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1. Introduction

In order to easily test that a Mueller matrix maps the forward light cone into itself when studying
polarized light, Renardy [1] explored singular value decomposition in Minkowski space.
Subsequently, Meenakshi [2] defined the Minkowski inverse in Minkowski space and gave a
condition for a Mueller matrix to have a singular value decomposition in terms of its Minkowski
inverse. Since this article came out, the generalized inverses in Minkowski space have attracted
considerable attention. Zekraoui et al. [3] derived some new algebraic and topological properties of
the Minkowski inverse. Meenakshi [4] introduced the concept of a range symmetric matrix in
Minkowski space, which was further studied by various scholars [5–7]. The Minkowski inverse has
been widely used in many applications, such as the anti-reflexive solutions of matrix equations [8] and
matrix partial orderings [9,10]. The weighted Minkowski inverse defined in [11] is a generalization of
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the Minkowski inverse, and many of its properties, representations and approximations were
established in [11–13]. Recently, Wang et al. introduced the m-core inverse [14], the m-core-EP
inverse [15] and the m-WG inverse [16] in Minkowski space, which are viewed as generalizations of
the core inverse, the core-EP inverse and the weak group inverse, respectively.

It is well known that the Moore-Penrose inverse [17] not only plays an irreplaceable role in solving
linear matrix equations, but it is also a generally accepted tool in statistics, studies of extreme-value
problems and other scientific disciplines. Moreover, this inverse pervades a great number of
mathematical fields: C∗-algebras, rings, Hilbert spaces, Banach spaces, categories, tensors and the
quaternion skew field. The algebraic properties, characterizations, representations, perturbation
theory and iterative computations of the Moore-Penrose inverse have been extensively investigated.
For more details on the study of the Moore-Penrose inverse, refer to [18–23].

Although the Minkowski inverse in Minkowski space can be regarded as an extension of the
Moore-Penrose inverse, there are many differences between these two classes of generalized inverses,
especially in terms of their existence conditions (see [2, 3, 12]). So, it is natural to ask what interesting
results for the Minkowski inverse can be drawn by considering some known conclusions of the
Moore-Penrose inverse.

Mainly inspired by [24–27], we summarize the main topics of this work as below:

• A few characterizations and representations of {1, 3m}-, {1, 2, 3m}-, {1, 4m}- and {1, 2, 4m}-inverses
are shown.
• We apply the solvability of matrix equations, the nonsingularity of matrices, the existence of

projectors and the index of matrices to characterize the existence of the Minkowski inverse,
which extends some classic characterizations of the Moore-Penrose inverse in Cm×n with the
usual Hermitian adjoint and in a ring with involution. And, we show various representations of
the Minkowski inverse in different cases.
• Using the Hartwig-Spindelböck decomposition, we present a new representation of the

Minkowski inverse. Based on this result, an interesting characterization of the Minkowski
inverse is presented through the use of a rank equation.
• Motivated by the Zlobec formula of the Moore-Penrose inverse, we give a more general

representation of the Minkowski inverse and apply it to compute the Minkowski inverse of a
class of block matrices.

This paper is organized as follows. Section 2 presents the notations and terminology. In Section 3,
some necessary lemmas are given. We devote Section 4 to the characterizations of {1, 3m}-, {1, 2, 3m}-,
{1, 4m}- and {1, 2, 4m}-inverses. Some classic properties of the Moore-Penrose inverse are extended to
the case of the Minkowski inverse in Section 5. In Section 6, we further extend several characterizations
of the Moore-Penrose inverse in a ring to the Minkowski inverse. We characterize the Minkowski
inverse by using a rank equation in Section 7. Section 8 focuses on showing a few new representations
of the Minkowski inverse.

2. Notations and terminology

Throughout this paper, we adopt the following notations and terminology. Let Cn, Cm×n and Cm×n
r

be the sets of all complex n-dimensional vectors, complex m × n matrices and complex m × n matrices
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with rank r, respectively. The symbols A∗, R(A), N(A) and rank(A) stand for the conjugate transpose,
range, null space and rank of A ∈ Cm×n, respectively. The index of A ∈ Cn×n, denoted by Ind(A), is the
smallest nonnegative integer t satisfying rank(At+1) = rank(At). And, A0 = In for A ∈ Cn×n, where In

is the identity matrix in Cn×n. We denote the dimension and the orthogonal complementary subspace
of a subspace L ⊆ Cn by dim(L) and L⊥, respectively. By PS,T , we denote the projector onto S along
T , where two subspaces S,T ⊆ Cn satisfy that the direct sum of S and T is Cn, i.e., S ⊕ T = Cn. In
particular, PS = PS,S⊥ .

The Moore-Penrose inverse [17] of A ∈ Cm×n is the unique matrix X ∈ Cn×m verifying

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA,

and it is denoted by A†. The group inverse [28] of A ∈ Cn×n is the unique matrix X ∈ Cn×n satisfying

AXA = X, XAX = X, AX = XA,

and it is denoted by A#. For A ∈ Cm×n, if there is a matrix X ∈ Cn×m satisfying

XAX = X,R(X) = T ,N(X) = S,

where T ⊆ Cn and S ⊆ Cm are two subspaces, then X is unique and is denoted by A(2)
T ,S

[19, 23].
Particularly, if AA(2)

T ,S
A = A, we denote A(1,2)

T ,S
= A(2)

T ,S
.

Additionally, let G be the Minkowski metric tensor [1,2] defined by Gu = (u0,−u1,−u2, . . . ,−un−1),
where u ∈ Cn is indexed as u = (u0, u1, . . . , un−1). The Minkowski metric tensor G can be determined

by a nonsingular matrix G =
(

1 0
0 −In−1

)
, which is also called the Minkowski metric matrix [2].

Evidently, G = G∗ and G2 = In. The Minkowski inner product [1, 2] of two elements x and y in
Cn is defined by (x, y) =< x,Gy >, where < ·, · > is the conventional Euclidean inner product. The
complex linear space Cn with Minkowski inner product is called the Minkowski space. Notice that the
Minkowski space is also an indefinite inner product space [29,30]. The Minkowski adjoint of A ∈ Cm×n

is A∼ = GA∗F, where G and F are Minkowski metric matrices of orders n and m, respectively. For
A ∈ Cm×n and B ∈ Cn×p, it is easy to verify that (A∼)∼ = A and (AB)∼ = B∼A∼.

Definition 2.1. [2, 30] Let A ∈ Cm×n.

(1) If there exists X ∈ Cn×m such that

(1) AXA = A, (2) XAX = X, (3m) (AX)∼ = AX, (4m) (XA)∼ = XA,

then X is called the Minkowski inverse of A and is denoted by Am.

(2) If X ∈ Cn×m satisfies equations (i), ( j), ..., (k) from among equations (1)–(4m), then X is called a
{i, j, ..., k}-inverse of A and is denoted by A(i, j,...,k). The set of all {i, j, ..., k}-inverses of A is denoted
by A{i, j, ..., k}.

3. Preliminaries

This section begins with recalling existence conditions and some basic properties of the Minkowski
inverse, which will be useful in the later discussion.

AIMS Mathematics Volume 8, Issue 10, 23403–23426.



23406

Lemma 3.1 (Theorem 1, [2] or Theorem 3, [31]). Let A ∈ Cm×n. Then, Am exists if and only if
rank(AA∼) = rank(A∼A) = rank(A).

Lemma 3.2 (Theorem 8, [3]). Let A ∈ Cm×n
r and r > 0, and let A = BC be a full-rank factorization of

A, where B ∈ Cm×r
r and C ∈ Cr×n

r . If Am exists, then Am = C∼(CC∼)−1(B∼B)−1B∼.

Lemma 3.3 (Theorem 9, [29]). Let A ∈ Cm×n with rank(AA∼) = rank(A∼A) = rank(A). Then, the
following holds:

(1) R(Am) = R(A∼) and N(Am) = N(A∼);

(2) AAm = PR(A),N(A∼);

(3) AmA = PR(A∼),N(A).

Remark 3.4. Under the conditions of the hypotheses of Lemma 3.3, we immediately have

Am = A(1,2)
R(A∼),N(A∼). (3.1)

Furthermore, we recall an important application of {1}-inverses to solve matrix equations.

Lemma 3.5 (Theorem 1.2.5, [23]). Let A ∈ Cm×n, B ∈ Cp×q and D ∈ Cm×q. Then, there is a solution
X ∈ Cn×p to the matrix equation AXB = D if and only if, for some A(1) ∈ A{1} and B(1) ∈ B{1},
AA(1)DB(1)B = D; in this case, the general solution is

X = A(1)DB(1) + (In − A(1)A)Y + Z(Ip − BB(1)),

where A(1) ∈ A{1} and B(1) ∈ B{1} are fixed but arbitrary, and Y ∈ Cn×p and Z ∈ Cn×p are arbitrary.

Two significant results for A(2)
T ,S

are reviewed in order to show the existence conditions of the
Minkowski inverse in Section 5, and to represent the Minkowski inverse in Section 8, respectively.

Lemma 3.6 (Theorem 2.1, [32]). Let A ∈ Cm×n
r , and let two subspaces T ⊆ Cn andS ⊆ Cm be such that

dim(T ) ≤ r and dim(S) = m− dim(T ). Suppose that H ∈ Cn×m is such that R(H) = T andN(H) = S.
If A(2)

T ,S
exists, then Ind(AH) = Ind(HA) = 1. Further, we have that A(2)

T ,S
= (HA)#H = H(AH)#.

Lemma 3.7 (Urquhart formula, [33]). Let A ∈ Cm×n, U ∈ Cn×p, V ∈ Cq×m and

X = U(VAU)(1)V,

where (VAU)(1) ∈ (VAU){1}. Then, X = A(1,2)
R(U),N(V) if and only if rank(VAU) = rank(U) = rank(V) =

rank(A).

The following three auxiliary lemmas are critical to conclude the results in Section 7.

Lemma 3.8 (Hartwig-Spindelböck decomposition, [34]). Let A ∈ Cn×n
r . Then, A can be represented in

the form

A = U
(
ΣK ΣL
0 0

)
U∗, (3.2)

where U ∈ Cn×n is unitary, Σ = diag(σ1, σ2, ..., σr) is the diagonal matrix of singular values of A,
σi > 0 (i = 1, 2, ..., r) and K ∈ Cr×r and L ∈ Cr×(n−r) satisfy

KK∗ + LL∗ = Ir. (3.3)
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Lemma 3.9 (Theorem 1, [24]). Let A ∈ Cm×n, B ∈ Cm×m and C ∈ Cn×n. Then, there exists a solution
X ∈ Cn×m to the rank equation

rank
(

A B
C X

)
= rank(A) (3.4)

if and only if R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗), and in which case,

X = CA†B. (3.5)

Lemma 3.10 (Theorem 1, [35]). Let A ∈ Cm×n
r and B ∈ Cl×h

r1
. Assume that A = P

(
Ir 0
0 0

)
Q and

B = P1

(
Ir1 0
0 0

)
Q1, where P ∈ Cm×m, Q ∈ Cn×n, P1 ∈ C

l×l and Q1 ∈ C
h×h are nonsingular. If r = r1,

then the general solution of the matrix equation XAY = B is given by

X = P1

(
X1 X2

0 X4

)
P−1,Y = Q−1

(
X−1

1 0
Y3 Y4

)
Q1,

where X1 ∈ C
r×r is an arbitrary nonsingular matrix and X2 ∈ C

r×(m−r), X4 ∈ C
(l−r)×(m−l), Y3 ∈ C

(n−r)×r

and Y4 ∈ C
(n−r)×(n−r) are arbitrary.

4. Characterizations of {1, 3m}-, {1, 2, 3m}-, {1, 4m}- and {1, 2, 4m}-inverses

An interesting conclusion proved by Kamaraj and Sivakumar in [29, Theorem 4] is that, if A ∈ Cm×n

is such that Am exists, then
Am = A(1,4m)AA(1,3m), (4.1)

where A(1,3m) ∈ A{1, 3m} and A(1,4m) ∈ A{1, 4m}. This result shows the importance of A(1,3m) and A(1,4m) to
represent the Minkowski inverse Am. Moreover, Petrović and Stanimirović [30] have investigated the
representations and computations of {2, 3∼}- and {2, 4∼}-inverses in an indefinite inner product space,
which are generalizations of {2, 3m}- and {2, 4m}-inverses in Minkowski space. Motivated by the above
work, we consider the characterizations of {1, 3m}-, {1, 2, 3m}-, {1, 4m}- and {1, 2, 4m}-inverses in this
section. Before starting, an auxiliary lemma is given as follows.

Lemma 4.1. Let A ∈ Cn×s and B ∈ Ct×n. Then,(
PR(A),N(B)

)∼
= PR(B∼),N(A∼).

Proof. Write Q = (PR(A),N(B))∼ = GP(N(B))⊥,(R(A))⊥G. Then, Q2 = Q,

R(Q) = G (N(B))⊥ = R(GB∗) = R(B∼),

(N(Q))⊥ =
(
N(P(N(B))⊥,(R(A))⊥G)

)⊥
= R(GPR(A),N(B)) = R(GA) = R((A∼)∗),

which implies that N(Q) = (R((A∼)∗))⊥ = N(A∼). Thus, Q = PR(B∼),N(A∼). □

In the following theorems, we prove the equivalence of the existence of {1, 3m}- and {1, 2, 3m}-
inverses, and show some of their characterizations.
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Theorem 4.2. Let A ∈ Cm×n. Then, there exists X ∈ A{1, 3m} if and only if there exists Y ∈ A{1, 2, 3m}.

Proof. The ‘if’ part is obvious. Conversely, if there exists X ∈ A{1, 3m}, then

A = AXA = (AX)∼A = X∼A∼A,

which implies that rank(A) = rank(A∼A). Using [2, Theorem 2], we have that there exists
Y ∈ A{1, 2, 3m}. □

Theorem 4.3. Let A ∈ Cm×n and X ∈ Cn×m. Then, the following statements are equivalent:

(1) X ∈ A{1, 3m};

(2) A∼AX = A∼;

(3) AX = PR(A),N(A∼).

In this case,
A{1, 3m} =

{
A(1,3m) + (In − A(1,3m)A)Y Y ∈ Cn×m

}
, (4.2)

where A(1,3m) ∈ A{1, 3m} is fixed but arbitrary.

Proof. (1)⇒ (2). Since X ∈ A{1, 3m}, it follows that A∼AX = A∼(AX)∼ = (AXA)∼ = A∼.
(2) ⇒ (3). Since (AX)∼A = A from A∼AX = A∼, we have that AX = (AX)∼AX, implying that

(AX)∼ = AX. Thus, AX = (AX)∼AX = (AX)2, that is, AX is a projector. Again, by (AX)∼ = AX, we
have that AXA = A, which, together with A∼AX = A∼, shows that R(AX) = R(A) andN(AX) = N(A∼).
Hence, AX = PR(A),N(A∼).

(3)⇒ (1). Clearly, AXA = PR(A),N(A∼)A = A. Applying Lemma 4.1 to AX = PR(A),N(A∼), we see that
(AX)∼ = PR(A),N(A∼) = AX.

In this case, we have that A{1, 3m} =
{

Z ∈ Cn×m AZ = AA(1,3m)
}
, where A(1,3m) is a fixed but

arbitrary {1, 3m}-inverse of A. Thus, applying Lemma 3.5 to AZ = AA(1,3m), we have (4.2) directly. □

Theorem 4.4. Let A ∈ Cm×n
r with rank(A∼A) = rank(A) > 0, and let a full-rank factorization of A be

A = BC, where B ∈ Cm×r
r and C ∈ Cr×n

r . Then,

A{1, 2, 3m} =
{

C−1
R (B∼B)−1B∼ C−1

R is an arbitrary right inverse of C
}
.

Proof. We can easily verify that [C−1
R (B∼B)−1B∼] ∈ A{1, 2, 3m}. Conversely, let H ∈ A{1, 2, 3m}. Using

the fact that

A{1, 2} =
{

C−1
R B−1

L B−1
L is an arbitrary left inverse of B, C−1

R is an arbitrary right inverse of C
}
,

we have that H = C−1
R B−1

L for some B−1
L ∈ C

r×m
r and C−1

R ∈ C
n×r
r . Moreover, it follows from H ∈ A{3m}

that

(AH)∼ = AH ⇔ (BB−1
L )∼ = BB−1

L

⇔ B−1
L = (B∼B)−1B∼.

Hence, every H ∈ A{1, 2, 3m} must be of the form C−1
R (B∼B)−1B∼. This completes the proof. □
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Using an obvious fact that X∼ ∈ A∼{1, 3m} if and only if X ∈ A{1, 4m}, where A ∈ Cm×n, we have
the following results, which show that {1, 4m}- and {1, 2, 4m}-inverses have properties similar to that
of {1, 3m}- and {1, 2, 3m}-inverses.

Theorem 4.5. Let A ∈ Cm×n. Then, there exists X ∈ A{1, 4m} if and only if there exists Y ∈ A{1, 2, 4m}.

Theorem 4.6. Let A ∈ Cm×n and X ∈ Cn×m. Then, the following statements are equivalent:

(1) X ∈ A{1, 4m};

(2) XAA∼ = A∼;

(3) XA = PR(A∼),N(A).

In this case,
A{1, 4m} =

{
A(1,4m) + Z(Im − AA(1,4m)) Z ∈ Cn×m

}
,

where A(1,4m) ∈ A{1, 4m} is fixed but arbitrary.

Theorem 4.7. Let A ∈ Cm×n
r with rank(AA∼) = r > 0, and let a full-rank factorization of A be A = BC,

where B ∈ Cm×r
r and C ∈ Cr×n

r . Then,

A{1, 2, 4m} =
{

C∼(CC∼)−1B−1
L B−1

L is an arbitrary left inverse of B
}
.

Remark 4.8. If A ∈ Cm×n and X ∈ A{1, 2}, we derive [2, Theorems 3 and 4] directly by Theorems 4.3
and 4.6, respectively.

5. Characterizations of the Minkowski inverse

Based on Lemma 3.1, we start by proposing several different existence conditions of Am in the
following theorem.

Theorem 5.1. Let A ∈ Cm×n. Then, the following statements are equivalent:

(1) Am exists;

(2) rank(A∼AA∼) = rank(A);

(3) AR(A∼) ⊕ N(A∼) = Cm.

Proof. (1)⇒ (2). If Am exists, then rank(AA∼) = rank(A∼A) = rank(A) by Lemma 3.1. Since R(A) ∩
N(A∼) = {0} from rank(A∼A) = rank(A), it follows from rank(AA∼) = rank(A) that

rank(A∼AA∼) = rank(AA∼) − dim(R(AA∼) ∩ N(A∼))
= rank(A) − dim(R(A) ∩ N(A∼))
= rank(A).

(2)⇒ (3). From

rank(A) = rank(A∼AA∼) = rank(AA∼) − dim(R(AA∼) ∩ N(A∼))

and rank(A) ≥ rank(AA∼), we have that R(AA∼)∩N(A∼) = {0} and rank(AA∼) = rank(A), which imply
that AR(A∼) ⊕ N(A∼) = Cm.

(3) ⇒ (1). It follows from AR(A∼) ⊕ N(A∼) = Cm that R(AA∼) ∩ N(A∼) = {0} and rank(AA∼) =
rank(A). Thus, R(A)∩N(A∼) = {0}, that is, rank(A∼A) = rank(A). Hence, Am exists by Lemma 3.1. □
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Subsequently, if Am exists for A ∈ Cm×n, applying Lemma 3.6 to (3.1) in Remark 3.4, we directly
obtain a new expression of the Minkowski inverse, Am = (A∼A)#A∼ = A∼(AA∼)# and

Ind(AA∼) = Ind(A∼A) = 1. (5.1)

However, for a matrix A ∈ Cm×n satisfying (5.1), Am does not necessarily exist, as will be shown in the
following example.

Example 5.2. Let

A =


1 0 1 1
0 0 1 0
1 0 1 1
0 0 0 0
0 0 0 0


.

It can be verified that rank(A∼AA∼) = rank((A∼A)2) = rank(A∼A) = rank((AA∼)2) = rank(AA∼) = 1
and rank(A) = 2. Obviously, Ind(A∼A) = Ind(AA∼) = 1, but rank(A∼AA∼) , rank(A), implying that Am

does not exist.

In the next theorem, we present some necessary and sufficient conditions for the converse
implication.

Theorem 5.3. Let A ∈ Cm×n. Then, the following statements are equivalent:

(1) Am exists;

(2) Ind(A∼A) = 1 and N(A∼A) ⊆ N(A);

(3) Ind(AA∼) = 1 and R(A) ⊆ R(AA∼).

Proof. (1)⇔ (2). The ‘only if’ part is obvious by Lemmas 3.1 and 3.6. Conversely, since rank(A) =
rank(A∼A) from N(A∼A) ⊆ N(A), it follows from Ind(A∼A) = 1 that R(A∼) ∩ N(A) = R(A∼A) ∩
N(A∼A) = {0}, which implies that rank(AA∼) = rank(A). Hence, Am exists directly by Lemma 3.1.

(1)⇔ (3). Its proof is similar to that of (1)⇔ (2). □

As we all know, Moore [36], Penrose [17] and Desoer and Whalen [37] defined the Moore-Penrose
inverse from different perspectives, respectively. Next, we review these definitions in the following
lemma and extend this result to the Minkowski inverse.

Lemma 5.4 (Desoer-Whalen’s and Moore’s definitions, [36, 37]). Let A ∈ Cm×n and X ∈ Cn×m. Then,
the following statements are equivalent:

(1) X = A†;

(2) XAa = a for a ∈ R(A∗), and Xb = 0 for b ∈ N(A∗);

(3) AX = PR(A), XA = PR(X).

There is an interesting example showing that, for some matrices A ∈ Cm×n and X ∈ Cn×m, X may not
be equivalent to Am though AX = PR(A),N(A∼) and XA = PR(X),N(A).
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Example 5.5. Let us consider the matrices

A =


1 1 1 0 1
0 1 0 1 0
1 1 0 0 1
0 0 0 0 0
0 0 0 0 0


, X =


0 −0.2 0.4 0 0
0 0.4 0.2 0 0
1 0 −1 0 0
0 0.6 −0.2 0 0
0 −0.2 0.4 0 0


.

By calculation, we have that rank(A∼AA∼) = rank(A) = 3 and

Am =


0 1 −2 0 0
0 0 1 0 0
1 0 −1 0 0
0 1 −1 0 0
0 −1 2 0 0


.

Evidently, X , Am. However, we can check that X ∈ A{1, 2} and N(X) = N(A∼), which imply that
AX = PR(A),N(A∼) and XA = PR(X),N(A).

Theorem 5.6. Let A ∈ Cm×n and X ∈ Cn×m. Then, the following statements are equivalent:

(1) X = Am;

(2) XAa = a for a ∈ R(A∼), and Xb = 0 for b ∈ N(A∼);

(3) AX = PR(A),N(A∼), XA = PR(X),N(A) and R(X) ⊆ R(A∼).

Proof. (1)⇒ (2). It is obvious by Lemma 3.3.
(2)⇒ (3). It follows from XAa = a for a ∈ R(A∼) that XAA∼ = A∼, which shows that rank(A∼) ≤

rank(X) and R(A∼) ⊆ R(X). And, from Xb = 0 for b ∈ N(A∼), we have that N(A∼) ⊆ N(X), implying
that rank(X) ≤ rank(A∼). Thus, rank(X) = rank(A∼), R(X) = R(A∼) andN(X) = N(A∼). Hence, again,
by XAa = a for a ∈ R(A∼) = R(X), we have that X ∈ A{1, 2}, which implies that the item (3) holds.

(3)⇒ (1). Clearly, AXA = PR(A),N(A∼)A = A and XAX = PR(X),N(A)X = X, i.e., X ∈ A{1, 2}. Then,
from AX = PR(A),N(A∼) and R(X) ⊆ R(A∼), we have that N(X) = N(A∼) and R(X) = R(A∼). Hence, in
view of (3.1) in Remark 3.4, we see that X = Am. □

A classic characterization of the Moore-Penrose inverse proposed by Bjerhammar [38, 39] is
extended to the Minkowski inverse in the following theorem.

Theorem 5.7. Let A ∈ Cm×n with rank(A∼AA∼) = rank(A), and let X ∈ Cn×m. Then, the following
statements are equivalent:

(1) X = Am;

(2) There exist B ∈ Cm×m and C ∈ Cn×n such that AXA = A, X = A∼B, X = CA∼.

Moreover,

B = (A∼)(1)Am + (Im − (A∼)(1)A∼)Y,
C = Am(A∼)(1) + Z(In − A∼(A∼)(1)),

where Y ∈ Cm×m and Z ∈ Cn×n are arbitrary and (A∼)(1) ∈ (A∼){1}.
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Proof. It is easily obtained based on Remark 3.4 and Lemma 3.5. □

Corollary 5.8. Let A ∈ Cm×n with rank(A∼AA∼) = rank(A), and let X ∈ Cn×m. Then, the following
statements are equivalent:

(1) X = Am;

(2) There exists D ∈ Cm×n such that AXA = A, X = A∼DA∼.

In this case,
D = (A∼)(1)Am(A∼)(1) + (Im − (A∼)(1)A∼)Y + Z(In − A∼(A∼)(1)),

where Y,Z ∈ Cm×n are arbitrary and (A∼)(1) ∈ (A∼){1}.

Proof. It is a direct corollary of Theorem 5.7. □

6. Further characterizations of the Minkowski inverse

As it has been stated in Section 1, a great deal of mathematical effort [18,26,27] has been devoted to
the study of the Moore-Penrose inverse in a ring with involution. It is observed that Cm×n is not a ring
or even a semigroup for matrix multiplication (unless m = n). However, we note two interesting facts.
One is that an involution [26] a 7→ a∗ in a ring R is a map from R to R such that (a∗)∗ = a, (a + b)∗ =
a∗ + b∗ and (ab)∗ = b∗a∗ for all a, b ∈ R; the other one is that the Minkowski adjoint A∼ has similar
properties, that is, (A∼)∼ = A, (A+C)∼ = A∼+C∼ and (AB)∼ = B∼A∼, where A,C ∈ Cm×n and B ∈ Cn×l.
Based on the above considerations, the purpose of this section is to extend some characterizations of
the Moore-Penrose inverse in rings, mainly mentioned in [26, 27], to the Minkowski inverse. Inspired
by [26, Theorem 3.12, Corollary 3.17], we give the following two results in the first part of this section.

Theorem 6.1. Let A ∈ Cm×n. Then, the following statements are equivalent:

(1) Am exists;

(2) There exists X ∈ Cm×m such that A = XAA∼A;

(3) There exists Y ∈ Cn×n such that A = AA∼AY.

In this case, Am = (XA)∼ = (AY)∼.

Proof. Note that there exists X ∈ Cm×m such that A = XAA∼A, which is equivalent to N(AA∼A) ⊆
N(A). This assertion is also equivalent to rank(A) = rank(AA∼A). Then, the equivalence of (1) and (2)
is obvious by the item (2) in Theorem 5.1. And, the proof of the equivalence of (1) and (3) can be
completed by using a method analogous to that used above.

Moreover, if Am exists, we first claim that (XA)∼ ∈ A{1, 3m, 4m}. In fact, using A = XAA∼A, we
infer that

(A(XA)∼)∼ = XAA∼ = XA(XAA∼A)∼ = XAA∼AA∼X∼ = A(XA)∼,
A(XA)∼A = (A(XA)∼)∼A = XAA∼A = A,

((XA)∼A)∼ = (A∼X∼A)∼ = ((XAA∼A)∼X∼A)∼ = (A∼AA∼(X∼)2A)∼

= (A∼XAA∼AA∼(X∼)2A)∼ = (A∼XXAA∼AA∼AA∼(X∼)2A)∼

AIMS Mathematics Volume 8, Issue 10, 23403–23426.
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= (A∼(X)2(AA∼)3(X∼)2A)∼ = A∼(X)2(AA∼)3(X∼)2A = (XA)∼A,

which imply that (XA)∼ ∈ A{1, 3m, 4m}. Finally, according to (4.1), we obtain that

Am = (XA)∼A(XA)∼ = ((XA)∼A)∼(XA)∼ = A∼XAA∼X∼

= (A(XA)∼A)∼X∼ = (XA)∼.

Using the same method as in the above proof, we can carry out the proof of (AY)∼ ∈ A{1, 3m, 4m} and
Am = (AY)∼. □

A well-known result is given directly in the following lemma, which will be useful in the proof of
the next theorem.

Lemma 6.2. Let A ∈ Cm×n and B ∈ Cn×m. Then, Im − AB is nonsingular if and only if In − BA is
nonsingular, and in which case, (Im − AB)−1 = Im + A(In − BA)−1B.

Theorem 6.3. Let A ∈ Cm×n and A(1) ∈ A{1}. Then, the following statements are equivalent:

(1) Am exists;

(2) A∼A + In − A(1)A is nonsingular;

(3) AA∼ + Im − AA(1) is nonsingular.

In this case,

Am = (A(A∼A + In − A(1)A)−1)∼

= ((AA∼ + Im − AA(1))−1A)∼.

Proof. Denote B = A∼A + In − A(1)A and C = AA∼ + Im − AA(1).
(1)⇒ (2). If Am exists, using items (1) and (2) in Theorem 6.1, we have that A = XAA∼A for some

X ∈ Cm×m. It can be easily verified that

(A(1)XA + In − A(1)A)(A(1)AA∼A + In − A(1)A) = In,

which shows the nonsingularity of D := A(1)AA∼A + In − A(1)A. And, D can be rewritten as D =
In − A(1)A(In − A∼A). Thus, by Lemma 6.2, it is easy to see that B is nonsingular.

(2) ⇒ (1). Since B is nonsingular, from AB = AA∼A, we have that A = AA∼AB−1. Therefore, Am

exists by items (1) and (3) in Theorem 6.1.
(3)⇔ (2). Since B and C can be rewritten as B = In − (A(1) − A∼)A and C = Im − A(A(1) − A∼), from

Lemma 6.2, we have the equivalence of (3) and (2) immediately.
In this case, from items (1) and (2) in Lemma 3.3, we infer that

B∼Am = (A∼A + In − A(1)A)∼Am

= A∼AAm + Am − A∼(A∼)(1)Am

= A∼,

which, together with the item (2), gives Am = (AB−1)∼. Analogously, we can derive that Am = (C−1A)∼.
This completes the proof. □
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The Sylvester matrix equation [40] has numerous applications in neural networks, robust control,
graph theory and other areas of system and control theory. Motivated by [27, Theorem 2.3], in the
following theorem, we use the solvability of a certain Sylverster matrix equation to characterize the
existence of the Minkowski inverse, and we apply its solutions to represent the Minkowski inverse.

Theorem 6.4. Let A ∈ Cm×n. Then, the following statements are equivalent:

(1) Am exists;

(2) rank(AA∼) = rank(A∼), and there exist X ∈ Cm×m and a projector Y ∈ Cm×m such that

XAA∼ − YX = Im, (6.1)

AA∼X = XAA∼ and AA∼Y = 0.

In this case,
Am = A∼X. (6.2)

Proof. (1) ⇒ (2). If Am exists, it is clear by Lemma 3.1 to see that rank(AA∼) = rank(A∼). Let Q =
AA∼+Im−AAm. By items (1) and (2) in Lemma 3.3, it is easy to verify that Q((A∼)mAm+Im−AAm) = Im,
showing the nonsingularity of Q. And, AAmQ = QAAm = AA∼. Denote Y = Im −AAm. Clearly, Y2 = Y
and AA∼Y = YAA∼ = 0. Let X = AAmQ−1 − Y . Hence,

XAA∼ = (AAmQ−1 − Y)AAmQ = AAmQ−1QAAm = AAm,

AA∼X = QAAm(AAmQ−1 − Y) = QAAmQ−1 = AAmQQ−1 = AAm,

−YX = −Y(AAmQ−1 − Y) = −YAAmQ−1 + Y = Y.

Evidently, XAA∼ = AA∼X and XAA∼ − YX = Im.
(2)⇒ (1). Premultiplying (6.1) by AA∼, we have that AA∼XAA∼ − AA∼YX = AA∼, which, together

with AA∼X = XAA∼ and AA∼Y = 0, yields that AA∼AA∼X = AA∼ if and only if R(AA∼X − Im) ⊆
N(AA∼). Since N(AA∼) = N(A∼) from rank(AA∼) = rank(A∼), we get that A∼ = A∼AA∼X, i.e.,

A = X∼AA∼A. (6.3)

Consequently, Am exists according to items (1) and (2) in Theorem 6.1.
Finally, if Am exists, applying Theorem 6.1 to (6.3), we have (6.2) directly. □

Remark 6.5. Let A ∈ Cm×n. Using the easy result that Am exists if and only if (A∼)m exists, by
Theorem 6.4, we conclude that the following statements are equivalent:

(1) Am exists;

(2) rank(A∼A) = rank(A), and there exist X ∈ Cn×n and a projector Y ∈ Cn×n such that XA∼A−YX = In,
A∼AX = XA∼A and A∼AY = 0.

In this case, Am = (AX)∼.
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7. Characterizing the Minkowski inverse by using a rank equation

It is well known that the Hartwig-Spindelböck decomposition is an effective and basic tool for
finding representations of various generalized inverses and matrix classes (see [34, 41]). A new
condition for the existence of the Minkowski inverse is given by the Hartwig-Spindelböck
decomposition in this section. Under this condition, we present a new representation of the
Minkowski inverse. We first introduce the following notations used in the section.

For A ∈ Cn×n given by (3.2) in Lemma 3.8, let

U∗GU =
(

G1 G2

G3 G4

)
,

where G1 ∈ C
r×r, G2 ∈ C

r×(n−r), G3 ∈ C
(n−r)×r and G4 ∈ C

(n−r)×(n−r), and let

∆ =
(

K L
)

U∗GU
(

K∗

L∗

)
.

Theorem 7.1. Let A be given in (3.2). Then, the following holds true:

(1) rank(A) = rank(AA∼) if and only if ∆ is nonsingular.

(2) rank(A) = rank(A∼A) if and only if G1 is nonsingular.

(3) If ∆ and G1 are nonsingular, then

Am = GU
(

K∗(G1Σ∆)−1 0
L∗(G1Σ∆)−1 0

)
U∗G (7.1)

= U
(

(G1K∗ +G2L∗)(Σ∆)−1 (G1K∗ +G2L∗)(G1Σ∆)−1G2

(G3K∗ +G4L∗)(Σ∆)−1 (G3K∗ +G4L∗)(G1Σ∆)−1G2

)
U∗. (7.2)

Proof. (1). Using the Hartwig-Spindelböck decomposition, we have

rank(A) = rank(AA∼)⇔ rank(A) = rank
((
ΣK ΣL
0 0

)
U∗GU

(
(ΣK)∗ 0
(ΣL)∗ 0

))
⇔ rank(A) = rank

((
K L

)
U∗GU

(
K∗

L∗

))
,

which is equivalent to stating that ∆ is nonsingular.
(2). Since

(
ΣK ΣL

)
is of full row rank by (3.3), again, using the Hartwig-Spindelböck

decomposition we derive that

rank(A) = rank(A∼A)⇔ rank(A) = rank
((

(ΣK)∗ 0
(ΣL)∗ 0

) (
G1 G2

G3 G4

) (
ΣK ΣL
0 0

))
⇔ rank(A) = rank

((
ΣK ΣL

)∗
G1

(
ΣK ΣL

))
⇔ rank(A) = rank(G1),

which is equivalent to stating that G1 is nonsingular.
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(3). Note that A given in (3.2) can be rewritten as

A = U
(
Σ

0

) (
K L

)
U∗, (7.3)

where B := U
(
Σ

0

)
and C :=

(
K L

)
U∗ are of full column rank and full row rank, respectively.

If ∆ and G1 are nonsingular, by items (1) and (2) and Lemma 3.1, we see that Am exists. Therefore,
applying Lemma 3.2 to (7.3) yields that

Am =C∼(CC∼)−1(B∼B)−1B∼

=GU
(

K∗

L∗

)
G

((
K L

)
U∗GU

(
K∗

L∗

)
G
)−1

(
G

(
Σ 0

)
U∗GU

(
Σ

0

))−1

G
(
Σ 0

)
U∗G

=GU
(

K∗

L∗

)
∆−1(ΣG1Σ)−1

(
Σ 0

)
U∗G

=GU
(

K∗(G1Σ∆)−1 0
L∗(G1Σ∆)−1 0

)
U∗G

=U
(

G1 G2

G3 G4

) (
K∗(G1Σ∆)−1 0
L∗(G1Σ∆)−1 0

) (
G1 G2

G3 G4

)
U∗

=U
(

(G1K∗ +G2L∗)(Σ∆)−1 (G1K∗ +G2L∗)(G1Σ∆)−1G2

(G3K∗ +G4L∗)(Σ∆)−1 (G3K∗ +G4L∗)(G1Σ∆)−1G2

)
U∗,

which completes the proof of this theorem. □

Example 7.2. In order to illustrate Theorem 7.1, let us consider the matrix A given in Example 5.5.
Then, the Hartwig-Spindelböck decomposition of A is

A = U
(
ΣK ΣL
0 0

)
U∗,

where

U =


−0.73056 0.27137 −0.62661 0 0
−0.27429 −0.95698 −0.094654 0 0
−0.62534 0.10272 0.77356 0 0

0 0 0 0 1
0 0 0 1 0


,Σ =


2.635 0 0

0 1.2685 0
0 0 0.66897

 ,

K =


0.71899 0.42393 0.16652
−0.22319 0.54174 0.024188
0.40383 −0.11142 −0.86962

 , L =

−0.51457 −0.10409
0.29491 −0.75442
0.21966 −0.14149

 .
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And, we have that

G1 =


0.06743 −0.3965 0.91556
−0.3965 −0.85272 −0.34009
0.91556 −0.34009 −0.21471

 ,∆ =

−0.47044 −0.3035 −0.22606
−0.3035 −0.82606 0.12956
−0.22606 0.12956 −0.9035

 .
Thus, it is easy to check that rank(G1) = rank(∆) = 3. Moreover, Am, calculated by (7.1) or (7.2), is the
same as that in Example 5.5, so it is omitted.

Groß [24] considered an interesting problem regarding the characterizations of B and C when X =
A† is assumed to be the unique solution of (3.4) in Lemma 3.9. This issue was once more revisited
in [42] and [43] on the Drazin inverse and the core inverse, respectively. Subsequently, we apply
Theorem 7.1 to provide another characterization of the Minkowski inverse.

Theorem 7.3. Let A be given in (3.2) with rank(A∼AA∼) = rank(A), and let X ∈ Cn×n. Then, X = Am is
the unique solution of the rank equation (3.4) if and only if

B = U
(

B1 B2

0 0

)
U∗G and C = GUTU∗, (7.4)

where

T =
(

J1ΣK J1ΣL
J3ΣK J3ΣL

)
,

B1 =
(
ΣK ΣL

) [
T (1)

(
K∗(G1Σ∆)−1

L∗(G1Σ∆)−1

)
+ (In − T (1)T )Y1

]
,

B2 =
(
ΣK ΣL

)
(In − T (1)T )Y2,

J1 ∈ C
r×r and J3 ∈ C

(n−r)×r satisfy N(T ∗) ⊆ N
((

K L
))

, Y1 ∈ C
n×r and Y2 ∈ C

n×(n−r) are arbitrary,
and T (1) ∈ T {1}.

Proof. We first prove the ‘only if’ part. If X = Am is the unique solution of (3.4), from Lemma 3.9, we
have that B = AH and C = JA for some H, J ∈ Cn×n. Put(

H1 H2

H3 H4

)
= U∗HGU,

(
J1 J2

J3 J4

)
= U∗GJU,

where H1, J1 ∈ C
r×r, H2, J2 ∈ C

r×(n−r), H3, J3 ∈ C
(n−r)×r and H4, J4 ∈ C

(n−r)×(n−r). Thus,

B = AH = U
(
ΣKH1 + ΣLH3 ΣKH2 + ΣLH4

0 0

)
U∗G, (7.5)

C = JA = GU
(

J1ΣK J1ΣL
J3ΣK J3ΣL

)
U∗. (7.6)

Note that [41, Formula (1.4)] has shown that

A† = U
(

K∗Σ−1 0
L∗Σ−1 0

)
U∗. (7.7)
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Then, inserting (7.5)–(7.7) in (3.5) gives

X = GU
(

J1ΣKH1 + J1ΣLH3 J1ΣKH2 + J1ΣLH4

J3ΣKH1 + J3ΣLH3 J3ΣKH2 + J3ΣLH4

)
U∗G. (7.8)

By a comparison of (7.1) in Theorem 7.1 with (7.8), we see that

X = Am ⇔


J3ΣKH1 + J3ΣLH3 = L∗(G1Σ∆)−1,

J3ΣKH1 + J3ΣLH3 = L∗(G1Σ∆)−1,

J1ΣKH2 + J1ΣLH4 = 0,
J3ΣKH2 + J3ΣLH4 = 0,

which can be rewritten as

T
(

H1

H3

)
=

(
K∗(G1Σ∆)−1

L∗(G1Σ∆)−1

)
,T

(
H2

H4

)
=

(
0
0

)
, (7.9)

where T =
(

J1ΣK J1ΣL
J3ΣK J3ΣL

)
. Applying Lemma 3.5 to (7.9), we conclude that J1 ∈ C

r×r and J3 ∈

C(n−r)×r satisfy

TT (1)
(

K∗(G1Σ∆)−1

L∗(G1Σ∆)−1

)
=

(
K∗(G1Σ∆)−1

L∗(G1Σ∆)−1

)
⇔ R

((
K∗(G1Σ∆)−1

L∗(G1Σ∆)−1

))
⊆ R(T )

⇔ R

((
K∗

L∗

))
⊆ R(T )

⇔ N(T ∗) ⊆ N
((

K L
))
,

and (
H1

H3

)
= T (1)

(
K∗(G1Σ∆)−1
L∗(G1Σ∆)−1

)
+ (In − T (1)T )Y1, (7.10)(

H2

H4

)
= (In − T (1)T )Y2, (7.11)

where Y1 ∈ C
n×r and Y2 ∈ C

n×(n−r) are arbitrary, and T (1) ∈ T {1}. Hence, premultiplying (7.10)
and (7.11) by

(
ΣK ΣL

)
, from (7.5) and (7.6), we infer that (7.4) holds. Conversely, the ‘if’ part is

easy and is therefore omitted. □

Notice that, in the proof of Theorem 7.3, the first equation in (7.9) can be replaced by(
J1

J3

) (
ΣK ΣL

) ( H1

H3

)
=

(
K∗(G1Σ∆)−1

L∗(G1Σ∆)−1

)
, (7.12)

which is a second-order matrix equation. Then, by applying Lemma 3.10 to (7.12), different
characterizations of B and C given by (7.4) are shown in the next theorem.
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Theorem 7.4. Let A be given in (3.2) with rank(A∼AA∼) = rank(A), and let X ∈ Cn×n. Then, X = Am is
the unique solution of the rank equation (3.4) if and only if

B = AU
(

Q−1

(
X−1

1
Y3

)
W

[
In −

(
Ĉ

(
ΣL ΣL

))(1)
Ĉ

(
ΣL ΣL

)]
Z

)
U∗G, (7.13)

C = GUĈ
(
ΣL ΣL

)
U∗, (7.14)

where Ĉ = S
(

X1

0

)
P−1,

(
Ĉ

(
ΣL ΣL

))(1)
∈

(
Ĉ

(
ΣL ΣL

))
{1}, X1 ∈ C

r×r is an arbitrary

nonsingular matrix, Y3 ∈ C
(n−r)×r and Z ∈ Cn×(n−r) are arbitrary and P,W ∈ Cr×r and Q, S ∈ Cn×n are

all nonsingular matrices such that

P
(

Ir 0
)

Q =
(
ΣK ΣL

)
, S

(
Ir

0

)
W =

(
K∗(G1Σ∆)−1
L∗(G1Σ∆)−1

)
. (7.15)

Proof. For convenience, we use the same notations as in the proof of Theorem 7.3. First, one can
clearly see the existence of nonsingular matrices P,W ∈ Cr×r and Q, S ∈ Cn×n satisfying (7.15). To
prove the ‘only if’ part, applying Lemma 3.10 to (7.12), we have that(

J1

J3

)
= S

(
X1

0

)
P−1,

(
H1

H3

)
= Q−1

(
X−1

1
Y3

)
W, (7.16)

where X1 ∈ C
r×r is an arbitrary nonsingular matrix and Y3 ∈ C

(n−r)×r is arbitrary. Note that the second
equation in (7.9) can be rewritten as(

J1

J3

) (
ΣK ΣL

) ( H2

H4

)
=

(
0
0

)
. (7.17)

Then, substituting the first equation in (7.16) to (7.17), again, by Lemma 3.5, we obtain that(
H2

H4

)
=

[
In −

(
Ĉ

(
ΣL ΣL

))(1)
Ĉ

(
ΣL ΣL

)]
Z, (7.18)

where Ĉ = S
(

X1

0

)
P−1 and Z ∈ Cn×(n−r) is arbitrary. Therefore, applying (7.16) and (7.18) to (7.5)

and (7.6), we infer that (7.13) and (7.14) hold. Conversely, the ‘if’ part is easy. □

There is also much interest in characterizing the generalized inverse by using a specific rank
equation (see [32, 42, 44]). At the end of this section, we turn our attention on this consideration.

Theorem 7.5. Let A ∈ Cm×n
r with rank(A∼AA∼) = rank(A). Then, there exist a unique matrix X ∈ Cn×n

such that
AX = 0, X∼ = X, X2 = X, rank(X) = n − r, (7.19)

a unique matrix Y ∈ Cm×m such that

YA = 0,Y∼ = Y,Y2 = Y, rank(Y) = m − r (7.20)
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and a unique matrix Z ∈ Cn×m such that

rank
(

A Im − Y
In − X Z

)
= rank(A). (7.21)

Furthermore, X = In − AmA, Y = Im − AAm and Z = Am.

Proof. From AX = 0 and X∼ = X, we have that R(X) ⊆ N(A) and R(A∼) ⊆ N(X), which, together
with rank(X) = n − r, show that R(X) = N(A) and N(X) = R(A∼). Hence, by X2 = X and the
item (3) in Lemma 3.3, it follows that the unique solution of (7.19) is X = PN(A),R(A∼) = In − AmA.
Analogously, we can have that Y = Im − AAm is the unique matrix satisfying (7.20). Next, it is
clear that R(Im − Y) = R(A) and R(In − X∗) = R(A∗). Thus, applying Lemma 3.9, we have that
Z = (In − X)A†(Im − Y) = AmAA†AAm = Am is the unique matrix such that (7.21). □

8. New representations of the Minkowski inverse

Zlobec [25] established an explicit form of the Moore-Penrose inverse, also known as the Zlobec
formula, that is, A† = A∗(A∗AA∗)(1)A∗, where A ∈ Cm×n and (A∗AA∗)(1) ∈ (A∗AA∗){1}. In this section,
we first present a more general representation of the Minkowski inverse that is similar to the Zlobec
formula.

Theorem 8.1. Let A ∈ Cm×n be such that rank(AA∼) = rank(A∼A) = rank(A). Then,

Am = (A∼A)kA∼[(A∼A)k+l+1A∼](1)(A∼A)lA∼,

where k and l are arbitrary nonnegative integers, and [(A∼A)k+l+1A∼](1) ∈ [(A∼A)k+l+1A∼]{1}.

Proof. First, we use induction on an arbitrary positive integer s to prove that rank((A∼A)s) = rank(A).
Clearly, rank(A∼A) = rank(A). Suppose that rank((A∼A)s) = rank(A). Since R(A∼) ∩ N(A) = {0} from
rank(AA∼) = rank(A), we infer that

rank((A∼A)s+1) = rank(A∼A(A∼A)s) = rank((A∼A)s) − dim(R((A∼A)s) ∩ N(A∼A))
= rank(A) − dim(R(A∼) ∩ N(A)) = rank(A),

which completes the induction. Hence, for an arbitrary nonnegative integer k, we have that

rank(A) = rank((A∼A)k+1) ≤ rank((A∼A)kA∼) ≤ rank(A),

which implies that rank((A∼A)kA∼) = rank(A). Thus,

rank((A∼A)k+l+1A∼) = rank((A∼A)kA∼) = rank((A∼A)lA∼) = rank(A),

where l is an arbitrary nonnegative integer. Therefore, by Lemma 3.7 and (3.1) in Remark 3.4, it
follows that

(A∼A)kA∼[(A∼A)k+l+1A∼](1)(A∼A)lA∼ = A(1,2)
R((A∼A)kA∼),N((A∼A)lA∼)

= A(1,2)
R(A∼),N(A∼)

= Am,

where [(A∼A)k+l+1A∼](1) ∈ [(A∼A)k+l+1A∼]{1}. This now completes the proof. □
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Under the conditions of the hypotheses of Theorem 8.1, when k = l = 0, we directly give an explicit
expression of the Minkowski inverse in the following corollary. It is worth mentioning that this result
can also be obtained by applying Lemma 3.7 to (3.1) in Remark 3.4.

Corollary 8.2. Let A ∈ Cm×n be such that rank(AA∼) = rank(A∼A) = rank(A). Then,

Am = A∼(A∼AA∼)(1)A∼, (8.1)

where (A∼AA∼)(1) ∈ (A∼AA∼){1}.

Another corollary of Theorem 8.1 given below shows a different representation of the Minkowski
inverse.

Corollary 8.3. Let A ∈ Cm×n be such that rank(AA∼) = rank(A∼A) = rank(A). Then,

Am = (A∼A)kA∼
[
(AA∼)k+1

](1)
A

[
(A∼A)l+1

](1)
(A∼A)lA∼,

where k and l are arbitrary nonnegative integers,
[
(AA∼)k+1

](1)
∈

[
(AA∼)k+1

]
{1} and

[
(A∼A)l+1

](1)
∈[

(A∼A)l+1
]
{1}.

Proof. Using Theorem 8.1 and Lemma 3.3, we have that

Am =(A∼A)kA∼
[
(A∼A)k+l+1A∼

](1)
(A∼A)lA∼

=AmA(A∼A)kA∼
[
(A∼A)k+l+1A∼

](1)
(A∼A)lA∼AAm

=AmA(A∼A)kA∼
[
A(A∼A)kA∼

](1)
A(A∼A)kA∼

[
(A∼A)k+l+1A∼

](1)

(A∼A)lA∼A
[
(A∼A)lA∼A

](1)
(A∼A)lA∼AAm

=AmA(A∼A)kA∼
[
A(A∼A)kA∼

](1)
A

[
(A∼A)lA∼A

](1)
(A∼A)lA∼AAm

=(A∼A)kA∼
[
(AA∼)k+1

](1)
A

[
(A∼A)l+1

](1)
(A∼A)lA∼,

which completes the proof. □

Remark 8.4. Under the conditions of the hypotheses of Corollary 8.3, when k = l = 0, we have
immediately [29, Theorem 5], that is,

Am = A∼(AA∼)(1)A(A∼A)(1)A∼,

where (AA∼)(1) ∈ (AA∼){1} and (A∼A)(1) ∈ (A∼A){1}.

This section concludes with showing the Minkowski inverse of a class of block matrices by using
Corollary 8.2, which extends [25, Corollary 1] to the Minkowski inverse.

Theorem 8.5. Let A ∈ Cm×n
r be such that rank(AA∼) = rank(A∼A) = rank(A) and

A =
(

A1 A2

A3 A4

)
, (8.2)

where A1 ∈ C
r×r is nonsingular, A2 ∈ C

r×(n−r), A3 ∈ C
(m−r)×r and A4 ∈ C

(m−r)×(n−r). Then,

Am =
(

A1 A2

)∼ [( A1

A3

)∼
A

(
A1 A2

)∼]−1 (
A1

A3

)∼
. (8.3)
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Proof. Let

T1 =
(

A1 A2

)
A∼

(
A1

A3

)
. (8.4)

Since A1 ∈ C
r×r is nonsingular, we have

rank(A) = rank
((

Ir 0
−A3A−1

1 Im−r

) (
A1 A2

A3 A4

) (
Ir −A−1

1 A2

0 In−r

))
= rank

(
A1 0
0 A4 − A3A−1

1 A2

)
, (8.5)

which, together with rank(A) = rank(A1), gives A4 = A3A−1
1 A2. Then, it can be easily verified that

T1 =
(

A1 A2

) (
A1 A2

)∼
(A∼1 )−1

(
A1

A3

)∼ (
A1

A3

)
. (8.6)

It is sufficient to prove that T1 is nonsingular, i.e., that rank(T1) = r. In fact, since
N(A) = N

((
A1 A2

))
from the nonsingularity of A1, we have that R(A∼) = R

((
A1 A2

)∼)
. Then,

since R(A∼) ∩ N(A) = {0} from rank(AA∼) = rank(A), we infer that

rank
((

A1 A2

) (
A1 A2

)∼)
=rank

((
A1 A2

))
− dim

(
R

((
A1 A2

)∼)
∩ N

((
A1 A2

)))
=rank(A1) − dim (R(A∼) ∩ N(A)) = r. (8.7)

Analogously, we can obtain that

rank
((

A1

A3

)∼ (
A1

A3

))
= r. (8.8)

Considering (8.6)–(8.8), it is clear that rank(T1) = r. Then, using the item (2) in Theorem 5.1, we get
that rank(T1) = rank(A∼AA∼). Denote (

B1 B2

B3 B4

)
= A∼AA∼,

where B1 ∈ C
r×r, B2 ∈ C

r×(m−r), B3 ∈ C
(n−r)×r and B4 ∈ C

(n−r)×(m−r). In view of (8.4), we see that
B1 = T∼1 . Thus, by the same method of (8.5), we have that B4 = B3(T∼1 )−1B2. Then, it is easy to
prove that (

(T∼1 )−1 0
0 0

)
∈ (A∼AA∼) {1}. (8.9)

Substituting (8.9) and (8.2) to (8.1) in Corollary 8.2, we have (8.3) by direct calculation. This completes
the proof. □

9. Conclusions

This paper shows some different characterizations and representations of the Minkowski inverse
in Minkowski space, mainly by extending some known results of the Moore-Penrose inverse to the
Minkowski inverse. In addition, we are convinced that the study of generalized inverses in Minkowski
space will maintain its popularity for years to come. Several possible directions for further research
can be described as follows:
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(1) It is difficult but interesting to explore the representation of the Minkowski inverse by using the
core-EP decomposition [45].

(2) A function f from Cm×n into Cn×m, written by f (A) = As for A ∈ Cm×n, is involutory if (As)s = A and
(BC)s = C sBs, where A ∈ Cm×n, B ∈ Cm×p and C ∈ Cp×n. Wong [31] introduced the Moore-Penrose
inverse A≈ of A relative to a involutory function f if AA≈A = A, A≈AA≈ = A≈, (AA≈)s = AA≈ and
(A≈A)s = A≈A. Clearly, the Minkowski adjoint A∼ and the Minkowski inverse Am are particular
cases of the involutory function f of A and the Moore-Penrose inverse A≈ of A relative to f ,
respectively. A worthwhile research direction is to generalize the results of the Minkowski inverse
to the Moore-Penrose inverse of A relative to a involutory function.

(3) As we know, the study of the Minkowski inverse originates from the simplification of polarized
light problems [1]. It is a meaningful research topic to find out new applications of the Minkowski
inverse in the study on the polarization of light by using its existing mathematical results.
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