Research article

Further characterizations and representations of the Minkowski inverse in Minkowski space

  • Received: 23 May 2023 Revised: 25 June 2023 Accepted: 11 July 2023 Published: 25 July 2023
  • MSC : 15A09, 15A03, 15A24

  • This paper serves to identify some new characterizations and representations of the Minkowski inverse in Minkowski space. First of all, a few representations of $ \{1, 3^{\mathfrak{m}}\} $-, $ \{1, 2, 3^{\mathfrak{m}}\} $-, $ \{1, 4^{\mathfrak{m}}\} $- and $ \{1, 2, 4^{\mathfrak{m}}\} $-inverses are given in order to represent the Minkowski inverse. Second, some famous characterizations of the Moore-Penrose inverse are extended to that of the Minkowski inverse. Third, using the Hartwig-Spindelböck decomposition, we present a representation of the Minkowski inverse. And, based on this result, an interesting characterization of the Minkowski inverse is showed by a rank equation. Finally, we obtain several new representations of the Minkowski inverse in a more general form, by which the Minkowski inverse of a class of block matrices is given.

    Citation: Jiale Gao, Kezheng Zuo, Qingwen Wang, Jiabao Wu. Further characterizations and representations of the Minkowski inverse in Minkowski space[J]. AIMS Mathematics, 2023, 8(10): 23403-23426. doi: 10.3934/math.20231189

    Related Papers:

  • This paper serves to identify some new characterizations and representations of the Minkowski inverse in Minkowski space. First of all, a few representations of $ \{1, 3^{\mathfrak{m}}\} $-, $ \{1, 2, 3^{\mathfrak{m}}\} $-, $ \{1, 4^{\mathfrak{m}}\} $- and $ \{1, 2, 4^{\mathfrak{m}}\} $-inverses are given in order to represent the Minkowski inverse. Second, some famous characterizations of the Moore-Penrose inverse are extended to that of the Minkowski inverse. Third, using the Hartwig-Spindelböck decomposition, we present a representation of the Minkowski inverse. And, based on this result, an interesting characterization of the Minkowski inverse is showed by a rank equation. Finally, we obtain several new representations of the Minkowski inverse in a more general form, by which the Minkowski inverse of a class of block matrices is given.



    加载中


    [1] M. Renardy, Singular value decomposition in Minkowski space, Linear Algebra Appl., 236 (1996), 53–58. http://dx.doi.org/10.1016/0024-3795(94)00124-3 doi: 10.1016/0024-3795(94)00124-3
    [2] A. R. Meenakshi, Generalized inverses of matrices in Minkowski space, Proc. Nat. Semin. Algebra Appl., 57 (2000), 1–14.
    [3] H. Zekraoui, Z. Al-Zhour, C. Özel, Some new algebraic and topological properties of the Minkowski inverse in the Minkowski space, Sci. World J., 2013 (2013), 765732. http://dx.doi.org/10.1155/2013/765732 doi: 10.1155/2013/765732
    [4] A. R. Meenakshi, Range symmetric matrices in Minkowski space, Bull. Malays. Math. Sci. Soc., 23 (2000), 45–52.
    [5] K. Bharathi, Product of k-EP block matrices in Minkowski space, Intern. J. Fuzzy Math. Arch., 5 (2014), 29–38.
    [6] M. S. Lone, D. Krishnaswamy, $m$-Projections involving Minkowski inverse and range symmetric property in Minkowski space, J. Linear Topol. Algebra, 5 (2016), 215–228.
    [7] A. R. Meenakshi, D. Krishnaswamy, Product of range symmetric block matrices in Minkowski space, Bull. Malays. Math. Sci. Soc., 29 (2006), 59–68.
    [8] D. Krishnaswamy, G. Punithavalli, The anti-reflexive solutions of the matrix equation $AXB = C$ in Minkowski space $M$, Int. J. Recent Res. Appl. Stud., 15 (2013), 221–227.
    [9] D. Krishnaswamy, M. S. Lone, Partial ordering of range symmetric matrices and $M$-projectors with respect to Minkowski adjoint in Minkowski space, Adv. Linear Algebra Matrix Theor., 6 (2016), 132–145. http://dx.doi.org/10.4236/alamt.2016.64013 doi: 10.4236/alamt.2016.64013
    [10] G. Punithavalli, Matrix partial orderings and the reverse order law for the Minkowski inverse in $M$, AIP Conf. Proc., 2177 (2019), 020073. http://doi.org/10.1063/1.5135248 doi: 10.1063/1.5135248
    [11] A. Kılıçman, Z. A. Zhour, The representation and approximation for the weighted Minkowski inverse in Minkowski space, Math. Comput. Model., 47 (2008), 363–371. http://dx.doi.org/10.1016/j.mcm.2007.03.031 doi: 10.1016/j.mcm.2007.03.031
    [12] Z. Al-Zhour, Extension and generalization properties of the weighted Minkowski inverse in a Minkowski space for an arbitrary matrix, Comput. Math. Appl., 70 (2015), 954–961. http://dx.doi.org/10.1016/j.camwa.2015.06.015 doi: 10.1016/j.camwa.2015.06.015
    [13] X. Liu, Y. Qin, Iterative methods for computing the weighted Minkowski inverses of matrices in Minkowski space, World Acad. Sci. Eng. Technol., 75 (2011), 1083–1085.
    [14] H. Wang, N. Li, X. Liu, The $\mathfrak{m}$-core inverse and its applications, Linear Multilinear Algebra, 69 (2019), 2491–2509. http://dx.doi.org/10.1080/03081087.2019.1680597 doi: 10.1080/03081087.2019.1680597
    [15] H. Wang, H. Wu, X. Liu, The $\mathfrak{m}$-core-EP inverse in Minkowski space, B. Iran. Math. Soc., 48 (2021), 2577–2601. http://dx.doi.org/10.1007/s41980-021-00619-2 doi: 10.1007/s41980-021-00619-2
    [16] H. Wu, H. Wang, H. Jin, The $\mathfrak{m}$-WG inverse in Minkowski space, Filomat, 36 (2022), 1125–1141. http://dx.doi.org/10.2298/FIL2204125W doi: 10.2298/FIL2204125W
    [17] R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge Philos. Soc., 51 (1955), 406–413. http://dx.doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401
    [18] K. P. S. Bhaskara-Rao, The Theory of Generalized Inverses over Commutative Rings, London: Taylor and Francis, 2002. http://doi.org/10.4324/9780203218877
    [19] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, $2^{nd}$ edition, New York: Springer, 2003. http://doi.org/10.1007/b97366
    [20] S. L. Campbell, C. D. Meyer, Generalized Inverses of Linear Transformations, Philadelphia: Society for Industrial and Applied Mathematics, 2009. http://doi.org/10.1137/1.9780898719048
    [21] D. S. Cvetković-llić, Y. Wei, Algebraic Properties of Generalized Inverses, Singapore: Springer, 2017. http://doi.org/10.1007/978-981-10-6349-7
    [22] M. Z. Nashed, Generalized Inverses and Applications, New York: Academic Press, 1976. http://doi.org/10.1016/C2013-0-11227-5
    [23] G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, $2^{nd}$, Beijing: Science Press, 2018. http://doi.org/10.1007/978-981-13-0146-9
    [24] J. Groß, Solution to a rank equation, Linear Algebra Appl., 289 (1999), 127–130. http://doi.org/10.1016/S0024-3795(97)10001-5 doi: 10.1016/S0024-3795(97)10001-5
    [25] S. Zlobec, An explicit form of the Moore-Penrose inverse of an arbitrary complex matrix, SIAM Rev., 12 (1970), 132–134. http://doi.org/10.1137/1012014 doi: 10.1137/1012014
    [26] H. Zhu, J. Chen, P. Patrício, X. Mary, Centralizer's applications to the inverse along an element, Appl. Math. Comput., 315 (2017), 27–33. http://doi.org/10.1016/j.amc.2017.07.046 doi: 10.1016/j.amc.2017.07.046
    [27] H. Zhu, L. Wu, Q. Wang, Suitable elements, $*$-clean elements and {S}ylvester equations in rings with involution, Commun. Algebra, 50 (2022), 1535–1543. http://doi.org/10.1080/00927872.2021.1985129 doi: 10.1080/00927872.2021.1985129
    [28] I. Erdelyi, On the matrix equation $Ax = \lambda Bx$, J. Math. Anal. Appl., 17 (1967), 119–132. http://doi.org/10.1016/0022-247X(67)90169-2 doi: 10.1016/0022-247X(67)90169-2
    [29] K. Kamaraj, K. C. Sivakumar, Moore-Penrose inverse in an indefinite inner product space, J. Appl. Math. Comput., 19 (2005), 297–310. http://doi.org/10.1007/BF02935806 doi: 10.1007/BF02935806
    [30] M. Z. Petrović, P. S. Stanimirović, Representations and computations of $\{2, 3^{\sim}\}$ and $\{2, 4^{\sim}\}$-inverses in indefinite inner product spaces, Appl. Math. Comput., 254 (2015), 157–171. http://doi.org/10.1016/j.amc.2014.12.100 doi: 10.1016/j.amc.2014.12.100
    [31] E. T. Wong, Involutory functions and Moore-Penrose inverses of matrices in an arbitrary field, Linear Algebra Appl., 48 (1982), 283–291. http://doi.org/10.1016/0024-3795(82)90114-8 doi: 10.1016/0024-3795(82)90114-8
    [32] Y. Wei, A characterization and representation of the generalized inverse $A^{(2)}_{\mathcal{T}, \mathcal{S}}$ and its applications, Linear Algebra Appl., 280 (1998), 87–96. http://doi.org/10.1016/S0024-3795(98)00008-1 doi: 10.1016/S0024-3795(98)00008-1
    [33] N. S. Urquhart, Computation of generalized inverse matrices which satisfy specified conditions, SIAM Rev., 10 (1968), 216–218. http://doi.org/10.1137/1010035 doi: 10.1137/1010035
    [34] R. E. Hartwig, K. Spindelböck, Matrices for which $A^*$ and $A^{\dagger}$ commute, Linear Multilinear Algebra, 14 (1983), 241–256. http://doi.org/10.1080/03081088308817561 doi: 10.1080/03081088308817561
    [35] Z. Liao, Solution to a second order matrix equation over a skew field, in Chinese, J. Math. Technol., 15 (1999), 72–74.
    [36] E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc., 26 (1920), 394–395.
    [37] C. A. Desoer, B. H. Whalen, A note on pseudoinverses, J. Soc. Indust. Appl. Math., 11 (1963), 442–447. http://doi.org/10.1137/0111031 doi: 10.1137/0111031
    [38] A. Bjerhammar, Rectangular reciprocal matrices, with special reference to geodetic calculations, Bull. Géodésique, 20 (1951), 188–220. http://doi.org/10.1007/BF02526278 doi: 10.1007/BF02526278
    [39] A. Bjerhammar, A generalized matrix algebra, Trans. Roy. Inst. Tech., 1958,124.
    [40] J. J. Sylvester, Sur l'équation en matrices $px = xq$, Comptes Rendus de l'Académie des Sciences, 99 (1884), 67–71.
    [41] O. M. Baksalary, G. P. H. Styan, G. Trenkler, On a matrix decomposition of Hartwig and Spindelböck, Linear Algebra Appl., 430 (2009), 2798–2812. http://doi.org/10.1016/j.laa.2009.01.015 doi: 10.1016/j.laa.2009.01.015
    [42] B. Zheng, R. B. Bapat, Characterization of generalized inverses by a rank equation, Appl. Math. Comput., 151 (2004), 53–67. http://doi.org/10.1016/S0096-3003(03)00322-9 doi: 10.1016/S0096-3003(03)00322-9
    [43] H. Wang, X. Liu, Characterizations of the core inverse and the core partial ordering, Linear Multilinear Algebra, 63 (2015), 1829–1836. http://doi.org/10.1080/03081087.2014.975702 doi: 10.1080/03081087.2014.975702
    [44] M. Fiedler, T. L. Markham, A characterization of the Moore-Penrose inverse, Linear Algebra Appl., 179 (1993), 129–133. http://doi.org/10.1016/0024-3795(93)90325-I doi: 10.1016/0024-3795(93)90325-I
    [45] H. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289–300. http://doi.org/10.1016/j.laa.2016.08.008 doi: 10.1016/j.laa.2016.08.008
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1045) PDF downloads(76) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog