periods of reduced
service rate, delayed repair, and maintenance times follow an exponential distribution. Consequently,
the parameters are chosen with arbitrary values satisfying the stability condition. The results are
visually represented using MATLAB software. It is worth noting the equation of exponential
distribution f (υ̂) = νe−νυ̂, υ̂ > 0, Erlang-2 stage distribution f (υ̂) = ν2υ̂e−νυ̂, υ̂ > 0, and the hyper
exponential distribution f (υ̂) = cνe−νυ̂ + (1 − c)ν2e−ν

2υ̂, υ̂ > 0.

7.1. Sensitivity analysis

The data presented in Table 4 indicates that when the rate of repeated tries ȧ increases, there is a
constant decrease in the prob. of the orbit size Lq and the prob. of the server being unoccupied, while
the retrial time I decreases. Meanwhile, the prob. of the server being idle, denoted as P0, also rises.
Regarding the given values λv&λ = 1; θ = 3; Nb = 8; r = 0.2; χv&χb = 4; γv&γb = 4; δv&δ = 0.3;
f = 0.2; Nv = 4; c = 0.5. The impacts of the prob. on the system’s performance metrics are described,
and documented in Table 5 for the given values of λv&λ = 2; θ = 3; Nv = 4; Nb = 8; r = 0.2; χv&χb =

4; γv&γb = 4; ȧ = 5; f = 0.2; c = 0.5. We have seen that the breakdown rate δ increases consistently
as the values of the orbit size prob. Lq, the server unoccupied rate P0, and the server idle rate during
the retry period I increase. The patterns exhibited by the tables align with the expected assumptions.

Table 4. The impact of repeated attempt rate ȧ on PO, Lq, I.

Retrial rate Exponential Erlang 2 stage Hyper Exponential
ȧ P0 Lq I P0 Lq I P0 Lq I

3 0.5180 0.1588 0.0711 0.5786 0.6502 0.1042 0.5053 0.0914 0.0747
4 0.5189 0.1377 0.0704 0.5799 0.5826 0.1027 0.5062 0.0736 0.0740
5 0.5195 0.1240 0.0700 0.5807 0.5372 0.1017 0.5067 0.0633 0.0736
6 0.5199 0.1143 0.0696 0.5814 0.5046 0.1009 0.507 0.0567 0.0733
7 0.5202 0.1071 0.0694 0.5819 0.4801 0.1004 0.5072 0.0520 0.0732

Table 5. The impact of breakdown rate δ on P0, Lq, I.

Breakdown rate Exponential Erlang 2 stage Hyper Exponential
δ P0 Lq I P0 Lq I P0 Lq I

0.20 0.5206 0.1355 0.0813 0.5938 0.4257 0.0401 0.5359 0.0879 0.0761
0.30 0.5180 0.1397 0.0780 0.5786 0.4478 0.0365 0.5341 0.0914 0.0747
0.40 0.5154 0.1439 0.0748 0.5633 0.4636 0.0329 0.5323 0.0949 0.0733
0.50 0.5128 0.1481 0.0716 0.5480 0.4744 0.0293 0.5305 0.0983 0.0719
0.60 0.5102 0.1524 0.0684 0.5326 0.4809 0.0256 0.5287 0.1017 0.0705

Specifically, in Table 6, when the lower service rate Nv escalates, the server idle rate P0 and length
of the orbit Lq also escalates, while the prob. that the server is idle during the retrial period I decreases,
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given the values of λv&λ = 1; δv&δ = 0.3; Nb = 8; r = 0.2; χv&χb = 4; γv&γb = 4; ȧ = 5; θ =
3; f = 0.2; c = 0.5. In Table 7, when the feedback rate f rises, then the average length of the
orbit Lq, the server idle during retrial period I, and server idle P0 declines, relating to the values
λv&λ = 2; δv&δ = 0.3; Nb = 8; r = 0.2; χv&χb = 4; γv&γb = 4; ȧ = 5; θ = 3; c = 0.5. In Table 8,
when the reneging rate r rises, the average length of the orbit Lq, the server idle during retrial period
I, and the server idle P0 decline, regarding the specified values λv&λ = 1; δv&δ = 0.3; Nb = 8; r =
0.2; χv&χb = 4; γv&γb = 4; ȧ = 5; θ = 3; c = 0.5.

Table 6. The impact of working vacation period Nv on P0, Lq, I.

Slower service rate Exponential Erlang 2 stage Hyper Exponential
Nv P0 Lq I P0 Lq I P0 Lq I

4.5 0.5208 0.1479 0.0684 0.5798 0.6233 0.0353 0.5091 0.0834 0.0723
5.5 0.5254 0.1309 0.0639 0.5821 0.5743 0.0332 0.5148 0.0755 0.0665
6.5 0.5292 0.1184 0.0603 0.5840 0.5313 0.0314 0.5189 0.0702 0.0623
7.5 0.5322 0.1088 0.0574 0.5856 0.4935 0.0298 0.5221 0.0664 0.0592
8.5 0.5348 0.1013 0.0549 0.5870 0.4601 0.0285 0.5245 0.0636 0.0567

Table 7. The impact of feedback rate f on P0, Lq, I.

Feedback rate Exponential Erlang 2 stage Hyper Exponential
f P0 Lq I P0 Lq I P0 Lq I

0.2 0.5100 0.1397 0.0780 0.5786 0.4788 0.0365 0.5061 0.0914 0.0747
0.3 0.4715 0.1541 0.0966 0.5372 0.5571 0.0439 0.4662 0.1069 0.0950
0.4 0.4292 0.1703 0.1173 0.4919 0.6791 0.0520 0.4223 0.1256 0.1173
0.5 0.3825 0.1891 0.1404 0.4418 0.9021 0.0609 0.3739 0.1494 0.1420
0.6 0.3308 0.2114 0.1664 0.3864 1.4686 0.0708 0.3201 0.1821 0.1693

Table 8. The impact of reneging rate r on P0, Lq, I.

Reneging rate Exponential Erlang 2 stage Hyper Exponential
r P0 Lq I P0 Lq I P0 Lq I

0.2 0.4499 0.1588 0.0711 0.5786 0.6502 0.0365 0.5053 0.0914 0.0747
0.3 0.4489 0.1669 0.0729 0.5747 0.6894 0.0381 0.5036 0.0965 0.0761
0.4 0.4478 0.1756 0.0748 0.5705 0.7361 0.0399 0.5019 0.1019 0.0775
0.5 0.4467 0.1850 0.0768 0.5659 0.7927 0.0419 0.5001 0.1076 0.0789
0.6 0.4454 0.1951 0.0790 0.5608 0.8627 0.0440 0.4982 0.1135 0.0804

Figures 5–11 depict the influence of the variables λP, λN , r, ȧ, θ, Nb, and Nv on the 3D graph
based on system performance metrics.

In Figure 5, the server’s idle rate P0 increases when both the lower service rate Nv and the rate of
retrial Nb increase. Figure 6 demonstrate that the queue length Lq lowers when the retry rate ȧ and
the rate of the working vacation Nv increase. In Figure 7, the length of the queue Lq increases as both
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the arrival rate λ and the breakdown rate with RS δ increase. In Figure 8, the length of the queue
Lq increases as the server’s rate of service Nb increases and the rate of delay ζ drops consistently. In
Figure 9, the queue length Lq drops as the server’s rate of service θ grows and the rate of retry ȧ also
increases. In Figure 10, the server idle rate P0 drops as the feedback rate f and the reneging rate r
grow. In Figure 11, the length of the queue Lq lowers as the server’s rate of Nb and the rate of the slow
service Nv constantly grow.

Figures 12–15 illustrate the impact of the variables λP, λN , r, ȧ, θ, Nb, and Nv on the 2D graph
based on system performance metrics. Note that the exponential distribution is f (υ̂) = νe−νυ̂, υ̂ > 0,
Erlang-2 stage distribution is f (υ̂) = ν2υ̂e−νυ̂, υ̂ > 0, and the hyper-exponential distribution is f (υ̂) =
cνe−νυ̂ + (1 − c)ν2e−ν

2υ̂, υ̂ > 0. Figure 12 demonstrates a positive correlation between the increase
in the slow service rate Nv and the growth of the prob. of server idle rate P0. The graph in Figure
13 illustrates that the prob. of the server being idle, denoted as P0, decreases as the feedback rate,
represented by f , increases. Figure 14 illustrates that the average size of orbit Lq exhibits an upward
trend as the reneging rate r increases. Figure 15 illustrates that the average size of orbit Lq decreases
as the repair rate ζ increases. The following data visualizations illustrate the influence of the attributes
on the system.

Figure 5. P0 Versus Nb and Nv. Figure 6. Lq Versus ȧ and Nv.

Figure 7. Lq Versus λ and δ. Figure 8. Lq Versus Nb and ζ.
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Figure 9. P0 Versus θ and ȧ. Figure 10. P0 Versus r and f .

Figure 11. LqVersus Nb and Nv. Figure 12. P0 Versus Nv.

Figure 13. P0 Versus f . Figure 14. Lq Versus r.
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Figure 15. Lq Versus ζ.

7.2. Limitations

The proposed retrial queueing model incorporating working vacations, breakdowns, and repairs
offers a comprehensive framework for analyzing service systems. However, like any model, it
possesses inherent limitations and underlying assumptions that can influence the interpretation of
the results.

The model frequently assumes that the retrial queue has an endless capacity. This makes analysis
easier but might not accurately represent real-world situations. In reality, users may completely give
up on the system if they believe that wait times are too lengthy. This may cause the model’s average
waiting times to increase. Usually, the model focuses on a system with just one server. This can
be helpful for tractability, but in multi-server setups, complicated relationships and problems with
resource allocation occur. The model may assume that service hours, arrival rates, and other related
variables are fixed. However, demand and service requirements fluctuate in real-world systems.
We can establish the suggested approach results in a more effective system with shorter wait times
for customers, better server utilization, and less downtime from malfunctions by looking at these
measures. In the proposed model, we can further extend the concepts of bulk arrival queue, optional
phase service, and N-policy.

8. Conclusions

In this study, we have analyzed a non-Markovian feedback retrial queue, reneging, delayed repair,
and working vacation subject to server breakdown, along with server failures that occur during service
time for consumers in both normal service mode and working vacation mode. The PGFs for the
number of consumers in the system during various states such as server unoccupied, occupied, on
WV, delayed repair, and under repair have been obtained by using the SVT approach. Furthermore,
the explicit expression for the mean queue length of both the orbit and the system was derived. We
examined the probabilities of the system states and discussed some significant special cases. The
utilization of numerical results in sensitivity analysis can assist decision-makers in analyzing the
functioning of the system in various circumstances. Also, decision-makers and system developers in
the relevant industries and service organizations will use the results of the cost analysis to help them
make the best and most economical choices regarding the upgrading and capacity expansion of the
service systems in consideration. The inspiration for this model comes from its widespread use in
real-life systems, such as computer and telephone networks, where a single server handles messages
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while utilizing the working vacation policy.
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Appendix A

Theorem 2. The embedded Markov−Chain {πn; n ∈ N} is ergodic if and only if Γ < A∗(λ), where
Γ = f + r(1 − A∗(λ) + E(Nb)(λ + λδ(w1 + g1))).

Proof. To demonstrate the sufficient condition of ergodicity, it is convenient to utilize Foster’s
criterion (Pakes [42]) that specifies the Markov chain {πn; n ∈ N} is an irreducibility, and the
aperiodicity Markov-Chain is ergodic if ∀ ε > 0, ∃ a function h(q) ≥ 0, such that mean drift
σq = E[h(πn + 1) − h(πn)/πn = q] < ∞, and σq ≤ −ε ∀ q ∈ N. Suppose that we consider the function

h(q) = q, then πq can be expressed as: σq =

Γ − 1, q = 0;
Γ − A(∗)(λ), q = 1, 2, 3, ...

Thus, this inequality Γ < A∗(λ) represents the sufficient condition for ergodicity.
The second part of the proof is carried as follows: For Markov-chain {πn; n ≥ 1} that satisfies the

Kaplan’s condition σq < ∞, ∀ q ≥ 0, and ∃ q0 ∈ N such that σq ≥ 0 ∀ q ≥ q0, as discussed in
Sennot et al. [43]. Note that, from our case, obeys the Kaplan’s condition since ∃ is a finite number
k such that mpq = 0 ∀q < p − k, and p > 0, where M = mpq is the transition matrix of step one for
{πn; n ∈ N}. Then, Γ ≥ A∗(λ) implies that non-ergodicity of the Markov-Chain. □
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