Research article Special Issues

The reverse order law for the weighted least square g-inverse of multiple matrix products

  • By using the ranks of the generalized Schur complement, the equivalent conditions for reverse order laws of the {1,3M} and the {1,4N} inverses of the multiple product of matrices are derived.

    Citation: Baifeng Qiu, Zhiping Xiong. The reverse order law for the weighted least square g-inverse of multiple matrix products[J]. AIMS Mathematics, 2023, 8(12): 29171-29181. doi: 10.3934/math.20231494

    Related Papers:

    [1] Yongge Tian . Miscellaneous reverse order laws and their equivalent facts for generalized inverses of a triple matrix product. AIMS Mathematics, 2021, 6(12): 13845-13886. doi: 10.3934/math.2021803
    [2] Baifeng Qiu, Yingying Qin, Zhiping Xiong . The reverse order laws for $ \{1, 2, 3M\} $- and $ \{1, 2, 4N\} $- inverse of three matrix products. AIMS Mathematics, 2025, 10(1): 721-735. doi: 10.3934/math.2025033
    [3] Fengxia Zhang, Ying Li, Jianli Zhao . The semi-tensor product method for special least squares solutions of the complex generalized Sylvester matrix equation. AIMS Mathematics, 2023, 8(3): 5200-5215. doi: 10.3934/math.2023261
    [4] Qi Xiao, Jin Zhong . Characterizations and properties of hyper-dual Moore-Penrose generalized inverse. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670
    [5] Jin Zhong, Yilin Zhang . Dual group inverses of dual matrices and their applications in solving systems of linear dual equations. AIMS Mathematics, 2022, 7(5): 7606-7624. doi: 10.3934/math.2022427
    [6] Mashail M. Al Sobhi . The modified Kies-Fréchet distribution: Properties, inference and application. AIMS Mathematics, 2021, 6(5): 4691-4714. doi: 10.3934/math.2021276
    [7] Refah Alotaibi, Hassan Okasha, Hoda Rezk, Abdullah M. Almarashi, Mazen Nassar . On a new flexible Lomax distribution: statistical properties and estimation procedures with applications to engineering and medical data. AIMS Mathematics, 2021, 6(12): 13976-13999. doi: 10.3934/math.2021808
    [8] Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation $ AXB = C $. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766
    [9] Wanlin Jiang, Kezheng Zuo . Revisiting of the BT-inverse of matrices. AIMS Mathematics, 2021, 6(3): 2607-2622. doi: 10.3934/math.2021158
    [10] Hongjie Jiang, Xiaoji Liu, Caijing Jiang . On the general strong fuzzy solutions of general fuzzy matrix equation involving the Core-EP inverse. AIMS Mathematics, 2022, 7(2): 3221-3238. doi: 10.3934/math.2022178
  • By using the ranks of the generalized Schur complement, the equivalent conditions for reverse order laws of the {1,3M} and the {1,4N} inverses of the multiple product of matrices are derived.



    Let Cm×n be the set of all m×n matrices in the complex field. For any ACm×n, we denote the conjugate transpose, the rank, the range space and the null space of A by A, r(A), R(A) and N(A), respectively. In the remainder of this paper, we will adopt

    Aji=AiAi+1Aj,Xji=XiXi+1Xj,1ijn, (1.1)

    where AiCmi×mi+1, XiCmi+1×mi and Xi is called a weighted generalized inverse of Ai, i=1,2,,n. In particular, Ajj=Aj, Aj1=A1A2Aj, Xjj=Xj, Xj1=X1X2Xj, j=1,2,,n and Xnn+1=Imn+1.

    For ACm×n, let MCm×m, NCn×n be two positive definite Hermitian matrices. We recall that a weighted generalized inverse XCn×m of A is a matrix that satisfies some of the following equations [1,13]:

    (1)AXA=A,(2)XAX=X,(3M)(MAX)=MAX,(4N)(NXA)=NXA. (1.2)

    We say that X=A(1,3M) is a {1,3M}-inverse or a weighted least squares g-inverse of A if X is a common solution of (1) and (3M). Let A{1,3M} denote the set of all {1,3M}inverses of A. We say that X=A(1,4N) is a {1,4N}-inverse of A if X is a common solution of (1) and (4N). Let A{1,4N} denote the set of all {1,4N}inverses of A. The unique {1,2,3M,4N}-inverse of A ia called the weighted Moore-Penrose inverse of A and is denoted by X=A(1,2,3M,4N)=AM,N [1,23].

    The reverse order law for the weighted generalized inverse of the multiple product of matrices has been widely applied in the theoretic research and numerical computations areas (see [1,2,4,5,8,9,14,23,24]).

    For the very time, Greville [6] presented an equivalent condition for the reverse order law (AB)=BA. Since then, many authors have studied this problem (see [3,4,7,10,11,15,16,17,19,20,21,22,25,26]). It is well known that the core problem concerns with the reverse order law and whether conditions

    A(i,j,,k)nA(i,j,,k)n1A(i,j,,k)1=(A1A2An)(i,j,,k) (1.3)

    hold, or whether conditions

    An{i,j,,k}An1{i,j,,k}A1{i,j,,k}(A1A2An){i,j,,k} (1.4)

    hold, where (i,j,,k){1,2,3M,4N}.

    The purpose of this paper is to show some equivalent conditions for the following inclusions

    An{1,3Mn}An1{1,3Mn1}A1{1,3M1}(A1A2An){1,3M1} (1.5)

    and

    An{1,4Mn+1}An1{1,4Mn}A1{1,4M2}(A1A2An){1,4Mn+1}, (1.6)

    where AiCmi×mi+1, i=1,2,,n and MiCmi×mi, i=1,2,,n+1 are n+1 positive definite Hermitian matrices.

    Lemma 2.1. [23] Let L, M be two complementary subspaces of Cm and let PL,M be the projector on L along M, then

    PL,MA=AR(A)L, (2.1)
    APL,M=AN(A)M. (2.2)

    Lemma 2.2. [1,23] Let ACm×n, XCn×m and let M and N be two positive definite Hermitian matrices of order m and n, respectively, then

    XA{1,3M}AMAX=AM, (2.3)
    XA{1,4N}XAN1A=N1A, (2.4)
    XA{1,4N}XA{1,3N1}. (2.5)

    Lemma 2.3. [18] Let ACm×n, BCm×k, CCl×n and DCl×k, and let MCm×m and NCn×n be two positive definite Hermitian matrices, then

    maxA(1,3M) r(DCA(1,3M)B)=min{ r(AMAAMBCD)r(A),r(BD)}, (2.6)
    maxA(1,4N) r(DCA(1,4N)B)=min{ r(C,D),r(AN1ABCN1AD)r(A)}. (2.7)

    Lemma 2.4. [12] Let ACm×n, BCm×k and CCp×n, then

    r(A,B)=r(A)+r(EAB)=r(B)+r(EBA), (2.8)
    r(AC)=r(A)+r(CFA)=r(C)+r(AFC), (2.9)
    r(AC)r(A)+r(C),r(A,B)r(A)+r(B), (2.10)

    where the projectors are EA=ImAA, EB=ImBB, FA=InAA and FC=InCC.

    Let

    Aji=AiAi+1Aj,Xji=XiXi+1Xj,1ijn

    be as given in (1.1), and MiCmi×mi, i=1,2,,n+1 are positive definite Hermitian matrices. Then, from (2.3) in Lemma 2.2, we know that (1.5) holds if, and only if,

    (An1)M1An1(Xn1)=(An1)M1

    holds for any XiAi{1,3Mi}, i=1,2,,n, which is equivalent to:

    maxXn,Xn1,,X1r((An1)M1(An1)M1An1(Xn1))=0. (3.1)

    Hence, we can present the equivalent conditions for (1.5) if the concrete expressions of the maximal rank involved in (3.1) are derived.

    Theorem 3.1. Let AiCmi×mi+1, Xi=A(1,3Mi)iAi{1,3Mi} and i=1,2,,n. Let MiCmi×mi, i=1,2,,n+1 be positive definite Hermitian matrices and let Aji=AiAi+1Aj, 1ijn be given as in (1.1). Then,

    An{1,3Mn}An1{1,3Mn1}A1{1,3M1}(A1A2An){1,3M1}r( AnOOOAn1OOOA2(An1)M1An11M1n(An1)M1An21M1n1(An1)M1A1M12)=ni=2r(Ai). (3.2)

    Proof. From (2.3) in Lemma 2.2 and the definition of the rank of the matrix, we can see that for any Xi=A(1,3Mi)iAi{1,3Mi}, i=1,2,,n, the following three formulas are equivalent:

    An{1,3Mn}An1{1,3Mn1}A1{1,3M1}(A1A2An){1,3M1}, (3.3)
    (An1)M1An1(Xn1)=(An1)M1 (3.4)

    and

    maxXn,Xn1,,X1r((An1)M1(An1)M1An1(Xn1))=0. (3.5)

    Let Xji=XiXi+1Xj,1ijn as in (1.1). Then, from the formula (2.6) in Lemma 2.3 with A=A1, B=Im1, C=(An1)M1An1(Xn2) and D=(An1)M1, we have

    maxX1r((An1)M1(An1)M1An1(Xn1))=min{r(A1M1A1A1M1(An1)M1An1(Xn2)(An1)M1)r(A1),r(Im1(An1)M1)}=min{ r((An1)M1An1(Xn2)(An1)M1A1),m1}=r((An1)M1An1(Xn2)(An1)M1A1), (3.6)

    in which by the row or column elementary block operations from the first equality to the second one, we use the rank identities

    r(Im1(An1)M1)=m1,
    r(A1M1A1A1M1(An1)M1An1(Xn2)(An1)M1)=r(OA1M1(An1)M1An1(Xn2)(An1)M1A1O)=r((An1)M1An1(Xn2)(An1)M1A1)+r(A1)

    and

    r((An1)M1An1(Xn2)(An1)M1A1)r((An1))r(A1)m1.

    From (3.6) and again by (2.6) in Lemma 2.3 with A=A2, B=Im2, C=(An1)M1An1(Xn3) and D=(An1)M1A1, we have

    maxX2,X1r((An1)M1(An1)M1An1(Xn1))=maxX2r((An1)M1A1(An1)M1An1(Xn2))=min{r(A2M2A2A2M2(An1)M1An1(Xn3)(An1)M1A1)r(A2),r(Im2(An1)M1A1)}=min{r(OA2M2(An1)M1An1(Xn3)(An1)M1A21(An1)M1A1)r(A2),m2}=min{r(OA2(An1)M1An1(Xn3)(An1)M1A21(An1)M1A1M12)r(A2),m2}. (3.7)

    By (2.9) in Lemma 2.4 we have (O,A2)=(O(A2)), thus

    r(OA2(An1)M1An1(Xn3)(An1)M1A21(An1)M1A1M12)=r[((An1)M1An1(Xn3)(An1)M1A21,(An1)M1A1M12)F(O,A2)]+r(A2)=r[((An1)M1An1(Xn3)(An1)M1A21,(An1)M1A1M12)(I(O,A2)(O,A2))]+r(A2)=r((An1)M1An1(Xn3)(An1)M1A21,(An1)M1A1M12FA2)+r(A2)=r[(An1)(M1An1(Xn3)M1A21,M1A1M12FA2)]+r(A2)r((An1))+r(A2)r(A2)+r(A2)m2+r(A2). (3.8)

    Combining (3.6) and (3.7) with (3.8), we have

    maxX2,X1r((An1)M1(An1)M1An1(Xn1))=maxX2r((An1)M1A1(An1)M1An1(Xn2))=r((An1)M1An1(Xn3)(An1)M1A21,(An1)M1A1M12FA2). (3.9)

    Generally, for 2in, we can prove the following fact:

    maxXi,Xi1,,X1r((An1)M1(An1)M1An1(Xn1))=r((An1)M1An1(Xni+1)(An1)M1Ai1,(An1)M1Ai11M1iFAi,,(An1)M1A11M12FA2)=r((An1)M1An1(Xni+1)(An1)M1Ai1,(An1)M1Ai11M1iFAi,,(An1)M1A1M12FA2), (3.10)

    where A11=A1 and Xnn+1=Imn+1.

    In fact, (3.10) is true for i=2 (see (3.9)). Now, assume (3.10) is also true for i1(i3), i.e

    maxXi1,Xi2,,X1r((An1)M1(An1)M1An1(Xn1))=r((An1)M1An1(Xni)(An1)M1Ai11,(An1)M1Ai21M1i1FAi1,,(An1)M1A1M12FA2). (3.11)

    Next, we will prove that (3.10) is also true for i. By formula (3.11) and (2.6) in Lemma 2.3 with ˜B=(Imi,O,,O), ˜A=Ai, ˜C=(An1)M1An1(Xni+1), ˜D=((An1)M1Ai11,(An1)M1Ai21M1i1FAi1,,(An1)M1A1M12FA2) and ˜E=(An1)M1An1(Xni)(An1)M1Ai11, we have

    maxXi,Xi1,,X1r((An1)M1(An1)M1An1(Xn1))=maxXir(˜E,(An1)M1Ai21M1i1FAi1,,(An1)M1A1M12FA2)=maxXir(˜D˜CXi˜B)=min{r(˜AMi˜A˜AMi˜B˜C˜D)r(˜A),r(˜B˜D)}=r((An1)M1An1(Xni+1)(An1)M1Ai1,(An1)M1Ai11M1iFAi,,(An1)M1A1M12FA2). (3.12)

    By the row or column elementary block operations of formula (2.9) in Lemma 2.4 we have,

    r(˜B˜D)=r(ImiOO(An1)M1Ai11(An1)M1Ai21M1i1FAi1(An1)M1A1M12FA2)=mi+r((An1)M1Ai21M1i1FAi1,,(An1)M1A1M12FA2)

    and

    r(˜AMi˜A˜AMi˜B˜C˜D)=r(T11T12T21T22)=r(τ11T12T21T22)=r((An1)M1An1(Xni+1)(An1)M1Ai1,ηi,ηi1,,η2)+r(Ai)r((An1)M1An1(Xni+1)(An1)M1Ai1,(An1)M1Ai11M1iFAi)+r((An1)M1Ai21M1i1FAi1,,(An1)M1A1M12FA2)+r(Ai)r(An1)+r((An1)M1Ai21M1i1FAi1,,(An1)M1A1M12FA2)+r(Ai)mi+r((An1)M1Ai21M1i1FAi1,,(An1)M1A1M12FA2)+r(Ai),

    where

    T11=(AiMiAi,AiMi),T12=(O,,O),T21=((An1)M1An1(Xni+1),(An1)M1Ai11),T22=((An1)M1Ai21M1i1FAi1,,(An1)M1A1M12FA2)τ11=(O,Ai),

    and

    ηk=(An1)M1Ak11M1kFAk,k=2,3,,i.

    In particular, when i=n, we get A11=A1, Xnn+1=Imn+1 and

    maxXn,Xn1,,X1r((An1)M1(An1)M1An1(Xn1))=r((An1)M1An1(Xnn+1)(An1)M1An1,(An1)M1An11M1nFAn,,(An1)M1A11M12FA2)=r((An1)M1An1(An1)M1An1,(An1)M1An11M1nFAn,,(An1)M1A11M12FA2)=r((An1)M1An11M1nFAn,(An1)M1An21M1n1FAn1,,(An1)M1A11M12FA2). (3.13)

    Applying (3.13) with Lemma 2.4, we finally have

    maxXn,Xn1,,X1r((An1)M1(An1)M1An1(Xn1))=r((An1)M1An11M1nFAn,(An1)M1An21M1n1FAn1,,(An1)M1A11M12FA2)=r( AnOOOAn1OOOA2(An1)M1An11M1n(An1)M1An21M1n1(An1)M1A11M12)ni=2r(Ai). (3.14)

    According to the formulas (1.1), (3.3)–(3.5) and (3.14), we have

    An{1,3Mn}An1{1,3Mn1}A1{1,3M1}(A1A2An){1,3M1}r( AnOOOAn1OOOA2(An1)M1An11M1n(An1)M1An21M1n1(An1)M1A1M12)=ni=2r(Ai). (3.15)

    From Lemmas 2.1, 2.4 and Theorem 3.1, we have:

    Corollary 3.1. Let AiCmi×mi+1, Xi=A(1,3Mi)iAi{1,3Mi}. Let MiCmi×mi be positive definite Hermitian matrices i=1,2,,n+1, and let Aji=AiAi+1Aj,1ijn be given as in (1.1). Then, the following statements are equivalent:

    (1) An{1,3Mn}An1{1,3Mn1}A1{1,3M1}(A1A2An){1,3M1};

    (2) r( AnMnOOOAn1Mn1OOOA2M2(An1)M1An11(An1)M1An21(An1)M1A11)=ni=2r(Ai);

    (3) R((Ai11)M1An1)R(MiAi), i=2,3,,n;

    (4) Ai(Ai)Mi,Imi+1M1i(Ai11)M1An1=M1i(Ai11)M1An1, i=2,3,,n.

    Proof. According to Theorem 3.1, we get that (1) and (2) are equivalent since

    r[( AnMnOOOAn1Mn1OOOA2M2(An1)M1An11(An1)M1An21(An1)M1A11)( M1nOOOM1n1OOOM12)]=r( AnOOOAn1OOOA2(An1)M1An11M1n(An1)M1An21M1n1(An1)M1A1M12). (3.16)

    Next, we will prove (3)(2). From (3.16) and (2.8) in Lemma 2.4, we have

    r( AnMnOOOAn1Mn1OOOA2M2(An1)M1An11(An1)M1An21(An1)M1A1)=r(MnAnOO(An11)M1An1OMn1An1O(An21)M1An1OOM2A2(A11)M1An1)=r(EMnAn(An11)M1An1EMn1An1(An21)M1An1EM2A2(A11)M1An1)+ni=2r(MiAi). (3.17)

    According to (3.17), we have r(MiAi)=r(Ai) and (3)(2) if, and only if,

    EMiAi(Ai11)M1An1=O,i=2,3,,n. (3.18)

    From Lemmas 2.1 and 2.4, we have EMiAi=Imi(MiAi)(MiAi)=ImiPR(MiAi),N(AiMi) and (3)(2), where i=2,3,,n.

    By using formula (3) and Lemma 2.1, we get (3)(4) since

    Ai(Ai)Mi,Imi+1M1i(Ai11)M1An1=PR(Ai(Ai)Mi,Imi+1),N(Ai(Ai)Mi,Imi+1)M1i(Ai11)M1An1=PR(Ai),N(Ai(Ai)Mi,Imi+1)M1i(Ai11)M1An1=M1i(Ai11)M1An1,

    where i=2,3,,n.

    From Lemma 2.2, we have XA{1,4N}XA{1,3N1}, so from Theorem 3.1 and Corollary 3.1, we have

    Theorem 3.2. Let AiCmi×mi+1, Xi=A(1,4Ni+1)iAi{1,4Ni+1}. Let NiCmi×mi be positive definite Hermitian matrices i=1,2,,n+1, and let Aji=AiAi+1Aj,1ijn be given as in (1.1). Then,

    An{1,4Nn+1}An1{1,4Nn}A1{1,4N2}(A1A2An){1,4Nn+1}r( A1OON2An2N1n+1(An1)OA2ON3An3N1n+1(An1)OOAn1NnAnnN1n+1(An1))=n1i=1r(Ai).

    From Lemmas 2.1, 2.4 and Theorem 3.2, we have

    Corollary 3.2. Let AiCmi×mi+1, Xi=A(1,4Ni+1)iAi{1,4Ni+1}. Let NiCmi×mi be positive definite Hermitian matrices i=1,2,,n+1, and let Aji=AiAi+1Aj,1ijn be given as in (1.1). Then, the following statements are equivalent:

    (1) An{1,4Nn+1}An1{1,4Nn}A1{1,4N2}(A1A2An){1,4Nn+1};

    (2) r( N12A1OOAn2N1n+1(An1)ON13A2OAn3N1n+1(An1)OON1nAn1AnnN1n+1(An1))=n1i=1r(Ai);

    (3) R(Ani+1N1n+1(An1))R(N1i+1Ai), i=1,2,,n1;

    (4) (Ai)Imi,Ni+1AiAni+1N1n+1(An1)=Ani+1N1n+1(An1), i=1,2,,n1.

    The reverse order law for the weighted generalized inverses of the multiple product of matrices has been studied in this article by using the ranks of the generalized Schur complement. The work in this paper was a useful tool in many algorithms for the computation of the weighted least squares technique of matrix equations.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors wish to thank Professor Jie Gong and the referees. This work was supported by the project for characteristic innovation of 2018 Guangdong University (No: 2018KTSCX234), the National Natural Science Foundation of China (No: 11771159), the joint research and Development fund of Wuyi University, Hong Kong and Macao (No: 2019WGALH20) and the basic Theory and Scientific Research of Science and Technology Project of Jiangmen City, China (No: 2021030102610005049).

    The authors declare that there are no conflicts of interest.



    [1] A. Ben-Israel, T. N. E. Greville, Generalized Inverse: Theory and Applications, 2rd edition, New York: Springer, 2002. https://doi.org/10.2307/1403291
    [2] S. L. Campbell, C. D. Meyer, Generalized Inverse of Linear Transformations, New York: Dover, 1979. https://doi.org/10.1137/1.9780898719048
    [3] D. Cvetkoviˊc-IIiˊc, J. Milosevic, Reverse order laws for {1,3}-generalized inverses, Linear Multilinear Algebra, 234 (2018), 114–117. https://doi.org/10.1080/03081087.2018.1430119 doi: 10.1080/03081087.2018.1430119
    [4] A. R. De Pierro, M. Wei. Reverse order law for reflexive generalized inverses of products of matrices, Linear Algebra Appl., 277 (1998), 299–311. https://doi.org/10.1016/s0024-3795(97)10068-4 doi: 10.1016/s0024-3795(97)10068-4
    [5] D. S. Djordjeviˊc, Further results on the reverse order law for generalized inverses, SIAM J. Matrix. Anal. Appl., 29 (2007), 1242–1246. https://doi.org/10.1137/050638114 doi: 10.1137/050638114
    [6] T. N. E. Greville, Note on the generalized inverses of a matrix products, SIAM Review., 8 (1966), 518–521. https://doi.org/10.1137/1008107 doi: 10.1137/1008107
    [7] R. E. Hartwig, The reverse order law revisited, Linear Algebra Appl., 76 (1986), 241–246. https://doi.org/10.1016/0024-3795(86)90226-0 doi: 10.1016/0024-3795(86)90226-0
    [8] I. Kyrchei, Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore-Penrose inverse, Appl. Math. Comput., 309 (2017), 1–16. https://doi.org/10.1016/j.amc.2017.03.048 doi: 10.1016/j.amc.2017.03.048
    [9] Y. Liu, Y. Tian, A mixed-type reverse order law for generalized inverse of a triple matrix product, Acta Math. Sin. Chin. Ser., 52 (2009), 197–204. https://doi.org/10.1360/972009-1650 doi: 10.1360/972009-1650
    [10] Q. Liu, M. Wei, Reverse order law for least squares g-inverses of multiple matrix products, Linear Multilinear Algebra, 56 (2008), 491–506. https://doi.org/10.1080/03081080701340547 doi: 10.1080/03081080701340547
    [11] D. Liu, H. Yan, The reverse order law for {1,3,4}-inverse of the product of two matrices, Appl. Math. Comput., 215 (2010), 4293–4303. https://doi.org/10.1016/j.amc.2009.12.056 doi: 10.1016/j.amc.2009.12.056
    [12] G. Marsaglia, G. P. H. S. Tyan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974), 269–292. https://doi.org/10.1080/03081087408817070 doi: 10.1080/03081087408817070
    [13] R. Penrose, A generalized inverse for matrix, Proc. Cambridge Philos. Soc., 51 (1955), 406–413. https://doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401
    [14] C. R. Rao, S. K. Mitra, Generalized inverse of Matrices and Its Applications, New York: Wiley, 1971. https://doi.org/10.2307/3007981
    [15] W. Sun, Y. Wei, Inverse order rule for weighted generalized inverse, SIAM J. Matrix Anal. Appl., 19 (1998), 772–775. https://doi.org/10.1137/S0895479896305441 doi: 10.1137/S0895479896305441
    [16] W. Sun, Y. Wei, Triple reverse-order rule for weighted generalized inverses, Appl. Math. Comput., 125 (2002), 221–229. https://doi.org/10.1016/S0096-3003(00)00122-3 doi: 10.1016/S0096-3003(00)00122-3
    [17] Y. Tian, Reverse order laws for generalized inverse of multiple matrix products, Linear Algebra Appl., 211 (1994), 85–100. https://doi.org/10.1016/0024-3795(94)90084-1 doi: 10.1016/0024-3795(94)90084-1
    [18] Y. Tian, More on maximal and minimal ranks of Schur complements with applications, Appl. Math. Comput., 152 (2004), 675–692. https://doi.org/10.1016/S0096-3003(03)00585-X doi: 10.1016/S0096-3003(03)00585-X
    [19] Y. Tian, A family of 512 reverse order laws for generalized inverse of a matrix product: a review, Heliyon, 6 (2020), e04924. https://doi.org/10.1016/j.heliyon.2020.e04924 doi: 10.1016/j.heliyon.2020.e04924
    [20] Y. Tian, Characterizations of matrix equalities involving the sums and products of multiple matrices and their generalized inverse, Electron. Res. Arch., 31 (2023), 5866–5893. https://doi.org/10.3934/era.2023298 doi: 10.3934/era.2023298
    [21] M. Wei, Equivalent conditions for generalized inverses of products, Linear Algebra Appl., 266 (1997), 346–363. https://doi.org/10.1016/S0024-3795(97)00035-9 doi: 10.1016/S0024-3795(97)00035-9
    [22] M. Wei, Reverse order laws for generalized inverse of multiple matrix products, Linear Algebra Appl., 293 (1999), 273–288. https://doi.org/10.1016/S0024-3795(99)00053-1 doi: 10.1016/S0024-3795(99)00053-1
    [23] G. R. Wang, Y. M. Wei, S. Z. Qiao, Generalized Inverse: Theory and Computations, Beijing: Science Press, 2004. https://doi.org/10.1098/rspa.2013.0628
    [24] Z. P. Xiong, Z. S. Liu, Applications of completions of operator matrices to some properties of operator products on Hilbert spaces, Complex Analy. Oper. Theory, 12 (2018), 123–140. https://doi.org/10.1007/s11785-016-0600-1 doi: 10.1007/s11785-016-0600-1
    [25] Z. P. Xiong, Y. Y. Qin, A note on the reverse order law for least square g-inverse of operator product, Linear Multilinear Algebra, 64 (2016), 1404–1414. https://doi.org/10.1080/03081087.2015.1087458 doi: 10.1080/03081087.2015.1087458
    [26] Z. P. Xiong, B. Zheng, The reverse order laws for {1,2,3}- and {1,2,4}-inverses of two matrix product, Appl. Math. Lett., 21 (2008), 649–655. https://doi.org/10.1016/j.aml.2007.07.007 doi: 10.1016/j.aml.2007.07.007
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1175) PDF downloads(61) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog