By using the ranks of the generalized Schur complement, the equivalent conditions for reverse order laws of the {1,3M}− and the {1,4N}− inverses of the multiple product of matrices are derived.
Citation: Baifeng Qiu, Zhiping Xiong. The reverse order law for the weighted least square g-inverse of multiple matrix products[J]. AIMS Mathematics, 2023, 8(12): 29171-29181. doi: 10.3934/math.20231494
[1] | Yongge Tian . Miscellaneous reverse order laws and their equivalent facts for generalized inverses of a triple matrix product. AIMS Mathematics, 2021, 6(12): 13845-13886. doi: 10.3934/math.2021803 |
[2] | Baifeng Qiu, Yingying Qin, Zhiping Xiong . The reverse order laws for $ \{1, 2, 3M\} $- and $ \{1, 2, 4N\} $- inverse of three matrix products. AIMS Mathematics, 2025, 10(1): 721-735. doi: 10.3934/math.2025033 |
[3] | Fengxia Zhang, Ying Li, Jianli Zhao . The semi-tensor product method for special least squares solutions of the complex generalized Sylvester matrix equation. AIMS Mathematics, 2023, 8(3): 5200-5215. doi: 10.3934/math.2023261 |
[4] | Qi Xiao, Jin Zhong . Characterizations and properties of hyper-dual Moore-Penrose generalized inverse. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670 |
[5] | Jin Zhong, Yilin Zhang . Dual group inverses of dual matrices and their applications in solving systems of linear dual equations. AIMS Mathematics, 2022, 7(5): 7606-7624. doi: 10.3934/math.2022427 |
[6] | Mashail M. Al Sobhi . The modified Kies-Fréchet distribution: Properties, inference and application. AIMS Mathematics, 2021, 6(5): 4691-4714. doi: 10.3934/math.2021276 |
[7] | Refah Alotaibi, Hassan Okasha, Hoda Rezk, Abdullah M. Almarashi, Mazen Nassar . On a new flexible Lomax distribution: statistical properties and estimation procedures with applications to engineering and medical data. AIMS Mathematics, 2021, 6(12): 13976-13999. doi: 10.3934/math.2021808 |
[8] | Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation $ AXB = C $. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766 |
[9] | Wanlin Jiang, Kezheng Zuo . Revisiting of the BT-inverse of matrices. AIMS Mathematics, 2021, 6(3): 2607-2622. doi: 10.3934/math.2021158 |
[10] | Hongjie Jiang, Xiaoji Liu, Caijing Jiang . On the general strong fuzzy solutions of general fuzzy matrix equation involving the Core-EP inverse. AIMS Mathematics, 2022, 7(2): 3221-3238. doi: 10.3934/math.2022178 |
By using the ranks of the generalized Schur complement, the equivalent conditions for reverse order laws of the {1,3M}− and the {1,4N}− inverses of the multiple product of matrices are derived.
Let Cm×n be the set of all m×n matrices in the complex field. For any A∈Cm×n, we denote the conjugate transpose, the rank, the range space and the null space of A by A∗, r(A), R(A) and N(A), respectively. In the remainder of this paper, we will adopt
Aji=AiAi+1⋯Aj,Xji=X∗iX∗i+1⋯X∗j,1≤i≤j≤n, | (1.1) |
where Ai∈Cmi×mi+1, Xi∈Cmi+1×mi and Xi is called a weighted generalized inverse of Ai, i=1,2,⋯,n. In particular, Ajj=Aj, Aj1=A1A2⋯Aj, Xjj=X∗j, Xj1=X∗1X∗2⋯X∗j, j=1,2,…,n and Xnn+1=Imn+1.
For A∈Cm×n, let M∈Cm×m, N∈Cn×n be two positive definite Hermitian matrices. We recall that a weighted generalized inverse X∈Cn×m of A is a matrix that satisfies some of the following equations [1,13]:
(1)AXA=A,(2)XAX=X,(3M)(MAX)∗=MAX,(4N)(NXA)∗=NXA. | (1.2) |
We say that X=A(1,3M) is a {1,3M}-inverse or a weighted least squares g-inverse of A if X is a common solution of (1) and (3M). Let A{1,3M} denote the set of all {1,3M}−inverses of A. We say that X=A(1,4N) is a {1,4N}-inverse of A if X is a common solution of (1) and (4N). Let A{1,4N} denote the set of all {1,4N}−inverses of A. The unique {1,2,3M,4N}-inverse of A ia called the weighted Moore-Penrose inverse of A and is denoted by X=A(1,2,3M,4N)=A†M,N [1,23].
The reverse order law for the weighted generalized inverse of the multiple product of matrices has been widely applied in the theoretic research and numerical computations areas (see [1,2,4,5,8,9,14,23,24]).
For the very time, Greville [6] presented an equivalent condition for the reverse order law (AB)†=B†A†. Since then, many authors have studied this problem (see [3,4,7,10,11,15,16,17,19,20,21,22,25,26]). It is well known that the core problem concerns with the reverse order law and whether conditions
A(i,j,⋯,k)nA(i,j,⋯,k)n−1⋯A(i,j,⋯,k)1=(A1A2⋯An)(i,j,⋯,k) | (1.3) |
hold, or whether conditions
An{i,j,⋯,k}An−1{i,j,⋯,k}⋯A1{i,j,⋯,k}⊆(A1A2⋯An){i,j,⋯,k} | (1.4) |
hold, where (i,j,⋯,k)⊆{1,2,3M,4N}.
The purpose of this paper is to show some equivalent conditions for the following inclusions
An{1,3Mn}An−1{1,3Mn−1}⋯A1{1,3M1}⊆(A1A2⋯An){1,3M1} | (1.5) |
and
An{1,4Mn+1}An−1{1,4Mn}⋯A1{1,4M2}⊆(A1A2⋯An){1,4Mn+1}, | (1.6) |
where Ai∈Cmi×mi+1, i=1,2,…,n and Mi∈Cmi×mi, i=1,2,…,n+1 are n+1 positive definite Hermitian matrices.
Lemma 2.1. [23] Let L, M be two complementary subspaces of Cm and let PL,M be the projector on L along M, then
PL,MA=A⟺R(A)⊆L, | (2.1) |
APL,M=A⟺N(A)⊇M. | (2.2) |
Lemma 2.2. [1,23] Let A∈Cm×n, X∈Cn×m and let M and N be two positive definite Hermitian matrices of order m and n, respectively, then
X∈A{1,3M}⟺A∗MAX=A∗M, | (2.3) |
X∈A{1,4N}⟺XAN−1A∗=N−1A∗, | (2.4) |
X∈A{1,4N}⟺X∗∈A∗{1,3N−1}. | (2.5) |
Lemma 2.3. [18] Let A∈Cm×n, B∈Cm×k, C∈Cl×n and D∈Cl×k, and let M∈Cm×m and N∈Cn×n be two positive definite Hermitian matrices, then
maxA(1,3M) r(D−CA(1,3M)B)=min{ r(A∗MAA∗MBCD)−r(A),r(BD)}, | (2.6) |
maxA(1,4N) r(D−CA(1,4N)B)=min{ r(C,D),r(AN−1A∗BCN−1A∗D)−r(A)}. | (2.7) |
Lemma 2.4. [12] Let A∈Cm×n, B∈Cm×k and C∈Cp×n, then
r(A,B)=r(A)+r(EAB)=r(B)+r(EBA), | (2.8) |
r(AC)=r(A)+r(CFA)=r(C)+r(AFC), | (2.9) |
r(AC)≤r(A)+r(C),r(A,B)≤r(A)+r(B), | (2.10) |
where the projectors are EA=Im−AA†, EB=Im−BB†, FA=In−A†A and FC=In−C†C.
Let
Aji=AiAi+1⋯Aj,Xji=X∗iX∗i+1⋯X∗j,1≤i≤j≤n |
be as given in (1.1), and Mi∈Cmi×mi, i=1,2,…,n+1 are positive definite Hermitian matrices. Then, from (2.3) in Lemma 2.2, we know that (1.5) holds if, and only if,
(An1)∗M1An1(Xn1)∗=(An1)∗M1 |
holds for any Xi∈Ai{1,3Mi}, i=1,2,…,n, which is equivalent to:
maxXn,Xn−1,⋯,X1r((An1)∗M1−(An1)∗M1An1(Xn1)∗)=0. | (3.1) |
Hence, we can present the equivalent conditions for (1.5) if the concrete expressions of the maximal rank involved in (3.1) are derived.
Theorem 3.1. Let Ai∈Cmi×mi+1, Xi=A(1,3Mi)i∈Ai{1,3Mi} and i=1,2,…,n. Let Mi∈Cmi×mi, i=1,2,…,n+1 be positive definite Hermitian matrices and let Aji=AiAi+1⋯Aj, 1≤i≤j≤n be given as in (1.1). Then,
An{1,3Mn}An−1{1,3Mn−1}⋯A1{1,3M1}⊆(A1A2⋯An){1,3M1}⟺r( A∗nO⋯OOA∗n−1⋯O⋮⋮⋱⋮OO⋯A∗2(An1)∗M1An−11M−1n(An1)∗M1An−21M−1n−1⋯(An1)∗M1A1M−12)=n∑i=2r(Ai). | (3.2) |
Proof. From (2.3) in Lemma 2.2 and the definition of the rank of the matrix, we can see that for any Xi=A(1,3Mi)i∈Ai{1,3Mi}, i=1,2,…,n, the following three formulas are equivalent:
An{1,3Mn}An−1{1,3Mn−1}⋯A1{1,3M1}⊆(A1A2⋯An){1,3M1}, | (3.3) |
(An1)∗M1An1(Xn1)∗=(An1)∗M1 | (3.4) |
and
maxXn,Xn−1,⋯,X1r((An1)∗M1−(An1)∗M1An1(Xn1)∗)=0. | (3.5) |
Let Xji=X∗iX∗i+1⋯X∗j,1≤i≤j≤n as in (1.1). Then, from the formula (2.6) in Lemma 2.3 with A=A1, B=Im1, C=(An1)∗M1An1(Xn2)∗ and D=(An1)∗M1, we have
maxX1r((An1)∗M1−(An1)∗M1An1(Xn1)∗)=min{r(A∗1M1A1A∗1M1(An1)∗M1An1(Xn2)∗(An1)∗M1)−r(A1),r(Im1(An1)∗M1)}=min{ r((An1)∗M1An1(Xn2)∗−(An1)∗M1A1),m1}=r((An1)∗M1An1(Xn2)∗−(An1)∗M1A1), | (3.6) |
in which by the row or column elementary block operations from the first equality to the second one, we use the rank identities
r(Im1(An1)∗M1)=m1, |
r(A∗1M1A1A∗1M1(An1)∗M1An1(Xn2)∗(An1)∗M1)=r(OA∗1M1(An1)∗M1An1(Xn2)∗−(An1)∗M1A1O)=r((An1)∗M1An1(Xn2)∗−(An1)∗M1A1)+r(A1) |
and
r((An1)∗M1An1(Xn2)∗−(An1)∗M1A1)≤r((An1)∗)≤r(A1)≤m1. |
From (3.6) and again by (2.6) in Lemma 2.3 with A=A2, B=Im2, C=(An1)∗M1An1(Xn3)∗ and D=(An1)∗M1A1, we have
maxX2,X1r((An1)∗M1−(An1)∗M1An1(Xn1)∗)=maxX2r((An1)∗M1A1−(An1)∗M1An1(Xn2)∗)=min{r(A∗2M2A2A∗2M2(An1)∗M1An1(Xn3)∗(An1)∗M1A1)−r(A2),r(Im2(An1)∗M1A1)}=min{r(OA∗2M2(An1)∗M1An1(Xn3)∗−(An1)∗M1A21(An1)∗M1A1)−r(A2),m2}=min{r(OA∗2(An1)∗M1An1(Xn3)∗−(An1)∗M1A21(An1)∗M1A1M−12)−r(A2),m2}. | (3.7) |
By (2.9) in Lemma 2.4 we have (O,A∗2)†=(O(A∗2)†), thus
r(OA∗2(An1)∗M1An1(Xn3)∗−(An1)∗M1A21(An1)∗M1A1M−12)=r[((An1)∗M1An1(Xn3)∗−(An1)∗M1A21,(An1)∗M1A1M−12)F(O,A∗2)]+r(A2)=r[((An1)∗M1An1(Xn3)∗−(An1)∗M1A21,(An1)∗M1A1M−12)(I−(O,A∗2)†(O,A∗2))]+r(A2)=r((An1)∗M1An1(Xn3)∗−(An1)∗M1A21,(An1)∗M1A1M−12FA∗2)+r(A2)=r[(An1)∗(M1An1(Xn3)∗−M1A21,M1A1M−12FA∗2)]+r(A2)≤r((An1)∗)+r(A2)≤r(A∗2)+r(A2)≤m2+r(A2). | (3.8) |
Combining (3.6) and (3.7) with (3.8), we have
maxX2,X1r((An1)∗M1−(An1)∗M1An1(Xn1)∗)=maxX2r((An1)∗M1A1−(An1)∗M1An1(Xn2)∗)=r((An1)∗M1An1(Xn3)∗−(An1)∗M1A21,(An1)∗M1A1M−12FA∗2). | (3.9) |
Generally, for 2≤i≤n, we can prove the following fact:
maxXi,Xi−1,⋯,X1r((An1)∗M1−(An1)∗M1An1(Xn1)∗)=r((An1)∗M1An1(Xni+1)∗−(An1)∗M1Ai1,(An1)∗M1Ai−11M−1iFA∗i,⋯,(An1)∗M1A11M−12FA∗2)=r((An1)∗M1An1(Xni+1)∗−(An1)∗M1Ai1,(An1)∗M1Ai−11M−1iFA∗i,⋯,(An1)∗M1A1M−12FA∗2), | (3.10) |
where A11=A1 and Xnn+1=Imn+1.
In fact, (3.10) is true for i=2 (see (3.9)). Now, assume (3.10) is also true for i−1(i≥3), i.e
maxXi−1,Xi−2,⋯,X1r((An1)∗M1−(An1)∗M1An1(Xn1)∗)=r((An1)∗M1An1(Xni)∗−(An1)∗M1Ai−11,(An1)∗M1Ai−21M−1i−1FA∗i−1,⋯,(An1)∗M1A1M−12FA∗2). | (3.11) |
Next, we will prove that (3.10) is also true for i. By formula (3.11) and (2.6) in Lemma 2.3 with ˜B=(Imi,O,⋯,O), ˜A=Ai, ˜C=(An1)∗M1An1(Xni+1)∗, ˜D=((An1)∗M1Ai−11,−(An1)∗M1Ai−21M−1i−1FA∗i−1,⋯,−(An1)∗M1A1M−12FA∗2) and ˜E=(An1)∗M1An1(Xni)∗−(An1)∗M1Ai−11, we have
maxXi,Xi−1,⋯,X1r((An1)∗M1−(An1)∗M1An1(Xn1)∗)=maxXir(˜E,(An1)∗M1Ai−21M−1i−1FA∗i−1,⋯,(An1)∗M1A1M−12FA∗2)=maxXir(˜D−˜CXi˜B)=min{r(˜A∗Mi˜A˜A∗Mi˜B˜C˜D)−r(˜A),r(˜B˜D)}=r((An1)∗M1An1(Xni+1)∗−(An1)∗M1Ai1,(An1)∗M1Ai−11M−1iFA∗i,⋯,(An1)∗M1A1M−12FA∗2). | (3.12) |
By the row or column elementary block operations of formula (2.9) in Lemma 2.4 we have,
r(˜B˜D)=r(ImiO⋯O(An1)∗M1Ai−11−(An1)∗M1Ai−21M−1i−1FA∗i−1⋯−(An1)∗M1A1M−12FA∗2)=mi+r((An1)∗M1Ai−21M−1i−1FA∗i−1,⋯,(An1)∗M1A1M−12FA∗2) |
and
r(˜A∗Mi˜A˜A∗Mi˜B˜C˜D)=r(T11T12T21T22)=r(τ11T12T21T22)=r((An1)∗M1An1(Xni+1)∗−(An1)∗M1Ai1,ηi,ηi−1,⋯,η2)+r(A∗i)≤r((An1)∗M1An1(Xni+1)∗−(An1)∗M1Ai1,(An1)∗M1Ai−11M−1iFA∗i)+r((An1)∗M1Ai−21M−1i−1FA∗i−1,⋯,(An1)∗M1A1M−12FA∗2)+r(Ai)≤r(An1)∗+r((An1)∗M1Ai−21M−1i−1FA∗i−1,⋯,(An1)∗M1A1M−12FA∗2)+r(Ai)≤mi+r((An1)∗M1Ai−21M−1i−1FA∗i−1,⋯,(An1)∗M1A1M−12FA∗2)+r(Ai), |
where
T11=(A∗iMiAi,A∗iMi),T12=(O,⋯,O),T21=((An1)∗M1An1(Xni+1)∗,(An1)∗M1Ai−11),T22=(−(An1)∗M1Ai−21M−1i−1FA∗i−1,⋯,−(An1)∗M1A1M−12FA∗2)τ11=(O,A∗i), |
and
ηk=(An1)∗M1Ak−11M−1kFA∗k,k=2,3,…,i. |
In particular, when i=n, we get A11=A1, Xnn+1=Imn+1 and
maxXn,Xn−1,⋯,X1r((An1)∗M1−(An1)∗M1An1(Xn1)∗)=r((An1)∗M1An1(Xnn+1)∗−(An1)∗M1An1,(An1)∗M1An−11M−1nFA∗n,⋯,(An1)∗M1A11M−12FA∗2)=r((An1)∗M1An1−(An1)∗M1An1,(An1)∗M1An−11M−1nFA∗n,⋯,(An1)∗M1A11M−12FA∗2)=r((An1)∗M1An−11M−1nFA∗n,(An1)∗M1An−21M−1n−1FA∗n−1,⋯,(An1)∗M1A11M−12FA∗2). | (3.13) |
Applying (3.13) with Lemma 2.4, we finally have
maxXn,Xn−1,⋯,X1r((An1)∗M1−(An1)∗M1An1(Xn1)∗)=r((An1)∗M1An−11M−1nFA∗n,(An1)∗M1An−21M−1n−1FA∗n−1,⋯,(An1)∗M1A11M−12FA∗2)=r( A∗nO⋯OOA∗n−1⋯O⋮⋮⋱⋮OO⋯A∗2(An1)∗M1An−11M−1n(An1)∗M1An−21M−1n−1⋯(An1)∗M1A11M−12)−n∑i=2r(Ai). | (3.14) |
According to the formulas (1.1), (3.3)–(3.5) and (3.14), we have
An{1,3Mn}An−1{1,3Mn−1}⋯A1{1,3M1}⊆(A1A2⋯An){1,3M1}⟺r( A∗nO⋯OOA∗n−1⋯O⋮⋮⋱⋮OO⋯A∗2(An1)∗M1An−11M−1n(An1)∗M1An−21M−1n−1⋯(An1)∗M1A1M−12)=n∑i=2r(Ai). | (3.15) |
From Lemmas 2.1, 2.4 and Theorem 3.1, we have:
Corollary 3.1. Let Ai∈Cmi×mi+1, Xi=A(1,3Mi)i∈Ai{1,3Mi}. Let Mi∈Cmi×mi be positive definite Hermitian matrices i=1,2,…,n+1, and let Aji=AiAi+1⋯Aj,1≤i≤j≤n be given as in (1.1). Then, the following statements are equivalent:
(1) An{1,3Mn}An−1{1,3Mn−1}⋯A1{1,3M1}⊆(A1A2⋯An){1,3M1};
(2) r( A∗nMnO⋯OOA∗n−1Mn−1⋯O⋮⋮⋱⋮OO⋯A∗2M2(An1)∗M1An−11(An1)∗M1An−21⋯(An1)∗M1A11)=n∑i=2r(Ai);
(3) R((Ai−11)∗M1An1)⊆R(MiAi), i=2,3,…,n;
(4) Ai(Ai)†Mi,Imi+1M−1i(Ai−11)∗M1An1=M−1i(Ai−11)∗M1An1, i=2,3,…,n.
Proof. According to Theorem 3.1, we get that (1) and (2) are equivalent since
r[( A∗nMnO⋯OOA∗n−1Mn−1⋯O⋮⋮⋱⋮OO⋯A∗2M2(An1)∗M1An−11(An1)∗M1An−21⋯(An1)∗M1A11)( M−1nO⋯OOM−1n−1⋯O⋮⋮⋱⋮OO⋯M−12)]=r( A∗nO⋯OOA∗n−1⋯O⋮⋮⋱⋮OO⋯A∗2(An1)∗M1An−11M−1n(An1)∗M1An−21M−1n−1⋯(An1)∗M1A1M−12). | (3.16) |
Next, we will prove (3)⟺(2). From (3.16) and (2.8) in Lemma 2.4, we have
r( A∗nMnO⋯OOA∗n−1Mn−1⋯O⋮⋮⋱⋮OO⋯A∗2M2(An1)∗M1An−11(An1)∗M1An−21⋯(An1)∗M1A1)=r(MnAnO⋯O(An−11)∗M1An1OMn−1An−1⋯O(An−21)∗M1An1⋮⋮⋱⋮⋮OO⋯M2A2(A11)∗M1An1)=r(EMnAn(An−11)∗M1An1EMn−1An−1(An−21)∗M1An1⋮EM2A2(A11)∗M1An1)+n∑i=2r(MiAi). | (3.17) |
According to (3.17), we have r(MiAi)=r(Ai) and (3)⟺(2) if, and only if,
EMiAi(Ai−11)∗M1An1=O,i=2,3,…,n. | (3.18) |
From Lemmas 2.1 and 2.4, we have EMiAi=Imi−(MiAi)(MiAi)†=Imi−PR(MiAi),N(A∗iMi) and (3)⟺(2), where i=2,3,…,n.
By using formula (3) and Lemma 2.1, we get (3)⟺(4) since
Ai(Ai)†Mi,Imi+1M−1i(Ai−11)∗M1An1=PR(Ai(Ai)†Mi,Imi+1),N(Ai(Ai)†Mi,Imi+1)M−1i(Ai−11)∗M1An1=PR(Ai),N(Ai(Ai)†Mi,Imi+1)M−1i(Ai−11)∗M1An1=M−1i(Ai−11)∗M1An1, |
where i=2,3,…,n. ◻
From Lemma 2.2, we have X∈A{1,4N}⇔X∗∈A∗{1,3N−1}, so from Theorem 3.1 and Corollary 3.1, we have
Theorem 3.2. Let Ai∈Cmi×mi+1, Xi=A(1,4Ni+1)i∈Ai{1,4Ni+1}. Let Ni∈Cmi×mi be positive definite Hermitian matrices i=1,2,…,n+1, and let Aji=AiAi+1⋯Aj,1≤i≤j≤n be given as in (1.1). Then,
An{1,4Nn+1}An−1{1,4Nn}⋯A1{1,4N2}⊆(A1A2⋯An){1,4Nn+1}⟺r( A∗1O⋯ON2An2N−1n+1(An1)∗OA∗2⋯ON3An3N−1n+1(An1)∗⋮⋮⋱⋮⋮OO⋯A∗n−1NnAnnN−1n+1(An1)∗)=n−1∑i=1r(Ai). |
From Lemmas 2.1, 2.4 and Theorem 3.2, we have
Corollary 3.2. Let Ai∈Cmi×mi+1, Xi=A(1,4Ni+1)i∈Ai{1,4Ni+1}. Let Ni∈Cmi×mi be positive definite Hermitian matrices i=1,2,…,n+1, and let Aji=AiAi+1⋯Aj,1≤i≤j≤n be given as in (1.1). Then, the following statements are equivalent:
(1) An{1,4Nn+1}An−1{1,4Nn}⋯A1{1,4N2}⊆(A1A2⋯An){1,4Nn+1};
(2) r( N−12A∗1O⋯OAn2N−1n+1(An1)∗ON−13A∗2⋯OAn3N−1n+1(An1)∗⋮⋮⋱⋮⋮OO⋯N−1nA∗n−1AnnN−1n+1(An1)∗)=n−1∑i=1r(Ai);
(3) R(Ani+1N−1n+1(An1)∗)⊆R(N−1i+1A∗i), i=1,2,…,n−1;
(4) (Ai)†Imi,Ni+1AiAni+1N−1n+1(An1)∗=Ani+1N−1n+1(An1)∗, i=1,2,…,n−1.
The reverse order law for the weighted generalized inverses of the multiple product of matrices has been studied in this article by using the ranks of the generalized Schur complement. The work in this paper was a useful tool in many algorithms for the computation of the weighted least squares technique of matrix equations.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors wish to thank Professor Jie Gong and the referees. This work was supported by the project for characteristic innovation of 2018 Guangdong University (No: 2018KTSCX234), the National Natural Science Foundation of China (No: 11771159), the joint research and Development fund of Wuyi University, Hong Kong and Macao (No: 2019WGALH20) and the basic Theory and Scientific Research of Science and Technology Project of Jiangmen City, China (No: 2021030102610005049).
The authors declare that there are no conflicts of interest.
[1] | A. Ben-Israel, T. N. E. Greville, Generalized Inverse: Theory and Applications, 2rd edition, New York: Springer, 2002. https://doi.org/10.2307/1403291 |
[2] | S. L. Campbell, C. D. Meyer, Generalized Inverse of Linear Transformations, New York: Dover, 1979. https://doi.org/10.1137/1.9780898719048 |
[3] |
D. Cvetkoviˊc-IIiˊc, J. Milosevic, Reverse order laws for {1,3}-generalized inverses, Linear Multilinear Algebra, 234 (2018), 114–117. https://doi.org/10.1080/03081087.2018.1430119 doi: 10.1080/03081087.2018.1430119
![]() |
[4] |
A. R. De Pierro, M. Wei. Reverse order law for reflexive generalized inverses of products of matrices, Linear Algebra Appl., 277 (1998), 299–311. https://doi.org/10.1016/s0024-3795(97)10068-4 doi: 10.1016/s0024-3795(97)10068-4
![]() |
[5] |
D. S. Djordjeviˊc, Further results on the reverse order law for generalized inverses, SIAM J. Matrix. Anal. Appl., 29 (2007), 1242–1246. https://doi.org/10.1137/050638114 doi: 10.1137/050638114
![]() |
[6] |
T. N. E. Greville, Note on the generalized inverses of a matrix products, SIAM Review., 8 (1966), 518–521. https://doi.org/10.1137/1008107 doi: 10.1137/1008107
![]() |
[7] |
R. E. Hartwig, The reverse order law revisited, Linear Algebra Appl., 76 (1986), 241–246. https://doi.org/10.1016/0024-3795(86)90226-0 doi: 10.1016/0024-3795(86)90226-0
![]() |
[8] |
I. Kyrchei, Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore-Penrose inverse, Appl. Math. Comput., 309 (2017), 1–16. https://doi.org/10.1016/j.amc.2017.03.048 doi: 10.1016/j.amc.2017.03.048
![]() |
[9] |
Y. Liu, Y. Tian, A mixed-type reverse order law for generalized inverse of a triple matrix product, Acta Math. Sin. Chin. Ser., 52 (2009), 197–204. https://doi.org/10.1360/972009-1650 doi: 10.1360/972009-1650
![]() |
[10] |
Q. Liu, M. Wei, Reverse order law for least squares g-inverses of multiple matrix products, Linear Multilinear Algebra, 56 (2008), 491–506. https://doi.org/10.1080/03081080701340547 doi: 10.1080/03081080701340547
![]() |
[11] |
D. Liu, H. Yan, The reverse order law for {1,3,4}-inverse of the product of two matrices, Appl. Math. Comput., 215 (2010), 4293–4303. https://doi.org/10.1016/j.amc.2009.12.056 doi: 10.1016/j.amc.2009.12.056
![]() |
[12] |
G. Marsaglia, G. P. H. S. Tyan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974), 269–292. https://doi.org/10.1080/03081087408817070 doi: 10.1080/03081087408817070
![]() |
[13] |
R. Penrose, A generalized inverse for matrix, Proc. Cambridge Philos. Soc., 51 (1955), 406–413. https://doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401
![]() |
[14] | C. R. Rao, S. K. Mitra, Generalized inverse of Matrices and Its Applications, New York: Wiley, 1971. https://doi.org/10.2307/3007981 |
[15] |
W. Sun, Y. Wei, Inverse order rule for weighted generalized inverse, SIAM J. Matrix Anal. Appl., 19 (1998), 772–775. https://doi.org/10.1137/S0895479896305441 doi: 10.1137/S0895479896305441
![]() |
[16] |
W. Sun, Y. Wei, Triple reverse-order rule for weighted generalized inverses, Appl. Math. Comput., 125 (2002), 221–229. https://doi.org/10.1016/S0096-3003(00)00122-3 doi: 10.1016/S0096-3003(00)00122-3
![]() |
[17] |
Y. Tian, Reverse order laws for generalized inverse of multiple matrix products, Linear Algebra Appl., 211 (1994), 85–100. https://doi.org/10.1016/0024-3795(94)90084-1 doi: 10.1016/0024-3795(94)90084-1
![]() |
[18] |
Y. Tian, More on maximal and minimal ranks of Schur complements with applications, Appl. Math. Comput., 152 (2004), 675–692. https://doi.org/10.1016/S0096-3003(03)00585-X doi: 10.1016/S0096-3003(03)00585-X
![]() |
[19] |
Y. Tian, A family of 512 reverse order laws for generalized inverse of a matrix product: a review, Heliyon, 6 (2020), e04924. https://doi.org/10.1016/j.heliyon.2020.e04924 doi: 10.1016/j.heliyon.2020.e04924
![]() |
[20] |
Y. Tian, Characterizations of matrix equalities involving the sums and products of multiple matrices and their generalized inverse, Electron. Res. Arch., 31 (2023), 5866–5893. https://doi.org/10.3934/era.2023298 doi: 10.3934/era.2023298
![]() |
[21] |
M. Wei, Equivalent conditions for generalized inverses of products, Linear Algebra Appl., 266 (1997), 346–363. https://doi.org/10.1016/S0024-3795(97)00035-9 doi: 10.1016/S0024-3795(97)00035-9
![]() |
[22] |
M. Wei, Reverse order laws for generalized inverse of multiple matrix products, Linear Algebra Appl., 293 (1999), 273–288. https://doi.org/10.1016/S0024-3795(99)00053-1 doi: 10.1016/S0024-3795(99)00053-1
![]() |
[23] | G. R. Wang, Y. M. Wei, S. Z. Qiao, Generalized Inverse: Theory and Computations, Beijing: Science Press, 2004. https://doi.org/10.1098/rspa.2013.0628 |
[24] |
Z. P. Xiong, Z. S. Liu, Applications of completions of operator matrices to some properties of operator products on Hilbert spaces, Complex Analy. Oper. Theory, 12 (2018), 123–140. https://doi.org/10.1007/s11785-016-0600-1 doi: 10.1007/s11785-016-0600-1
![]() |
[25] |
Z. P. Xiong, Y. Y. Qin, A note on the reverse order law for least square g-inverse of operator product, Linear Multilinear Algebra, 64 (2016), 1404–1414. https://doi.org/10.1080/03081087.2015.1087458 doi: 10.1080/03081087.2015.1087458
![]() |
[26] |
Z. P. Xiong, B. Zheng, The reverse order laws for {1,2,3}- and {1,2,4}-inverses of two matrix product, Appl. Math. Lett., 21 (2008), 649–655. https://doi.org/10.1016/j.aml.2007.07.007 doi: 10.1016/j.aml.2007.07.007
![]() |