The reverse order laws for weighted generalized inverses often appear in linear algebra problems of several applied fields, having attracted considerable attention. In this paper, by using the maximal and minimal ranks of the generalized Schur complement, we obtained some necessary and sufficient conditions for the reverse order laws
$ A_3\{1,2,3M_3\}A_2\{1,2,3M_2\}A_1\{1,2,3M_1\}\subseteq (A_1A_2A_3)\{1,2,3M_1\} $
and
$ A_3\{1,2,4N_{4}\}A_{2}\{1,2,4N_{3}\}A_1\{1,2,4N_2\}\subseteq (A_1A_2 A_3)\{1,2,4N_{4}\}. $
Citation: Baifeng Qiu, Yingying Qin, Zhiping Xiong. The reverse order laws for $ \{1, 2, 3M\} $- and $ \{1, 2, 4N\} $- inverse of three matrix products[J]. AIMS Mathematics, 2025, 10(1): 721-735. doi: 10.3934/math.2025033
The reverse order laws for weighted generalized inverses often appear in linear algebra problems of several applied fields, having attracted considerable attention. In this paper, by using the maximal and minimal ranks of the generalized Schur complement, we obtained some necessary and sufficient conditions for the reverse order laws
$ A_3\{1,2,3M_3\}A_2\{1,2,3M_2\}A_1\{1,2,3M_1\}\subseteq (A_1A_2A_3)\{1,2,3M_1\} $
and
$ A_3\{1,2,4N_{4}\}A_{2}\{1,2,4N_{3}\}A_1\{1,2,4N_2\}\subseteq (A_1A_2 A_3)\{1,2,4N_{4}\}. $
[1] | A. Ben-Israel, T. N. E. Greville, Generalized inverse: Theory and applications, New York: Springer, 2003. https://doi.org/10.1007/b97366 |
[2] | R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge Philos. Soc., 51 (1955), 406–413. https://doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401 |
[3] | G. R. Wang, Y. M. Wei, S. Z. Qiao, Generalized inverse: Theory and computations, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-13-0146-9 |
[4] | S. L. Campbell, C. D. Meyer, Generalized inverses of linear transformations, Society for Industrial and Applied Mathematics, 2009. https://doi.org/10.1137/1.9780898719048 |
[5] | C. R. Rao, S. K. Mitra, Generalized inverse of matrices and its applications, New York: Wiley, 1971. |
[6] | R. J. B. Sampaio, J. Y. Yuan, W. Y. Sun, Trust region algorithm for nonsmooth optimization, Appl. Math. Comput., 85 (1997), 109–116. https://doi.org/10.1016/S0096-3003(96)00112-9 doi: 10.1016/S0096-3003(96)00112-9 |
[7] | T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev., 8 (1966), 518–521. https://doi.org/10.1137/1008107 doi: 10.1137/1008107 |
[8] | D. Cvetkovi$\acute{c}$-Ili$\acute{c}$, J. Milošević, Reverse order laws for $\{1, 3\}$-generalized inverses, Linear Multilinear Algebra, 67 (2018), 613–624. https://doi.org/10.1080/03081087.2018.1430119 doi: 10.1080/03081087.2018.1430119 |
[9] | A. R. De Pierro, M. Wei, Reverse order law for reflexive generalized inverses of products of matrices, Linear Algebra Appl., 277 (1998), 299–311. https://doi.org/10.1016/s0024-3795(97)10068-4 doi: 10.1016/s0024-3795(97)10068-4 |
[10] | D. S. Djordjevi$\acute{c}$, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl., 29 (2008), 1242–1246. https://doi.org/10.1137/050638114 doi: 10.1137/050638114 |
[11] | R. E. Hartwig, The reverse order law revisited, Linear Algebra Appl., 76 (1986), 241–246. https://doi.org/10.1016/0024-3795(86)90226-0 doi: 10.1016/0024-3795(86)90226-0 |
[12] | Q. Liu, M. Wei, Reverse order law for least squares $g$-inverses of multiple matrix products, Linear Multilinear Algebra, 56 (2008), 491–506. https://doi.org/10.1080/03081080701340547 doi: 10.1080/03081080701340547 |
[13] | D. Liu, H. Yang, The reverse order law for $\{1, 3, 4\}$-inverse of the product of two matrices, Appl. Math. Comput., 215 (2010), 4293–4303. https://doi.org/10.1016/j.amc.2009.12.056 doi: 10.1016/j.amc.2009.12.056 |
[14] | Y. Tian, Reverse order laws for generalized inverse of multiple matrix products, Linear Algebra Appl., 211 (1994), 85–100. https://doi.org/10.1016/0024-3795(94)90084-1 doi: 10.1016/0024-3795(94)90084-1 |
[15] | Z. P. Xiong, B. Zheng, The reverse order laws for $\{1, 2, 3\}$- and $\{1, 2, 4\}$-inverses of two matrix product, Appl. Math. Lett., 21 (2008), 649–655. https://doi.org/10.1016/j.aml.2007.07.007 doi: 10.1016/j.aml.2007.07.007 |
[16] | W. Sun, Y. Wei, Inverse order rule for weighted generalized inverse, SIAM J. Matrix Anal. Appl., 19 (1998), 772–775. https://doi.org/10.1137/S0895479896305441 doi: 10.1137/S0895479896305441 |
[17] | J. Nikolov, D. S. Cvetkovi$\acute{c}$-Ili$\acute{c}$, Reverse order laws for the weighted generalized inverses, Appl. Math. Lett., 24 (2011), 2140–2145. https://doi.org/10.1016/j.aml.2011.06.015 doi: 10.1016/j.aml.2011.06.015 |
[18] | W. Sun, Y. Wei, Triple reverse-order law for weighted generalized inverses, Appl. Math. Comput., 125 (2002), 221–229. https://doi.org/10.1016/S0096-3003(00)00122-3 doi: 10.1016/S0096-3003(00)00122-3 |
[19] | Z. P. Xiong, Y. Y. Qin, A note on the reverse order law for least square $g$-inverse of operator product, Linear Multilinear Algebra, 64 (2016), 1404–1414. https://doi.org/10.1080/03081087.2015.1087458 doi: 10.1080/03081087.2015.1087458 |
[20] | B. Zheng, Z. P. Xiong, On reverse order laws for the weighted generalized inverse, Arabian J. Sci. Eng., 34 (2009), 195–203. |
[21] | Y. Tian, More on maximal and minimal ranks of Schur complements with applications, Appl. Math. Comput., 152 (2004), 675–692. https://doi.org/10.1016/S0096-3003(03)00585-X doi: 10.1016/S0096-3003(03)00585-X |
[22] | G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974), 269–292. https://doi.org/10.1080/03081087408817070 doi: 10.1080/03081087408817070 |