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1. Introduction

A classical topic in numerical analysis is the univariate Lagrange interpolation problem, which has
been extensively studied in the literature. Other univariate interpolation problems, such as Hermite and
Hermite–Birkhoff interpolation, have also received significant attention. However, when extending this
to the multivariate case, interpolation problems increase notably their complexity—e.g., the uniqueness
of the solution when the number of coefficients to be determined equals the initial data cannot be
guaranteed, in contrast to the univariate case. For a detailed survey of this theory, we refer the reader
to [12].

The interest in bivariate interpolation extends beyond purely mathematical fields and finds
applications in diverse areas such as geostatistics and image processing [8, 9]. Among the different
approaches used to address these problems, a natural one—one of the first to be developed—is
interpolation by the tensor product. In this case, the interpolation problem can be reformulated as
a linear system whose coefficient matrix is a generalized Kronecker product related to collocation
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matrices of the univariate bases involved. Furthermore, the linear system for the bivariate problem
can be simplified by breaking it down into several smaller linear systems associated with univariate
interpolation problems. These smaller systems are defined using subsets of the original nodes and their
corresponding values [21]. It is worth noting that this approach can be made in grids that generalize the
usual rectangular layout by allowing nodes of the form (xi, yi j) for i = 0, . . . , n, j = 1, . . . ,m. Particular
examples of these type of lattices which are of interest include schemes composed of interlacing pairs
of rectangular grids, such as those of Morrow and Patterson [22] or, notably, Padua [2] and Padua-like
points [1], which have been shown to posses remarkable properties when used for approximation and
cubature; a discussion of a wider class of nodes can be found in [10]. In [4], the bivariate interpolation
problem considering a Lagrange basis with Padua and scattered points is addressed. Related to a least
squares approximation problem, a recent contribution in the field explores the benefits of considering
subsets of rectangular lattices [5], favoring those that are close to Chebyshev–Lobatto nodes.

However, the tensor interpolation procedure described above has a caveat: If any of the univariate
problems is ill-conditioned, the bivariate problem will also exhibit a poor condition number.
Unfortunately, since the univariate systems are defined by collocation matrices—notoriously poorly
conditioned for many bases—this is a common scenario. A desirable approach to addressing these
problems is to find the vector c with the coefficients of the interpolant with respect to the considered
basis of the interpolating space using algorithms that compute an approximation c̃ to a high relative
accuracy (HRA). This means ensuring that

||c − c̃||
||c||

≤ Ku, (1.1)

where K > 0 is a constant and u is the given floating-point arithmetic unit roundoff. Sufficient
conditions to guarantee HRA are that the algorithm performs only products, quotients, sums of
numbers of the same sign, subtractions of numbers of opposite sign, and the initial data. In other
words, the subtraction of numbers of the same sign that are not the initial data is excluded—this is
known as the NIC (no inaccurate cancellation) condition [6].

This class of algorithms has been explored over the past decades in the context of totally positive
(TP) matrices, which are characterized by all their minors being non-negative (cf. [3, 17–19]). These
studies achieve HRA by obtaining a bidiagonal factorization of the considered TP matrices. Combined
with the algorithms provided in the TNTool package [15], this approach enables the solution of
significant algebraic problems to HRA. In particular, these include the resolution of linear systems
Ax = b, where A is a TP matrix and b is a vector whose components have an alternating sign pattern.
This can be done to achieve HRA, provided that the bidiagonal decomposition of the TP matrix is
obtained to HRA and used as an input with the TNSolve subroutine of the abovementioned package.
This is of relevance in the resolution of univariate interpolation problems using polynomial bases, such
as monomial [7], Bernstein [19], or Newton [14]. Furthermore, it is possible to extend this approach
to the bivariate interpolation problem through the generalized Kronecker product [21]. In fact, in [20],
the tensor product Bernstein basis case is addressed, whereas the more general case of rank-descending
matrices is analyzed in [23] under different perspectives—in particular, the specific conditions under
which the bivariate problem formulated in the monomial tensor product basis can be solved to HRA
are derived.

In this work, the bivariate interpolation problem in the tensor product’s Newton basis is addressed,
providing an alternative perspective to [23], and deriving the specific conditions under which the
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coefficients of the polynomial interpolant can be computed to HRA. To do so, it is shown how the
two-dimensional problem can be reduced to a series of univariate problems that can be solved with
two different approaches: the recursive formula of divided differences or the bidiagonal decomposition
strategy discussed above. In the former case, the equivalence to the two-dimensional version of the
divided differences is observed for nodes displayed in a rectangular layout, and a generalization for
grids of the form (xi, yi j) for i = 0, . . . , n, j = 1, . . . ,m is proposed; in the latter, the procedure
can be generalized to any basis that satisfies similar conditions. These results are gathered in
Section 2. Additionally, Section 3 outlines sufficient conditions on the input data for the bivariate
interpolation problem in the Newton-type basis, guaranteeing its resolution up to HRA using the
proposed approaches. Finally, Section 4 includes numerical experiments that demonstrate and compare
the accuracy achieved by each method.

2. The bivariate polynomial interpolation problem

We consider (n + 1)(m + 1) distinct interpolation nodes {(xi, yi j) | i = 0, . . . , n; j = 0, . . .m} and the
interpolation data fi j = f (xi, yi j) ∈ R, i = 0, . . . , n, j = 0, . . .m, for some function f . The bivariate
polynomial interpolation problem can be understood as the problem of finding a polynomial p of
Pn,m(x, y)—the space of polynomials of a degree less than or equal to n in x and less than or equal to m
in y—satisfying

p(xi, yi j) = fi j, i = 0, . . . , n, j = 0, . . .m. (2.1)

We shall consider a Newton-type basis of Pn,m(x, y) given by

{w(n,m)
i j (x, y) | i = 0, . . . , n; j = 0, . . .m}, (2.2)

with

w(n,m)
i j (x, y) =

i−1∏
k=0

j−1∏
l=0

(x − xk)(y − ykl), i = 0, . . . , n, j = 0, . . .m,

and the convention that the empty product is equal to 1. In this case, we can write

p(x, y) =
n∑

i=0

m∑
j=0

di jw
(n,m)
i j (x, y). (2.3)

Let us note that for the particular case of a rectangular grid (xi, y j) for i = 0, . . . , n, j = 0, . . . ,m, the
coefficients di j can be identified with the two-dimensional version of the divided differences, as in [13].

In order to determine the coefficients of the interpolant, it is possible to reformulate the above
problem through the generalized Kronecker product (cf. [11]). In this way, computing the coefficients
di j in (2.3) is equivalent to solving the linear system

Ld = b, (2.4)

where d = (d0, . . . , dn)T ∈ R(n+1)(m+1), b = ( f0, . . . , fn)T ∈ R(n+1)(m+1), with di = (di0, . . . , dim), fi =

( fi0, . . . , fim) ∈ Rm+1, for i = 0, . . . , n, and the matrix L ∈ R(n+1)(m+1)×(n+1)(m+1) is given by the generalized
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Kronecker product

L = Lx ⊗ Li =


l00L0 l01L0 · · · l0nL0

l10L1 l11L1 · · · l1nL1
...

...
. . .

...

ln0Ln ln1 Ln · · · lnnLn

 , (2.5)

where Lx = (li j) ∈ R(n+1)×(n+1) is the collocation matrix of the univariate Newton basis at the nodes
x0, . . . , xn

Lx =



1 0 0 · · · 0
1 x1 − x0 0 · · · 0
1 x2 − x0 (x2 − x0)(x2 − x1) · · · 0
...

...
...

. . .
...

1 xn − x0 (xn − x0)(xn − x1) · · ·
∏n−1

j=0(xn − x j)


, (2.6)

and Li ∈ R
(m+1)×(m+1) is the collocation matrix at the nodes yi0, . . . , yim

Li =



1 0 0 · · · 0
1 yi1 − yi0 0 · · · 0
1 yi2 − yi0 (yi2 − yi0)(yi2 − yi1) · · · 0
...

...
...

. . .
...

1 yim − yi0 (yim − yi0)(yim − yi1) · · ·
∏m−1

j=0 (yim − yi j)


, i = 0, . . . , n. (2.7)

Observe that if the nodes satisfy x j , xk and yi j , yik for j , k, the matrices Lx and Li, i = 0, . . . , n,
are nonsingular. In this case, Lx ⊗ Li is also nonsingular and the solution of our bivariate interpolation
problem is unique.

To solve the bivariate interpolation problem in the bivariate Newton-type basis (2.2), we consider
the algorithm presented by Martı́nez in [21] for solving nonsingular linear systems whose coefficient
matrices have a generalized Kronecker product structure. The steps are as follows.

Algorithm 2.1.

(1) Solve the n + 1 linear systems Li z = f T
i , whose solutions are denoted by bi ∈ R

m+1, i = 0, . . . , n.
Then, define the matrix B := (b0, b1, . . . , bn) ∈ R(m+1)×(n+1).

(2) Solve the m+1 linear systems Lx z = rT
j , where r j ∈ R

n+1 is the j-th row of B, and whose solutions
are denoted by d j ∈ R

n+1, j = 0, . . . ,m. Then, define the matrix D := (d0, . . . , dm) ∈ R(n+1)×(m+1).
(3) Finally, the solution of the linear system Ld = b in (2.4) is given by

d = (d00, . . . , d0m, d10, . . . , d1m, . . . , dn0, . . . , dnm) ∈ R(n+1)(m+1).

It is important to note that each system to be solved in Algorithm 1 corresponds to an univariate
Lagrange interpolation problem whose solution is given by the coefficients of the interpolating
polynomial expressed in terms of a Newton basis, i.e., the divided differences. Let us recall that,
in the one-dimensional case, the divided differences at distinct points xi, . . . , xi+k of a function f can be
computed through the following recursion formula:

[xi, . . . , xi+k] f =


f (xi), for k = 0,

[xi+1, . . . , xi+k] f − [xi, . . . , xi+k−1] f
xi+k − xi

, for k ≥ 1.
(2.8)
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Additionally, in [14], the authors present an alternative procedure to compute the divided differences,
based on the bidiagonal factorization of the collocation matrix involved using Neville elimination. It
should be noted that, in terms of computational cost, both approaches achieve the resolution of the
system in O(n2) operations.

As an alternative, the bivariate problem formulated in a rectangular mesh (xi, y j), i = 0, . . . , n, j =
0, . . .m, can be directly addressed defining the two-dimensional version of the divided differences at
Cartesian nodes, which can be identified with the coefficients di j in (2.3). This is done by fixing one
of the variables and applying recursion (2.8) in the remaining component (see, e.g., [13]). In this way,
fixing the x variable, we first compute [xi; y0, . . . , y j] f , i = 0, . . . , n, j = 0, . . . ,m, by means of the
following recursion:

[xi; y j, . . . , y j+l] f =


f (xi, y j), l = 0,

[xi; y j+1, . . . , y j+l] f − [xi; y j, . . . , y j+l−1] f
y j − y0

, l > 0.
(2.9)

Once this is done, di j := [x0, . . . , xi; y0, . . . , y j] f , i = 0, . . . , n, j = 0, . . . ,m, can be determined by fixing
the other variable and applying the same idea again. Notably, it is straightforward to verify that these
two steps are identical to those in Algorithm 2.1.

A natural question that arises is whether the equivalence between Algorithm 2.1 and the recursive
computation of divided differences from (2.9) can be extended from rectangular lattices to the more
general case (xi, yi j) for i = 0, . . . , n and j = 1, . . . ,m. This includes interlacing rectangular grids (with
equal lengths in at least one dimension), discussed by Floater in [10], with notable examples such as
Padua points [1,2]. The answer comes easily, since the two-dimensional version of divided differences
can be extended to the considered grids in a straightforward manner, defining [x0, . . . , xi; y0, . . . , y j] f
with y j = (y0 j, . . . , yi j)T . Then recursion (2.9) can be generalized simply by selecting the i-th
component

[xi; y j, . . . , y j+l] f =


f (xi, yi j), l = 0,

[xi; yi, j+1, . . . , yi, j+l] f − [xi; yi j, . . . , yi, j+l−1] f
yi, j+l − yi j

, l > 0.
(2.10)

Finally, the coefficients di j in (2.3) can be computed as

di j = [x0, . . . , xi; y0, . . . , y j] f =
[x1, . . . , xi; y0, . . . , y j] f − [x0, . . . , xi−1; y0, . . . , y j] f

xi − x0
. (2.11)

Let us illustrate this process with a small example. Consider a grid (xi, yi j), i = 0, 1, 2, j = 0, 1. First,
we compute the xtable of the generalized divided differences

[x0; y0] f [x1; y0] f [x2; y0] f

[x0; y0, y1] f [x1; y0, y1] f [x2; y0, y1] f

where the entries of each column are computed by (2.10). Then, by (2.11), the following xytable is
obtained:
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[x0; y0] f [x0; y0, y1] f

[x0, x1; y0] f [x0, x1; y0, y1] f

[x0, x1, x2; y0] f [x0, x1, x2; y0, y1] f

in which the entries are precisely di j, and the coefficients of the solution (2.3).
Finally, let us observe that the computation of the proposed generalization for the two-dimensional

divided differences remains equivalent to the steps of Algorithm 2.1, as previously demonstrated for
rectangular lattices. This equivalence is evident upon observing that the earlier xtable and xytable
correspond directly to matrices B and D in Algorithm 2.1.

3. Accurate computations in the bivariate interpolation problem

We now analyze the accuracy of Algorithm 2.1 under both approaches for solving the linear systems
involved. To proceed, we first introduce the following definitions.

Definition 3.1. The set of nodes (xi, yi j), i = 0, . . . , n, j = 0, . . . ,m is said to be ordered if x0 ≤ · · · ≤ xn

or x0 ≥ · · · ≥ xn, and yi0 ≤ · · · ≤ yim or yi0 ≥ · · · ≥ yim, for i = 0, . . . , n. On the other hand, a set of
values fi j is said to have a chessboard sign pattern if sgn( fi j) = ±(−1)i+ j, i = 0, . . . , n, j = 0, . . .m.

We use the following auxiliary result.

Lemma 3.1. Let Ax = b be a linear system, where A is a TP matrix and the entries of b exhibit an
alternating sign pattern. Then the entries of x also have an alternating sign pattern.

Proof. The result readily follows from the fact that the entries of A−1 have a chessboard sign pattern
(see Section 3.1 of [16]). □

Now, we can provide sufficient conditions on the input data of the given bivariate interpolation
problem in the Newton-type basis to guarantee that it can be solved to HRA.

Theorem 3.2. Let {(xi, yi j) | i = 0, . . . , n; j = 0, . . .m} be a set of ordered nodes. Then the interpolation
problem in the bivariate Newton-type basis, formulated as in (2.1), can be solved to HRA as long as
the interpolation data fi j have a chessboard sign pattern.

Proof. Using Algorithm 1, the bivariate polynomial interpolation problem, equivalent to the linear
system Ld = b in (2.4), gets reduced to n +m + 2 linear systems: Li z = f T

i , i = 0, . . . , n, and Lx z = rT
j ,

j = 0, . . . ,m. We see that the chessboard sign pattern of fi j guarantees the resolution to HRA of each
linear system and thus the computation of the coefficient vector d.

Since Li, i = 0, . . . , n, and Lx are collocation matrices of Newton bases, Theorem 1 and Corollary 1
from [14] establish that the corresponding linear systems can be solved to HRA using either the
bidiagonal factorization with TNSolve or recurrence (2.8), provided that all vectors fi and r j exhibit
alternating signs and the nodes are ordered either increasingly or decreasingly.

Requiring the initial data fi j to follow a chessboard sign pattern is sufficient to ensure that the
alternating sign condition of fi is met. When yi0 ≤ · · · ≤ yim, i = 0, . . . , n, Lemma 3.1 ensures that the
columns b j of the solution matrix B inherit the sign pattern of ( f0i, . . . , fni). Consequently, the entries
bi j of B also have a chessboard sign pattern. Thus, the m + 1 linear systems in Step 2 can be solved to
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HRA for x0, . . . , xn arranged in increasing or decreasing order, as the vectors r j (the rows of D) also
exhibit alternating signs.

On the other hand, when yi0 ≥ · · · ≥ yim, i = 0, . . . , n, each column of B maintains a constant sign
(see the proof of Corollary 1 in [14]), while consecutive columns have the opposite sign. As a result,
the rows of B have an alternating sign pattern, ensuring that the coefficients di j can also be determined
to HRA. □

Finally, note that since Lemma 3.1 relies solely on the total positivity of the matrix involved,
Theorem 3.2 can be readily extended to bivariate problems formulated using tensor product bases,

{p(n,m)
i, j (x, y) | i = 0, . . . , n; j = 0, . . .m} = {u(n)

i (x)v(m)
j (y) | i = 0, . . . , n; j = 0, . . .m}, (3.1)

provided that the corresponding collocation matrices of the univariate polynomial bases (u(n)
0 , . . . , u

(n)
n )

and (v(m)
0 , . . . , v

(m)
m ) are TP and their bidiagonal decompositions can be computed to HRA.

Theorem 3.3. Let (u(n)
0 , . . . , u

(n)
n ) and (v(m)

0 , . . . , v
(m)
m ) be bases of Pn and Pm, the spaces of polynomials

of a degree not greater than n and m, respectively. Consider the collocation matrix Lx of (u(n)
0 , . . . , u

(n)
n )

at the nodes x0, . . . , xn and the collocation matrices L j of (v(m)
0 , . . . , v

(m)
m ) at the nodes y j0, . . . , y jm, j =

0, . . . , n. Then, the coefficients of the interpolating polynomial

p(x, y) =
n∑

i=0

m∑
j=0

ci j p
(n,m)
i, j (x, y), (3.2)

such that p(xi, yi j) = fi j, i = 0, . . . , n, j = 0, . . . ,m, can be computed to HRA if the interpolation
data fi j have a chessboard sign pattern, the matrices Lx, Li, i = 0, . . . , n are TP, and their bidiagonal
factorization can be obtained to HRA.

4. Numerical experiments

This section presents numerical experiments to demonstrate the accuracy of the proposed
approaches. As previously mentioned, the bivariate interpolation problem in the Newton-type
basis (2.2) can be reformulated as a linear system Ld = b of (n+1)(m+1) dimension. For the numerical
experiments, we computed solutions for system dimensions ranging from 50 to 125000, using various
layouts. Following Algorithm 2.1, we analyzed the performance of the proposed methods in handling
ill-conditioned matrices and compared them with standard methods.

Recall that Algorithm 2.1 reduces the initial bivariate problem to solving n + m + 2 univariate
problems, which can be approached in different ways. Three possible methods for solving these
systems are presented below.

(1) Bidiagonal approach: This method uses the bidiagonal decomposition obtained to HRA as input
for the TNSolve subroutine, part of the TNTool package provided by Koev [15].

(2) Recursive divided differences: Since each univariate problem is also an interpolation problem
in the Newton basis, the recursive formula for divided differences (2.8) provides an alternative
approach. The conditions for achieving HRA and the performance of these two methods are
discussed in detail in [14].
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(3) General-purpose solvers: A standard routine for solving linear systems, such as Matlab’s \
operator, can also be applied.

These methods have been compared to evaluate their efficiency and suitability for the problem at hand.
It is worth mentioning that for the first two alternatives, the cost of Algorithm 2.1 is O(nm(n + m)),
since Steps 1 and 2 have O(nm2) and O(n2m) operations, respectively. This is to be compared with,
e.g., O(nm(n2+m2)) for Gauss elimination, since solving a n×n linear system has a computational cost
of O(n3). Additionally, to give a reference for the computer time spent in the experiments, the largest
mesh took less than 10 seconds in a standard desktop system (Intel i5-12400F).

As the exact solution of the linear systems considered, we take the results provided by Wolfram
Mathematica 13.3 using 100-digit arithmetic. Then, for the exact coefficient vector d, the relative error
has been calculated as e := ∥d − d̃∥2/∥d∥2, where d̃ is the approximation obtained using the proposed
methods.

First, we address rectangular lattices (xi, y j), i = 0, . . . , n, j = 0, . . . ,m, chosen to be equidistant in a
unit-length square. Secondly, Padua points, as an example of a nonrectangular grid (xi, yi j), i = 0, . . . , n,
j = 0, . . . ,m are considered. This points are given for even values of n by

xi = cos
( iπ

n

)
, yi j =

cos
(

(2 j+1)π
n+1

)
, even i,

cos
(

2 jπ
n+1

)
, odd i,

for i = 0, . . . , n, j = 0, . . . , n/2. Moreover, the interpolation data fi j, i = 0, . . . , n, j = 0, . . . ,m, were
chosen to be random integers with a uniform distribution in [0, 104], adding a chessboard sign pattern
(−1)i+ j to guarantee HRA when obtaining the coefficients using the divided difference recurrence (2.8)
and with TNSolve.

Relative errors are shown in Table 1 for rectangular equidistant ordered nodes, whereas the results
when considering Padua points are depicted in Table 2. It should be noted that the size of the considered
systems is limited by the bound imposed by double precision floating numbers (≈ 1.8e+308). In other
words, for the biggest grids analyzed, the maximum value of the coefficients is near this limit; for
the \ command, this limit is reached earlier (– symbol in tables), due to its loss of accuracy. In both
cases, the results clearly illustrate the HRA achieved with the divided difference recurrence (2.8) and
the function TNSolve applied to the bidiagonal decompositions considered in this work, supporting
the theoretical findings outlined in the previous section.
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Table 1. Relative errors of the approximations to the solution of the linear system Ld = b
for equidistant ordered nodes in a rectangular mesh.

n m \ command Divided difference TNSolve

10 10 4.4e − 14 3.6e − 16 3.3e − 16
20 10 3.8e − 12 4.5e − 16 3.6e − 16
50 10 3.4e − 03 8.1e − 16 2.1e − 15
100 10 3.4e + 12 8.9e − 16 3.6e − 15
20 20 2.6e − 12 4.7e − 16 1.5e − 15
50 20 2.7e − 03 6.4e − 16 2.9e − 15
40 40 2.1e − 06 9.5e − 16 2.2e − 15
50 50 3.5e − 03 1.4e − 15 4.0e − 15
100 100 1.1e + 25 1.2e − 15 6.3e − 15
200 100 1.0e + 81 1.8e − 15 1.9e − 14
200 150 – 2.2e − 15 1.7e − 14
200 200 – 3.7e − 15 3.2e − 14
300 100 – 2.4e − 15 3.8e − 14

Table 2. Relative errors of the approximations to the solution of the linear system Ld = b
for Padua points.

n m \ command Divided difference TNSolve

10 5 3.4e − 14 1.4e − 15 1.1e − 15
20 10 2.2e − 10 3.8e − 15 2.9e − 15
30 15 9.0e − 07 2.7e − 15 2.6e − 15
40 20 1.6e − 02 9.7e − 15 1.0e − 14
50 25 8.7e + 01 1.4e − 14 1.5e − 14
70 35 1.3e + 10 2.1e − 14 1.9e − 14
100 50 1.5e + 25 3.8e − 14 4.0e − 14
200 100 2.6e + 117 1.0e − 13 9.3e − 14
300 150 - 7.5e − 14 7.8e − 14
400 200 - 2.5e − 13 2.5e − 13
500 250 - 1.7e − 13 1.4e − 13

5. Conclusions

This work examines the bivariate polynomial interpolation problem formulated in the Newton basis.
The methods introduced in [14] for the univariate case are extended using the generalized Kronecker
product framework from [21]. Notably, the classical two-dimensional divided differences formula for
rectangular grids is shown to be equivalent to Algorithm 2.1 presented in [21], and a generalization to
nonrectangular grids of the form (xi, yi j), with i = 0, . . . , n and j = 0, . . . ,m, is provided. Sufficient
conditions for solving the problem with high relative accuracy are established, as demonstrated through
numerical examples on both rectangular and nonrectangular meshes.
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