In this paper, the Cauchy problem for a class of reaction diffusion equations are considered with nonlocal interactions in periodic media. First, we demonstrate the existence and uniqueness of solutions that are both positive and bounded for the stationary equation. Second, we derive results concerning the existence and uniqueness of solutions for the Cauchy problem by using the semigroup theory. Finally, we analyze the behavior of the solutions to the Cauchy problem for large times by using the comparison principle.
Citation: Yu Wei, Yahan Wang, Huiqin Lu. Asymptotics for fractional reaction diffusion equations in periodic media[J]. AIMS Mathematics, 2025, 10(2): 3819-3835. doi: 10.3934/math.2025177
In this paper, the Cauchy problem for a class of reaction diffusion equations are considered with nonlocal interactions in periodic media. First, we demonstrate the existence and uniqueness of solutions that are both positive and bounded for the stationary equation. Second, we derive results concerning the existence and uniqueness of solutions for the Cauchy problem by using the semigroup theory. Finally, we analyze the behavior of the solutions to the Cauchy problem for large times by using the comparison principle.
[1] |
R. A. Fisher, The wave of advance of advantageous genes, Ann. Hum. Genet., 7 (1937), 335–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x doi: 10.1111/j.1469-1809.1937.tb02153.x
![]() |
[2] | A. N. Kolmogorov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Mosc. Univ. Bull. Math., 1 (1937), 1–25. |
[3] |
Y. H. Du, H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., 12 (2010), 279–312. http://dx.doi.org/10.4171/JEMS/198 doi: 10.4171/JEMS/198
![]() |
[4] |
J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., 43 (2011), 1955–1974. https://doi.org/10.1137/10080693X doi: 10.1137/10080693X
![]() |
[5] |
E. Chasseigne, M. Chaves, J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271–291. https://doi.org/10.1016/j.matpur.2006.04.005 doi: 10.1016/j.matpur.2006.04.005
![]() |
[6] |
H. Berestycki, F. Hamel, N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Commun. Math. Phys., 253 (2005), 451–480. https://doi.org/10.1007/s00220-004-1201-9 doi: 10.1007/s00220-004-1201-9
![]() |
[7] |
X. Cabré, J. M. Roquejoffre, The infuence of fractional diffusion in Fisher-KPP equations, Commun. Math. Phys., 320 (2013), 679–722. https://doi.org/10.1007/s00220-013-1682-5 doi: 10.1007/s00220-013-1682-5
![]() |
[8] |
J. Coville, C. F. Gui, M. F. Zhao, Propagation acceleration in reaction diffusion equations with anomalous diffusions, Nonlinearity, 34 (2021), 1544. https://doi.org/10.1088/1361-6544/abe17c doi: 10.1088/1361-6544/abe17c
![]() |
[9] |
N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, et al., Environmental context explains L$\acute{e}$vy and Brownian movement patterns of marine predators, Nature, 465 (2010), 1066–1069. https://doi.org/10.1038/nature09116 doi: 10.1038/nature09116
![]() |
[10] |
X. Cabré, J. M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire, C. R. Math., 347 (2009), 1361–1366. http://dx.doi.org/10.1016/j.crma.2009.10.012 doi: 10.1016/j.crma.2009.10.012
![]() |
[11] |
S. Méléard, S. Mirrahimi, A Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity, Commun. Partial Differ. Equ., 40 (2015), 957–993. https://doi.org/10.1080/03605302.2014.963606 doi: 10.1080/03605302.2014.963606
![]() |
[12] |
X. H. Yang, Z. M. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
![]() |
[13] |
Y. Shi, X. H. Yang, Z. M. Zhang, Construction of a new time-space two-grid method and its solution for the generalized Burgers' equation, Appl. Math. Lett., 158 (2024), 109244. https://doi.org/10.1016/j.aml.2024.109244 doi: 10.1016/j.aml.2024.109244
![]() |
[14] |
X. H. Yang, W. L. Qiu, H. F. Chen, H. X. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004
![]() |
[15] |
X. H. Yang, Z. M. Zhang, Superconvergence analysis of a robust orthogonal gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
![]() |
[16] |
X. H. Yang, H. X. Zhang, Q. Zhang, G. W. Yuan, Simple positivity-preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes, Nonlinear Dyn., 108 (2022), 3859–3886. https://doi.org/10.1007/s11071-022-07399-2 doi: 10.1007/s11071-022-07399-2
![]() |
[17] |
L. Caffarelli, S. Dipierro, E. Valdinoci., A logistic equation with nonlocal interactions, Kinet. Rel. Models, 10 (2017), 141–170. https://doi.org/10.3934/krm.2017006 doi: 10.3934/krm.2017006
![]() |
[18] |
H. Berestycki, J. M. Roquejoffre, L. Rossi, The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1–13. https://dx.doi.org/10.3934/dcdss.2011.4.1 doi: 10.3934/dcdss.2011.4.1
![]() |
[19] |
N. M. L. Diehl, R. Teymurazyan, Reaction-diffusion equations for the infinity Laplacian, Nonlinear Anal., 199 (2020), 111956. https://doi.org/10.1016/j.na.2020.111956 doi: 10.1016/j.na.2020.111956
![]() |
[20] |
M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7–51. https://doi.org/10.1515/fca-2017-0002 doi: 10.1515/fca-2017-0002
![]() |
[21] | P. R. Stinga, User's guide to the fractional Laplacian and the method of semigroups, In: Handbook of fractional calculus with applications 2, 2 (2019), 235–265. https://doi.org/10.1515/9783110571660-012 |
[22] |
A. C. Coulon, M. Yangari, Exponential propagation for fractional reaction-diffusion cooperative systems with fast decaying initial conditions, J. Dyn. Differ. Equ, 29 (2017), 799–815. https://doi.org/10.1007/s10884-015-9479-1 doi: 10.1007/s10884-015-9479-1
![]() |
[23] |
F. Hamel, L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions, J. Differ. Equ., 249 (2010), 1726–1745. https://doi.org/10.1016/j.jde.2010.06.025 doi: 10.1016/j.jde.2010.06.025
![]() |
[24] |
A. Greco, R. Servadei, Hopf's lemma and constrained radial symmetry for the fractional Laplacian, Math. Res. Lett., 23 (2016), 863–885. 10.4310/MRL.2016.v23.n3.a14 doi: 10.4310/MRL.2016.v23.n3.a14
![]() |
[25] |
Z. Q. Chen, T. Kumagai, Heat kernel estimates for stable-like processes on d-sets, Stoch. Proc. Appl., 108 (2003), 27–62. https://doi.org/10.1016/S0304-4149(03)00105-4 doi: 10.1016/S0304-4149(03)00105-4
![]() |
[26] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1 |