Research article Special Issues

Optimal and near-optimal frequency-hopping sequences based on Gaussian period

  • Received: 13 August 2023 Revised: 09 October 2023 Accepted: 20 October 2023 Published: 26 October 2023
  • MSC : 11T22, 94A60

  • Frequency-hopping sequences (FHSs) have a decisive influence on the whole frequency-hopping communication system. The Hamming correlation function plays an important role in evaluating the performance of FHSs. Constructing FHS sets that meet the theoretical bounds is crucial for the research and development of frequency-hopping communication systems. In this paper, three new classes of optimal FHSs based on trace functions are constructed. Two of them are optimal FHSs and the corresponding periodic Hamming autocorrelation value is calculated by using the known Gaussian period. It is shown that the new FHSs are optimal according to the Lempel-Greenberger bound. The third class of FHSs is the near-optimal FHSs.

    Citation: Yan Wang, Yanxi Fu, Nian Li, Huanyu Wang. Optimal and near-optimal frequency-hopping sequences based on Gaussian period[J]. AIMS Mathematics, 2023, 8(12): 29158-29170. doi: 10.3934/math.20231493

    Related Papers:

  • Frequency-hopping sequences (FHSs) have a decisive influence on the whole frequency-hopping communication system. The Hamming correlation function plays an important role in evaluating the performance of FHSs. Constructing FHS sets that meet the theoretical bounds is crucial for the research and development of frequency-hopping communication systems. In this paper, three new classes of optimal FHSs based on trace functions are constructed. Two of them are optimal FHSs and the corresponding periodic Hamming autocorrelation value is calculated by using the known Gaussian period. It is shown that the new FHSs are optimal according to the Lempel-Greenberger bound. The third class of FHSs is the near-optimal FHSs.



    加载中


    [1] A. Lempel, H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, 20 (1974), 90–94. https://doi.org/10.1109/TIT.1974.1055169 doi: 10.1109/TIT.1974.1055169
    [2] X. Niu, C. Xing, New extension constructions of optimal frequency-hopping sequences sets, IEEE Trans. Inform. Theory, 65 (2019), 5846–5855. https://doi.org/10.1109/TIT.2019.2916362 doi: 10.1109/TIT.2019.2916362
    [3] G. Ge, R. Fuji-Hara, Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699–1718. https://doi.org/10.1016/j.jcta.2006.03.019 doi: 10.1016/j.jcta.2006.03.019
    [4] S. Xu, Optimal frequency-hopping sequences based on the decimated $m$-sequences, Cryptogr. Commun. 14 (2022), 983–998. https://doi.org/10.1007/s12095-022-00569-4 doi: 10.1007/s12095-022-00569-4
    [5] X. Zhou, Y. Li, A class of optimal frequency-hopping sequences with new parameters, Math. Practice Theory, 51 (2021), 216–221.
    [6] J. H. Chung, Y. K. Han, K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inform. Theory, 55 (2009), 5783–5791. https://doi.org/10.1109/TIT.2009.2032742 doi: 10.1109/TIT.2009.2032742
    [7] X. Liu, L. Zhou, S. Li, A new method to construct strictly optimal frequency-hopping sequences with new parameters, IEEE Trans. Inform. Theory, 65 (2019), 1828–1844. https://doi.org/10.1109/TIT.2018.2864154 doi: 10.1109/TIT.2018.2864154
    [8] G. Ge, Y. Miao, Z. Yao, Optimal frequency-hopping sequences: Auto- and cross-correlation properties, IEEE Trans. Inform. Theory, 55 (2009), 867–879. https://doi.org/10.1109/TIT.2008.2009856 doi: 10.1109/TIT.2008.2009856
    [9] Z. Zhou, X. Tang, D. Peng, U. Parampalli, New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inform. Theory, 57 (2011), 3831–3840. https://doi.org/10.1109/TIT.2011.2137290 doi: 10.1109/TIT.2011.2137290
    [10] C. Ding, J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 54 (2008), 3741–3745. https://doi.org/10.1109/TIT.2008.926410 doi: 10.1109/TIT.2008.926410
    [11] C. Ding, M. J. Moisio, J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inform. Theory, 53 (2007), 2606–2610. https://doi.org/10.1109/TIT.2007.899545 doi: 10.1109/TIT.2007.899545
    [12] W. Chu, C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inform. Theory, 51 (2005), 1139–1141. https://doi.org/10.1109/TIT.2004.842708 doi: 10.1109/TIT.2004.842708
    [13] J. H. Chung, K. Yang, $k$-Fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inform. Theory, 57 (2011), 2306–2317. https://doi.org/10.1109/TIT.2011.2112235 doi: 10.1109/TIT.2011.2112235
    [14] X. Zeng, H. Cai, X. Tang, Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inform. Theory, 59 (2013), 3237–3248. https://doi.org/10.1109/TIT.2013.2237754 doi: 10.1109/TIT.2013.2237754
    [15] S. Xu, X. Cao, J. Mi, C. Tang, A new family of optimal FHS sets with composite lengths, Discrete Math., 342 (2019), 1446–1455. https://doi.org/10.1016/j.disc.2019.01.026 doi: 10.1016/j.disc.2019.01.026
    [16] Y. K. Han, K. Yang, On the Sidelnikov sequences as frequency-hopping sequences, IEEE Trans. Inform. Theory, 55 (2009), 4279–4285. https://doi.org/10.1109/TIT.2009.2025569 doi: 10.1109/TIT.2009.2025569
    [17] X. Zhou, Y. Li, Construction of near-optimal frequency-hopping sequences based on gaussian period, J. Sichuan Normal Univ. Sci., 45 (2022), 654–659.
    [18] K. Yun, K. Yang, New near-optimal frequency-Hopping sequences of length $pq$, IEEE Int. Symp. Inform. Theory, 2008, 2593–2597. https://doi.org/10.1109/ISIT.2008.4595460 doi: 10.1109/ISIT.2008.4595460
    [19] B. Huang, X. Zhang, Optimal construction of a class of frequency-hopping sequences sets, Comput. Appl. Soft., 34 (2017), 123–127. https://doi.org/10.3969/j.issn.1000-386x.2017.03.022 doi: 10.3969/j.issn.1000-386x.2017.03.022
    [20] X. Zeng, H. Cai, X. Tang, Y. Yang, A class of optimal frequency hopping sequences with new parameters, IEEE Trans. Inform. Theory, 58 (2012), 4899–4907. https://doi.org/10.1109/TIT.2012.2195771 doi: 10.1109/TIT.2012.2195771
    [21] J. H. Chung, K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inform. Theory, 56 (2010), 1685–1693. https://doi.org/10.1109/TIT.2010.2040888 doi: 10.1109/TIT.2010.2040888
    [22] W. Ren, F. Fu, Z. Zhou, New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Cryptogr., 72 (2014), 423–434. https://doi.org/10.1007/s10623-012-9774-3 doi: 10.1007/s10623-012-9774-3
    [23] R. Fuji-Hara, Y. Miao, M. Mishima, Optimal frequency-hopping sequences: A combinatorial approach, IEEE Trans. Inform. Theory, 50 (2004), 2408–2420. https://doi.org/10.1109/TIT.2004.834783 doi: 10.1109/TIT.2004.834783
    [24] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251–264.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(840) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog