By using the ranks of the generalized Schur complement, the equivalent conditions for reverse order laws of the $ \{1, 3M\}- $ and the $ \{1, 4N\}- $ inverses of the multiple product of matrices are derived.
Citation: Baifeng Qiu, Zhiping Xiong. The reverse order law for the weighted least square $ g $-inverse of multiple matrix products[J]. AIMS Mathematics, 2023, 8(12): 29171-29181. doi: 10.3934/math.20231494
By using the ranks of the generalized Schur complement, the equivalent conditions for reverse order laws of the $ \{1, 3M\}- $ and the $ \{1, 4N\}- $ inverses of the multiple product of matrices are derived.
[1] | A. Ben-Israel, T. N. E. Greville, Generalized Inverse: Theory and Applications, $2^{rd}$ edition, New York: Springer, 2002. https://doi.org/10.2307/1403291 |
[2] | S. L. Campbell, C. D. Meyer, Generalized Inverse of Linear Transformations, New York: Dover, 1979. https://doi.org/10.1137/1.9780898719048 |
[3] | D. Cvetkovi$\acute{c}$-IIi$\acute{c}$, J. Milosevic, Reverse order laws for $\{1, 3\}$-generalized inverses, Linear Multilinear Algebra, 234 (2018), 114–117. https://doi.org/10.1080/03081087.2018.1430119 doi: 10.1080/03081087.2018.1430119 |
[4] | A. R. De Pierro, M. Wei. Reverse order law for reflexive generalized inverses of products of matrices, Linear Algebra Appl., 277 (1998), 299–311. https://doi.org/10.1016/s0024-3795(97)10068-4 doi: 10.1016/s0024-3795(97)10068-4 |
[5] | D. S. Djordjevi$\acute{c}$, Further results on the reverse order law for generalized inverses, SIAM J. Matrix. Anal. Appl., 29 (2007), 1242–1246. https://doi.org/10.1137/050638114 doi: 10.1137/050638114 |
[6] | T. N. E. Greville, Note on the generalized inverses of a matrix products, SIAM Review., 8 (1966), 518–521. https://doi.org/10.1137/1008107 doi: 10.1137/1008107 |
[7] | R. E. Hartwig, The reverse order law revisited, Linear Algebra Appl., 76 (1986), 241–246. https://doi.org/10.1016/0024-3795(86)90226-0 doi: 10.1016/0024-3795(86)90226-0 |
[8] | I. Kyrchei, Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore-Penrose inverse, Appl. Math. Comput., 309 (2017), 1–16. https://doi.org/10.1016/j.amc.2017.03.048 doi: 10.1016/j.amc.2017.03.048 |
[9] | Y. Liu, Y. Tian, A mixed-type reverse order law for generalized inverse of a triple matrix product, Acta Math. Sin. Chin. Ser., 52 (2009), 197–204. https://doi.org/10.1360/972009-1650 doi: 10.1360/972009-1650 |
[10] | Q. Liu, M. Wei, Reverse order law for least squares $g$-inverses of multiple matrix products, Linear Multilinear Algebra, 56 (2008), 491–506. https://doi.org/10.1080/03081080701340547 doi: 10.1080/03081080701340547 |
[11] | D. Liu, H. Yan, The reverse order law for $\{1, 3, 4\}$-inverse of the product of two matrices, Appl. Math. Comput., 215 (2010), 4293–4303. https://doi.org/10.1016/j.amc.2009.12.056 doi: 10.1016/j.amc.2009.12.056 |
[12] | G. Marsaglia, G. P. H. S. Tyan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974), 269–292. https://doi.org/10.1080/03081087408817070 doi: 10.1080/03081087408817070 |
[13] | R. Penrose, A generalized inverse for matrix, Proc. Cambridge Philos. Soc., 51 (1955), 406–413. https://doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401 |
[14] | C. R. Rao, S. K. Mitra, Generalized inverse of Matrices and Its Applications, New York: Wiley, 1971. https://doi.org/10.2307/3007981 |
[15] | W. Sun, Y. Wei, Inverse order rule for weighted generalized inverse, SIAM J. Matrix Anal. Appl., 19 (1998), 772–775. https://doi.org/10.1137/S0895479896305441 doi: 10.1137/S0895479896305441 |
[16] | W. Sun, Y. Wei, Triple reverse-order rule for weighted generalized inverses, Appl. Math. Comput., 125 (2002), 221–229. https://doi.org/10.1016/S0096-3003(00)00122-3 doi: 10.1016/S0096-3003(00)00122-3 |
[17] | Y. Tian, Reverse order laws for generalized inverse of multiple matrix products, Linear Algebra Appl., 211 (1994), 85–100. https://doi.org/10.1016/0024-3795(94)90084-1 doi: 10.1016/0024-3795(94)90084-1 |
[18] | Y. Tian, More on maximal and minimal ranks of Schur complements with applications, Appl. Math. Comput., 152 (2004), 675–692. https://doi.org/10.1016/S0096-3003(03)00585-X doi: 10.1016/S0096-3003(03)00585-X |
[19] | Y. Tian, A family of 512 reverse order laws for generalized inverse of a matrix product: a review, Heliyon, 6 (2020), e04924. https://doi.org/10.1016/j.heliyon.2020.e04924 doi: 10.1016/j.heliyon.2020.e04924 |
[20] | Y. Tian, Characterizations of matrix equalities involving the sums and products of multiple matrices and their generalized inverse, Electron. Res. Arch., 31 (2023), 5866–5893. https://doi.org/10.3934/era.2023298 doi: 10.3934/era.2023298 |
[21] | M. Wei, Equivalent conditions for generalized inverses of products, Linear Algebra Appl., 266 (1997), 346–363. https://doi.org/10.1016/S0024-3795(97)00035-9 doi: 10.1016/S0024-3795(97)00035-9 |
[22] | M. Wei, Reverse order laws for generalized inverse of multiple matrix products, Linear Algebra Appl., 293 (1999), 273–288. https://doi.org/10.1016/S0024-3795(99)00053-1 doi: 10.1016/S0024-3795(99)00053-1 |
[23] | G. R. Wang, Y. M. Wei, S. Z. Qiao, Generalized Inverse: Theory and Computations, Beijing: Science Press, 2004. https://doi.org/10.1098/rspa.2013.0628 |
[24] | Z. P. Xiong, Z. S. Liu, Applications of completions of operator matrices to some properties of operator products on Hilbert spaces, Complex Analy. Oper. Theory, 12 (2018), 123–140. https://doi.org/10.1007/s11785-016-0600-1 doi: 10.1007/s11785-016-0600-1 |
[25] | Z. P. Xiong, Y. Y. Qin, A note on the reverse order law for least square $g$-inverse of operator product, Linear Multilinear Algebra, 64 (2016), 1404–1414. https://doi.org/10.1080/03081087.2015.1087458 doi: 10.1080/03081087.2015.1087458 |
[26] | Z. P. Xiong, B. Zheng, The reverse order laws for $\{1, 2, 3\}$- and $\{1, 2, 4\}$-inverses of two matrix product, Appl. Math. Lett., 21 (2008), 649–655. https://doi.org/10.1016/j.aml.2007.07.007 doi: 10.1016/j.aml.2007.07.007 |