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Abstract: Frequency-hopping sequences (FHSs) have a decisive influence on the whole frequency-
hopping communication system. The Hamming correlation function plays an important role in
evaluating the performance of FHSs. Constructing FHS sets that meet the theoretical bounds is crucial
for the research and development of frequency-hopping communication systems. In this paper, three
new classes of optimal FHSs based on trace functions are constructed. Two of them are optimal
FHSs and the corresponding periodic Hamming autocorrelation value is calculated by using the known
Gaussian period. It is shown that the new FHSs are optimal according to the Lempel-Greenberger
bound. The third class of FHSs is the near-optimal FHSs.
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1. Introduction

Frequency-hopping multiple-access is widely used in military radio communication, satellite
communications, fiber-optic communications, underwater communications, microwave, and radar
systems. The user’s frequency slots used are chosen pseudo-randomly through a code called frequency-
hopping sequences (FHS). The theoretical bound of the FHS gives the constraint relations that should
be satisfied between different parameters.

Lempel and Greenberger [1] established a theoretical lower bound on the maximum Hamming
autocorrelation of FHS for a given length and frequency set size, which is called the Lempel and
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Greenberger bound, and the FHS satisfying the bound is called an optimal FHS. Constructing such
optimal FHSs became a hot topic in FHS research [2, 3].

Both algebraic and combinatorial constructions of optimal FHSs have been proposed in the
literature (see [4–11]) and the references therein. Among all known constructions, cyclotomy [12]
is one of the most useful techniques for coding theory and cryptography. Chung et al. [13] constructed
several optimal FHSs of length from k-fold cyclotomic classes for distinct odd primes. A class of FHSs
with flexible parameters was given based on the cyclotomic division of rings by Zeng [14]. In [15],
Xu et al. constructed a family of FHSs based on the Zeng-Cai-Tang-Yang cyclotomy and the Chinese
remainder theorem.

For a given sequence period and frequency set size, the optimal FHS does not always exist.
Therefore, in the absence of the optimal parameters, the near-optimal FHS is a substitution of an
optimal FHS. It is also important to construct a more near-optimal FHS with new parameters.

At present, the construction of near-optimal FHSs can be referred to in literature [16–19]. In 2008,
Han et al. [20] first proposed the concept of near-optimal FHSs. In 2010, Chung et al. [21] generated
two kinds of near-optimal FHSs by using the cyclotomic coset over finite fields. In 2014, Ren et al. [22]
proposed a class of constructions of near-optimal FHSs by means of the Chinese remainder theorem
and cyclotomic over finite fields. See Table 1 for more near-optimal FHSs.

Our purpose is to construct new optimal FHSs for some cases that are not covered in the literature.
In this paper, we present three constructions for FHSs with optimal Hamming autocorrelation. The
parameters of the optimal FHSs obtained in this paper are listed in Table 2, which gives a comparison
of our constructions.

Table 1. Parameters of known near-optimal frequency sequences.

References (n, l, λ) Constraints Lempel-Greenberger bound
[13] (p2, p + 1, p) near-optimal
[13] (pn, pn−1

f , k) p = k f + 1, f is even. near-optimal

[16] (q − 1, e, f + 1)
q = e f + 1 is an odd prime
power, f is odd.

near-optimal

[17] ( q+1
k ,

q+2k+1
2k , 2)

q is is odd prime power,

k | (q + 1),
q + 1

k
is even.

near-optimal

[18] (pq,m, pq−1
m + 1)

p and q are distinct odd primes
satisfying p ≡ m + 1(mod2m) and
q ≡ 1(mod2m), and m is
even common divisor of p − 1 and q − 1

near-optimal

[19] (q, e, f + 1)
q = e f + 1 is a prime power,
f is even.

near-optimal

Theorem 3.3 ( q+1
k2 ,

q+2k2+1
2k2 , 2)

q is an odd prime power,

k2 | (q + 1),
q + 1

k2 is even.
near-optimal
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Table 2. Parameters of known optimal frequency sequences.

References (n, l, λ) Constraints Lempel-Greenberger bound
[3] (p2, p, p) p is a prime. optimal

[5] (q+1
k ,

q+k+1
2k , 1) k | (q + 1), and

q + 1
k

is odd. optimal

[6] (p,M, f )
p = M f + 1 is a prime,
f is even, p ≡ 3 mod 4,

optimal

[8] (qn−1
e , q, qn−1−1

e )
q is a prime power,
e | (q − 1), gcd(e, n) = 1

optimal

[9] (qm−1
e , qk, qm−1−1

e )
1 6 k 6 m,

e | (q − 1), gcd(e,m) = 1
optimal

[10] (q − 1, e + 1, f − 1) q = e f + 1 is a prime power. optimal

[12] (p, e + 1, f + 1)
p = e f + 1,
e > 3 f , f > 2

optimal

Theorem 3.1
(

4(q+1)
5 , 4q+9

10 , 1
)

k2 | (q + 1), and
q + 1

k2 is odd. optimal

Theorem 3.2 (q+1
k2 ,

q+k2+1
2k2 , 1) k2 | (q + 1), and

q + 1
k2 is odd. optimal

The rest of this paper is organized as follows. In section two, we present some notations and
definitions about FHSs, as well as the cyclotomic class and Gaussian period. In section three, we
propose two classes of optimal FHSs and prove they are optimal. In section four, we construct a class
of near-optimal FHSs. The conclusions are provided in section five.

2. Preliminaries

For any positive integer l > 2, let F = { f0, f1, · · · , fl−1} be a set of l available frequencies, called an
alphabet. A sequence X = {x(t)}n−1

t=0 is called an FHS of length n over F if x(t) ∈ F for 0 6 t 6 n− 1. For
any FHS X = {x(t)}n−1

t=0 of length n over F , its Hamming autocorrelation HX is defined by

HX(τ) =

n−1∑
t=0

h [x(t), x(t + τ)], 0 6 τ < n. (2.1)

Where h [a, b] = 1 if a = b and zero, the addition is performed modulo n. The maximum out-of-phase
Hamming autocorrelation of X is defined as

H(X) = max
16τ<n
{HX (τ)}.

Throughout this paper, let (n, l, λ) denote an FHS X of length n over an alphabet with size l with λ =

H(X). For a real number a, let dae denote the least integer no less than a and let bac denote the integer
a part of a. A lower bound of H(X) was established by Lempel and Greenberger as follows.

Lemma 2.1. (Lempel-Greenberger bound [1], Lemma 4) For every FHS X of length n over an alphabet
with size l,

H(X) >
⌈
(n − ε) (n + ε − l)

l(n − 1)

⌉
, (2.2)
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where ε is the least nonnegative residue of n modulo l.

Lemma 2.2. ( [23], Corollary 1.2) Let X be any FHS of period n on a frequency set with size l,

H(X) =

0, i f n = l,

bn/lc , i f n > l.
(2.3)

We denote λopt as the righthand side in (2.2); that is, the value given by the Lempel-Greenberger
bound. The following definitions will be used in this paper.

Definition 2.1. An FHS X is optimal if H(X) = λopt, i.e. X is optimal with respect to the Lempel-
Greenberger bound; an FHS X is near-optimal if H(X) = λopt + 1, i.e. X is near-optimal with respect
to the Lempel-Greenberger bound.

Let h be a positive integer, p be a prime number and q = ph. Let n be a positive integer, r = qn, Fr be
a finite field containing r elements, and θ be the generator of the multiplicative group F∗qm . Trace
function Trr

q from finite field Fr to finite field Fq is defined as

Trr
q(x) = x + xq + xq2

+ · · · + xqn−1
, x ∈ Fr.

Let r − 1 = nN, where n and N are positive integers greater than two. The Nth order of cyclotomic
class C(N,r)

i of Fr is defined as

C(N,r)
i = {αNt+i : 0 6 t < N}, 0 6 i < N.

Let ζp = e
2π
√
−1

p be the root of the primitive unit to the pth degree. The canonical addition
feature χ over Fr is defined as

χ(x) = ζ
Trr

p(x)
p , x ∈ Fr.

The orthogonal relation of addition characteristic is∑
x∈Fr

χ(ax) =

r, i f a = 0,
0, i f a ∈ F∗r .

(2.4)

The Gaussian period η(N)
i of order N over Fr is defined as

η(N)
i =

∑
x∈C(N)

i

χ (x), 0 6 i < N.

Here’s the convention:If i > N, then η(N)
i = η(N)

i( mod N).
The following Gaussian period is from the conjugate case.

Lemma 2.3. [24] Suppose j is the smallest positive integer such that p j ≡ −1 ( mod N). Let r = p2 jγ

and γ be a positive integer, then the Nth order Gaussian period η(N)
i over Fr satisfies

1) when γ, p and p j+1
N are all odd,

η(N)
i =


(N − 1)

√
r − 1

N
, i f i =

N
2
,

−
√

r − 1
N

, otherwise.
(2.5)
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2) otherwise,

η(N)
i =


(−1)γ+1(N − 1)

√
r − 1

N
, i f i = 0,

(−1)γ
√

r − 1
N

, otherwise.
(2.6)

3. Results

Construction A. Let q be a power of an odd prime p and r = q2. An FHS X =(
x0, x1, x2, · · · x 4(q+1)

5 −1

)
of period 4(q+1)

5 is defined as follows

Xt = Trq2

q

(
α

5(q−1)
4 t

)
, 1 6 t <

4(q + 1)
5

. (3.1)

Lemma 3.1. For
0 6 t1 6 t2 <

4(q + 1)
5

,

we have
xt1 = xt2 ⇔ t1 + t2 =

4(q + 1)
5

.

Proof. According to Eq (3.1),

xt = α
5
4 (q−1)t +

(
α

5
4 (q−1)t

)q

= α
5
4 (q−1)t + α−

5
4 (q−1)t,

thus
xt1 = xt2

⇔ α
5
4 (q−1)t1 + α−

5
4 (q−1)t1 = α

5
4 (q−1)t2 + α−

5
4 (q−1)t2

⇔ α
5
4 (q−1)t1 − α

5
4 (q−1)t2 = α−

5
4 (q−1)t2 − α−

5
4 (q−1)t1

⇔ α
5
4 (q−1)(t1+t2) = 1

⇔ t1 + t2 =
4(q + 1)

5
.

�

Theorem 3.1. Let the FHS X be given by Eq (3.1), then X has parameters
(

4(q+1)
5 , 4q+9

10 , 1
)
, which is

optimal with respect to the Lempel-Greenberger bound.

Proof. First, from Lemma 3.1 we know that the frequency set size of the sequence X is
4(q+1)

5 −1
2 + 1 =

4q+9
10 , then for 1 6 τ < 4(q+1)

5 we have

HX(τ) = |

{
0 6 t <

4(q + 1)
5

: Trq2

q

(
α

5(q−1)t
4

)
= Trq2

q

(
α

5(q−1)(t+τ)
4

)}
|

=
1
q

∑
x∈Fq

4(q+1)
5 −1∑
t=0

ς
Trq

p

[
x·Trq2

q

((
α

5(q−1)
4 τ
−1

)
α

5(q−1)t
4

)]
p
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=
4(q + 1)

5q
+

1
q

∑
x∈F∗q

4(q+1)
5 −1∑
t=0

ς
Trq

p

[
Trq2

q

(
x·
(
α

5(q−1)
4 τ
−1

)
α

5(q−1)t
4

)]
p

=
4(q + 1)

5q
+

1
q

4(q+1)
5 −1∑
t=0

q−2∑
i=0

ς
Trq

p

[
Trq2

q

((
α

5(q−1)
4 τ
−1

)
α

5(q−1)t+(q+1)i
4

)]
p

=
4(q + 1)

5q
+

1
q

4(q+1)
5 −1∑
t=0

q−2∑
i=0

χ
((
α

5(q−1)τ
4 − 1

)
α

5(q−1)t+(q+1)i
4

)
=

4(q + 1)
5q

+
1
q

∑
x∈C

( 5
4 )

0

χ
((
α

5(q−1)τ
4 − 1

)
x
)

=
4(q + 1)

5q
+

1
q

∑
x∈C

( 5
4 )

j

χ (x)

=
4(q + 1)

5q
+

1
q
η
( 5

4 )
j .

From Lemma 2.3, the minimum j is h while γ = 1. When p = 2, according to Eq (2.6),

H(X) 6
4(q + 1)

5q
+

1
q

max
06 j< 5

4

{
η
( 5

4 )
j

}
=

4(q + 1)
5q

+
1
q

(−1)24(5
4 − 1)q − 1
5

= 1.

Similarly, when p is an odd prime number, it can be known from Eq (2.5) that

H(X) 6
4(q + 1)

5q
+

1
q

max
06 j< 5

4

{
η
( 5

4 )
j

}
=

4(q + 1)
5q

+
1
q

4(5
4 − 1)q − 1

5
= 1.

Thus, H(X) 6 1 for all γ and p.
However,

H(X) >


(

4(q+1)
5 −

4q−1
10

) (
4(q+1)

5 +
4q−1

10 −
4q+9

10

)
4q+9

10

(
4(q+1)

5 − 1
)  = 1.

Therefore, H (X) = 1, which is the Lempel-Greenberger bound. �

Construction B. Let q = ph, p be a prime number and h be a positive integer. Let θ be the generator
of the multiplication group F∗qm and m is even. The positive integer k is a factor of q + 1, and q+1

k2 is odd.
An FHS X = (x0, x1, · · · , x q+1

k2 −1) of period q+1
k2 is defined as follows

xt = Trqm

q (θk2(q−1)t), 1 6 t <
q + 1

k2 . (3.2)

Lemma 3.2. For
0 6 t1 6 t2 <

q + 1
k2 ,

we have
xt1 = xt2 ⇔ t1 + t2 =

q + 1
k2 .
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Proof. According to Eq (3.2),

xt =

(
θk2(q−1)t + (θk2(q−1)t)

q
+ · · · +

(
θk2(q−1)t

)qm)
=

(
θk2(q−1)t + (θk2q(q−1)t) + · · · +

(
θk2qm(q−1)t

))
=

m
2

(
θk2(q−1)t + θ−k2(q−1)t

)
.

Thus,
xt1 = xt2

⇔
m
2

(
θk2(q−1)t1 +

(
θ−k2(q−1)t1

))
=

m
2

(
θk2(q−1)t2 +

(
θ−k2(q−1)t2

))
⇔ θk2(q−1)t1 + θ−k2(q−1)t1 = θk2(q−1)t2 + θ−k2(q−1)t2

⇔ θk2(q−1)t1 − θk2(q−1)t2 = θ−k2(q−1)t2 − θ−k2(q−1)t1

⇔ θk2(q−1)(t1+t2) = 1

⇔ t1 + t2 =
q + 1

k2 .

Theorem 3.2. Let the FHS X be given by Eq (3.2), then X has parameters
(

q+1
k2 ,

q+k2+1
2k2 , 1

)
, which is

optimal with respect to the Lempel-Greenberger bound, where k2 | (q + 1) and q+1
k2 is odd.

Proof. First, from Lemma 3.2 we know that the frequency set size of the sequence X is
q+1
k2 −1

2 + 1 =
q+k2+1

2k2 , then for 1 6 τ < q+1
k2 we have

HX(τ) = |

{
0 6 t <

q + 1
k2 : Trqm

q (θk2(q−1)t) = Trqm

q (θk2(q−1)(t+τ))
}
|

=
1
q

∑
x∈Fq

q+1
k2 −1∑
t=0

ζ
Trq

p[x·Trqm
q ((θk2(q−1)τ−1)θk2(q−1)t)]

p

=
q + 1
k2q

+
1
q

∑
x∈F∗q

q+1
k2 −1∑
t=0

ζ
Trq

p[Trqm
q (x(θk2(q−1)τ−1)θk2(q−1)t)]

p

=
q + 1
k2q

+
1
q

q+1
k2 −1∑
t=0

q−2∑
i=0

ζ
Trq

p[Trqm
q ((θk2(q−1)τ−1)θk2(q−1)t+(q+1)i)]

p

=
q + 1
k2q

+
1
q

q+1
k2 −1∑
t=0

q−2∑
i=0

χ((θk2(q−1)τ − 1)θk2(q−1)t+(q+1)i)

=
q + 1
k2q

+
1
q

∑
x∈C(k2)

0

χ((θk2(q−1)τ − 1)x)

=
q + 1
k2q

+
1
q

∑
x∈C(k2)

j

χ(x) =
q + 1
k2q

+
1
q
η(k2)

j .
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From Lemma 2.3, the minimum j is h while γ = 1. When p = 2, according to Eq (2.6) we have

H(X) 6
q + 1
k2q

+
1
q

max
06 j<k2

{
η
(k2)
j

}
=

q + 1
k2q

+
1
q

(−1)2(k2 − 1)q − 1
k2 = 1.

Similarly, when p is an odd prime number, it can be known from Eq (2.5) that

H(X) 6
q + 1
k2q

+
1
q

max
06 j<k2

{
η
(k2)
j

}
=

q + 1
k2q

+
1
q

(k2 − 1)q − 1
k2 = 1.

Thus, H(X) 6 1 for all γ and p.
However,

H(X) >


(

q+1
k2 −

q−k2+1
2k2

) (
q+1
k2 +

q−k2+1
2k2 −

q+k2+1
2k2

)
q+k2+1

2k2

(
q+1
k2 − 1

)
 = 1.

Therefore, H (X) = 1, which is the Lempel-Greenberger bound. �

Example 3.1. Let p = 211, h = 1, k = 2 and m = 2, thus q = ph = 211, k2 | (q + 1) and q+1
k2 = 53 are

odd. The FHS X defined by Eq (3.2) is

X = (2, 99, 93, 35, 207, 202, 168, 183, 14, 148, 79, 77,

159, 50, 149, 142, 194, 74, 169, 199, 120, 76, 19,

117, 170, 44, 177, 177, 44, 170, 117, 19, 76, 120,

199, 169, 74, 194, 142, 149, 50, 159, 77, 79, 148,

14, 183, 168, 202, 207, 35, 93, 99).

It can be obtained by using Magma that the periodic Hamming autocorrelation HX(τ)(1 6 τ 6 52) of X is
all one. Hence, the FHS X has parameters (53,27,1), and the Lempel-Greenberger bound is optimal.
This is consistent with Theorem 3.2.

Example 3.2. Let p = 239, h = 1, k = 4 and m = 2, thus q = ph = 239, k2 | (q + 1) and q+1
k2 = 15 are

odd. The FHS X defined by Eq (3.2) is

X = (2, 145, 230, 223, 79, 238, 15, 25, 25, 15, 238, 79, 223, 230, 145).

It can be obtained by using Magma that the periodic Hamming autocorrelation HX(τ)(1 6 τ 6 14) of X is
all one. Hence, the FHS X has parameters (15,8,1), and the Lempel-Greenberger bound is optimal.
This is consistent with Theorem 3.2.

Example 3.3. Let p = 107, h = 1, k = 2 and m = 2, thus q = ph = 107, k2 | (q + 1) and q+1
k2 = 27 are

odd. The FHS X defined by Eq (3.2) is

X = (2, 84, 99, 100, 62, 79, 47, 17, 97, 106, 33, 98, 67, 73,

73, 67, 98, 33, 106, 97, 17, 47, 79, 62, 100, 99, 84).

It can be obtained by using Magma that the periodic Hamming autocorrelation HX(τ)(1 6 τ 6 26) of X is
all one. Hence, the FHS X has parameters (27,14,1), and the Lempel-Greenberger bound is optimal.
This is consistent with Theorem 3.2.
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Construction C. Let q = ph, p be an odd prime number and h be a positive integer. Let θ be
the generator of the multiplication group F∗qm , and m is even. The positive integer k is a factor of q +

1, and q+1
k2 is even. An FHS X = (x0, x1, · · · , x q+1

k2 −1) of period q+1
k2 is defined as follows

xt = Trqm

q (θk2(q−1)t), 1 6 t <
q + 1

k2 . (3.3)

Lemma 3.3. For any 1 6 τ < q+1
k2 , we have

θk2(q−1)τ − 1 ∈


C(2k2,q2)

0 , if
q + 1
2k2 and τ are parity,

C(2k2,q2)
k2 , otherwise.

Proof.

(θk2(q−1)τ − 1)
q2−1
2k2 = ((θk2(q−1)τ − 1)q−1)

q+1
2k2

= (
(θk2(q−1)τ − 1)

q

θk2(q−1)τ − 1
)

q+1
2k2

= (
θ−k2(q−1)τ − 1
θk2(q−1)τ − 1

)
q+1
2k2

= (−1)
q+1
2k2 −τ

=

1, i f
q + 1
2k2 and τ are parity,

−1, otherwise.

Consequently, the conclusion is proven. �

Lemma 3.4. If q+1
2k2 is odd, then

η
(2k2,q2)
0 = −

q + 1
2k2 , η

(2k2,q2)
k2 = q −

q + 1
2k2 ;

if q+1
2k2 is even, then

η
(2k2,q2)
0 = q −

q + 1
2k2 , η

(2k2,q2)
k2 = −

q + 1
2k2 .

Proof. If q+1
2k2 is odd, then the smallest positive integer j satisfies p j ≡ −1 (mod 2k2) for h. For

Lemma 3.2, ∆ = 1 and p j+1
2k2 =

q+1
2k2 are odd. Therefore, η(2k2,q2)

0 =
−
√

r−1
N =

−q−1
2k2 = −

q+1
2k2 and η(2k2,q2)

k =
(N−1)

√
r−1

N =
(2k2−1)q−1

2k2 = q − q+1
2k2 . If q+1

2k2 is even, the proof is similar to before. �

Theorem 3.3. Let the FHS X be given by Eq (3.3), then X has parameters
(

q+1
k2 ,

q+2k2+1
2k2 , 2

)
, and the

Lempel-Greenberger bound is near-optimal.

Proof. First, from Lemma 3.2, we know that the frequency set size of the sequence X is
q+1
k2 −2

2 + 2 =
q+2k2+1

2k2 , then for 1 6 τ < q+1
k2 we have
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HX(τ) = |

{
0 6 t <

q + 1
k2 : Trqm

q (θk2(q−1)t) = Trqm

q (θk2(q−1)(t+τ))
}
|

=
1
q

∑
x∈Fq

q+1
k2 −1∑
t=0

ζ
Trq

p[x·Trqm
q ((θk2(q−1)τ−1)θk2(q−1)t)]

p

=
q + 1
k2q

+
1
q

∑
x∈F∗q

q+1
k2 −1∑
t=0

ζ
Trq

p[Trqm
q (x(θk2(q−1)τ−1)θk2(q−1)t)]

p

=
q + 1
k2q

+
1
q

q+1
k2 −1∑
t=0

q−2∑
i=0

ζ
Trq

p[Trqm
q ((θk2(q−1)τ−1)θk2(q−1)t+(q+1)i)]

p

=
q + 1
k2q

+
1
q

q+1
k2 −1∑
t=0

q−2∑
i=0

χ((θk2(q−1)τ − 1)θk2(q−1)t+(q+1)i). (3.4)

Since
q+1
k2 × (q − 1) × gcd(k2(q − 1), q + 1)

q2 − 1
=

q+1
k2 × (q − 1) × 2k2

q2 − 1
= 2,

we have Eq (3.4) as

=
q + 1
k2q

+
2
q

∑
x∈C(2k2 ,q2)

0

χ((θk2(q−1)τ − 1)x)

=



q + 1
k2q

+
2
q

∑
x∈C(2k2 ,q2)

0

χ(x), i f
q + 1
2k2 and τ are parity,

q + 1
k2q

+
2
q

∑
x∈C(2k2 ,q2)

k2

χ(x), otherwise.

=


q + 1
k2q

+
2
q
η

(2k2,q2)
0 , i f

q + 1
2k2 and τ are parity,

q + 1
k2q

+
2
q
η

(2k2,q2)
k2 , otherwise.

=

0, i f τ is odd,

2, i f τ is even.
(3.5)

The penultimate row is derived from Lemma 3.3. Formula (3.5) is obtained from Lemma 3.4.
Thus, H(X) = 2 and  q+1

k2

q+2k2+1
2k2

 =

1 +

q+1
2k2

q+1
2k2

 = 1.

Hence, H(X) = 2 =
⌊

n
l

⌋
+1. That is, the FHS X is near-optimal with respect to the Lempel-Greenberger

bound. �
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Example 3.4. Let p = 167, h = 1, k = 2 and m = 2, thus q = ph = 167, k2 | (q + 1) and q+1
k2 = 42 are

even. The FHS X defined by Eq (3.3) is

X = (2, 21, 24, 68, 76, 34, 57, 1, 47, 73, 75, 8, 10, 36,

82, 26, 49, 7, 15, 59, 62, 81, 62, 59, 15, 7, 49, 26,

82, 36, 10, 8, 75, 73, 47, 1, 57, 34, 76, 68, 24, 21).

It can be obtained by using Magma that the periodic Hamming autocorrelation is

HX(τ) =

0, i f τ is an odd,

2, i f τ is an even.

Therefore, the FHS X has parameters (42,22,2), and the Lempel-Greenberger bound is near-
optimal. This is consistent with Theorem 3.3.

Example 3.5. Let p = 79, h = 1, k = 3 and m = 2, thus q = ph = 79, k2 | (q + 1) and q+1
k2 = 10 are

even. The FHS X defined by Eq (3.3) is

X = (2, 80, 79, 10, 9, 87, 9, 10, 79, 80).

It can be obtained by using Magma that the periodic Hamming autocorrelation is

HX(τ) =

0, i f τ is an odd,

2, i f τ is an even.

Therefore, the FHS X has parameters (10,6,2), and the Lempel-Greenberger bound is near-optimal.
This is consistent with Theorem 3.3.

Example 3.6. Let p = 499, h = 1, k = 5 and m = 2, thus q = ph = 499, k2 | (q + 1) and q+1
k2 = 20 are

even. The FHS X defined by Eq (3.3) is

X = (2, 355, 275, 464, 274, 0, 225, 35, 224, 144, 497, 144, 224, 35, 225, 0, 274, 464, 275, 355).

It can be obtained by using Magma that the periodic Hamming autocorrelation is

HX(τ) =

0, τ is an odd,

2, i f τ is an even.

Consequently, the FHS X has parameters (20,11,2), and the Lempel-Greenberger bound is near-
optimal. This is consistent with Theorem 3.3.

4. Conclusions

In this paper, we proposed three classes of FHSs based on trace function, and showed they are
optimal and near-optimal respectively according to the Lempel-Greenberger bound. Our construction
was a discussion in the case of even numbers, though it would be interesting to discuss in the case of
odd numbers. We leave this problem for one of our further works.
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