The problem of bivariate polynomial interpolation using Newton-type bases is examined, leading to the application of a generalized Kronecker matrix product. Algorithms for computing the coefficients of the interpolating polynomial are presented, along with conditions that ensure relative errors of the order of machine precision. A generalization of the classical recursion formula of divided differences in two dimensions is proposed for grids that generalize the standard rectangular layout. Numerical experiments demonstrate the high accuracy achieved by the proposed approach.
Citation: Yasmina Khiar, Esmeralda Mainar, Eduardo Royo-Amondarain, Beatriz Rubio. High relative accuracy for a Newton form of bivariate interpolation problems[J]. AIMS Mathematics, 2025, 10(2): 3836-3847. doi: 10.3934/math.2025178
The problem of bivariate polynomial interpolation using Newton-type bases is examined, leading to the application of a generalized Kronecker matrix product. Algorithms for computing the coefficients of the interpolating polynomial are presented, along with conditions that ensure relative errors of the order of machine precision. A generalization of the classical recursion formula of divided differences in two dimensions is proposed for grids that generalize the standard rectangular layout. Numerical experiments demonstrate the high accuracy achieved by the proposed approach.
[1] |
L. Bos, S. De Marchi, S. Waldron, On the Vandermonde determinant of Padua-like points, Dolomites Research Notes Approx., 2 (2009), 1–14. https://doi.org/10.14658/pupj-drna-2009-1-1 doi: 10.14658/pupj-drna-2009-1-1
![]() |
[2] |
M. Caliari, S. De Marchi, M. Vianello, Bivariate polynomial interpolation on the square at new nodal sets, Appl. Math. Comput., 165 (2005), 261–274. https://doi.org/10.1016/j.amc.2004.07.001 doi: 10.1016/j.amc.2004.07.001
![]() |
[3] |
J. Delgado, H. Orera, J. M. Peña, Accurate computations with Laguerre matrices, Numer. Linear Algebra Appl., 26 (2019), e2217. https://doi.org/10.1002/nla.2217 doi: 10.1002/nla.2217
![]() |
[4] |
F. Dell'Accio, F. Di Tommaso, N. Siar, On the numerical computation of bivariate Lagrange polynomials, Appl. Math. Lett., 112 (2021), 106845. https://doi.org/10.1016/j.aml.2020.106845 doi: 10.1016/j.aml.2020.106845
![]() |
[5] |
F. Dell'Accio, F. Marcellán, F. Nudo, An extension of a mixed interpolation–regression method using zeros of orthogonal polynomials, J. Comput. Appl. Math., 450 (2024), 116010. https://doi.org/10.1016/j.cam.2024.116010 doi: 10.1016/j.cam.2024.116010
![]() |
[6] |
J. Demmel, Accurate singular value decompositions of structured matrices, SIAM J. Matrix Anal. Appl., 21 (2000), 562–580. https://doi.org/10.1137/S0895479897328716 doi: 10.1137/S0895479897328716
![]() |
[7] |
J. Demmel, P. Koev, The accurate and efficient solution of a totally positive generalized Vandermonde linear system, SIAM J. Matrix Anal. Appl., 27 (2005), 142–152. https://doi.org/10.1137/S0895479804440335 doi: 10.1137/S0895479804440335
![]() |
[8] |
S. Erol, B. Erol, A comparative assessment of different interpolation algorithms for prediction of gnss/levelling geoid surface using scattered control data, Measurement, 173 (2021), 108623. https://doi.org/10.1016/j.measurement.2020.108623 doi: 10.1016/j.measurement.2020.108623
![]() |
[9] |
M. Fan, X. Zuo, B. Zhou, Parallel computing method of commonly used interpolation algorithms for remote sensing images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 17 (2024), 315–322. https://doi.org/10.1109/jstars.2023.3329018 doi: 10.1109/jstars.2023.3329018
![]() |
[10] |
M. S. Floater, Polynomial interpolation on interlacing rectangular grids, J. Approx. Theory, 222 (2017), 64–73. https://doi.org/10.1016/j.jat.2017.06.002. doi: 10.1016/j.jat.2017.06.002
![]() |
[11] |
M. Gasca, J. J. Martínez, On the solvability of bivariate Hermite-Birkhoff interpolation problems, J. Comput. Appl. Math., 32 (1990), 77–82. https://doi.org/10.1016/0377-0427(90)90418-y doi: 10.1016/0377-0427(90)90418-y
![]() |
[12] |
M. Gasca, T. Sauer, Polynomial interpolation in several variables, Adv. Comput. Math., 12 (2000), 377–410. https://doi.org/10.1023/a:1018981505752 doi: 10.1023/a:1018981505752
![]() |
[13] | E. Isaacson, H. B. Keller, Analysis of numerical methods, Courier Corporation, 2012. |
[14] |
Y. Khiar, E. Mainar, E. Royo-Amondarain, B. Rubio, On the accurate computation of the Newton form of the Lagrange interpolant, Numer. Algor., 98 (2025), 1553–1573. https://doi.org/10.1007/s11075-024-01843-7 doi: 10.1007/s11075-024-01843-7
![]() |
[15] | P. Koev, TNTool software package for performing virtually all matrix computations with nonsingular totally nonnegative matrices to high relative accuracy. Available from: https://sites.google.com/sjsu.edu/plamenkoev/home/software/tntool. |
[16] |
P. Koev, Accurate computations with totally nonnegative matrices, SIAM J. Matrix Anal. Appl., 29 (2007), 731–751. https://doi.org/10.1137/04061903x doi: 10.1137/04061903x
![]() |
[17] |
E. Mainar, J. M. Peña, B. Rubio, Accurate and efficient computations with Wronskian matrices of Bernstein and related bases, Numer. Linear Algebra Appl., 29 (2022), e2423. https://doi.org/10.1002/nla.2423 doi: 10.1002/nla.2423
![]() |
[18] |
E. Mainar, J. M. Peña, B. Rubio, Accurate computations with matrices related to bases $\{t^{i}e^{\lambda t} \}$, Adv. Comput. Math., 48 (2022), 38. https://doi.org/10.1007/s10444-022-09954-2 doi: 10.1007/s10444-022-09954-2
![]() |
[19] |
A. Marco, J. J. Martínez, Accurate computations with totally positive Bernstein-Vandermonde matrices, Electron. J. Linear Algebra, 26 (2013), 357–380. https://doi.org/10.13001/1081-3810.1658 doi: 10.13001/1081-3810.1658
![]() |
[20] |
A. Marco, J. J. Martínez, R. Viaña, Accurate polynomial interpolation by using the Bernstein basis, Numer. Algor., 75 (2017), 655–674. https://doi.org/10.1007/s11075-016-0215-7 doi: 10.1007/s11075-016-0215-7
![]() |
[21] |
J. J. Martínez, A generalized Kronecker product and linear systems, Int. J. Math. Educ. Sci. Technol., 30 (1999), 137–141. https://doi.org/10.1080/002073999288193 doi: 10.1080/002073999288193
![]() |
[22] |
C. R. Morrow, T. N. L. Patterson, Construction of algebraic cubature rules using polynomial ideal theory, SIAM J. Numer. Anal., 15 (1978), 953–976. https://doi.org/10.1137/0715062 doi: 10.1137/0715062
![]() |
[23] |
Z. Yang, R. Huang, W. Zhu, J. Liu, Accurate solutions of structured generalized Kronecker product linear systems, Numer. Algor., 87 (2021), 797–818. https://doi.org/10.1007/s11075-020-00988-5 doi: 10.1007/s11075-020-00988-5
![]() |