Research article Topical Sections

A Diophantine approximation problem with unlike powers of primes

  • Received: 04 November 2024 Revised: 17 December 2024 Accepted: 25 December 2024 Published: 13 January 2025
  • MSC : 11D75, 11P32, 11P55

  • Let $ \lambda_{1} $, $ \lambda_{2} $, $ \lambda_{3} $, and $ \lambda_{4} $ be non-zero real numbers, not all negative. Suppose that $ {{{\lambda }_{1}}}/{{{\lambda }_{3}}}\; $is irrational and algebraic, $ \delta > 0 $, and the set $ \mathcal{V} $ is a well-spaced sequence. In this paper, we prove that, for any $ \varepsilon > 0 $, the number of $ v\in \mathcal{V} $ with $ v\le X $ such that the inequality

    $ \begin{align} \left| {{\lambda }_{1}}{{p}_{1}}+{{\lambda }_{2}}{{p}_{2}}^{2}+{{\lambda }_{3}}{{p}_{3}}^{3}+{{\lambda }_{4}}{{p}_{4}}^{4}-v \right|<{{v}^{-\delta }} \end{align} $

    has no solution in primes $ {{p}_{1}} $, $ {{p}_{2}} $, $ {{p}_{3}} $, $ {{p}_{4}} $ that does not exceed $ O({{X}^{1-\frac{83}{144}+2\delta +2\varepsilon }}) $.

    Citation: Xinyan Li, Wenxu Ge. A Diophantine approximation problem with unlike powers of primes[J]. AIMS Mathematics, 2025, 10(1): 736-753. doi: 10.3934/math.2025034

    Related Papers:

  • Let $ \lambda_{1} $, $ \lambda_{2} $, $ \lambda_{3} $, and $ \lambda_{4} $ be non-zero real numbers, not all negative. Suppose that $ {{{\lambda }_{1}}}/{{{\lambda }_{3}}}\; $is irrational and algebraic, $ \delta > 0 $, and the set $ \mathcal{V} $ is a well-spaced sequence. In this paper, we prove that, for any $ \varepsilon > 0 $, the number of $ v\in \mathcal{V} $ with $ v\le X $ such that the inequality

    $ \begin{align} \left| {{\lambda }_{1}}{{p}_{1}}+{{\lambda }_{2}}{{p}_{2}}^{2}+{{\lambda }_{3}}{{p}_{3}}^{3}+{{\lambda }_{4}}{{p}_{4}}^{4}-v \right|<{{v}^{-\delta }} \end{align} $

    has no solution in primes $ {{p}_{1}} $, $ {{p}_{2}} $, $ {{p}_{3}} $, $ {{p}_{4}} $ that does not exceed $ O({{X}^{1-\frac{83}{144}+2\delta +2\varepsilon }}) $.



    加载中


    [1] K. Prachar, Über ein Problem vom Waring-Goldbach'schen Typ II, Monatsh. Math., 57 (1953), 113–116. https://doi.org/10.1007/BF01299628 doi: 10.1007/BF01299628
    [2] X. M. Ren, K. M. Tsang, Waring-Goldbach problem for unlike powers, Acta Math. Sin., 23 (2007), 265–280. https://doi.org/10.1007/s10114-005-0733-z doi: 10.1007/s10114-005-0733-z
    [3] R. C. Vaughan, Diophantine approximation by prime numbers I, P. Lond. Math. Soc., 28 (1974), 373–384. https://doi.org/10.1112/plms/s3-28.2.373 doi: 10.1112/plms/s3-28.2.373
    [4] K. Matomäki, Diophantine approximation by primes, Glasgow Math. J., 52 (2010), 87–106. https://doi.org/10.1017/S0017089509990176 doi: 10.1017/S0017089509990176
    [5] S. I. Dimitrov, Diophantine approximation by special primes, arXiv Preprint, 2017.
    [6] S. I. Dimitrov, Diophantine approximation with one prime of the form $ p = x^2 + y^2 + 1 $, Lith. Math. J., 61 (2021), 445–459. https://doi.org/10.1063/1.5082104 doi: 10.1063/1.5082104
    [7] S. I. Dimitrov, Diophantine approximation by Piatetski-Shapiro primes, Indian J. Pure Ap. Mat., 53 (2022), 875–883. https://doi.org/10.1007/s13226-021-00193-7 doi: 10.1007/s13226-021-00193-7
    [8] W. X. Ge, W. P. Li, One diophantine inequality with unlike powers of prime variables, J. Inequal. Appl., 33 (2016), 8. https://doi.org/10.1186/s13660-016-0983-6 doi: 10.1186/s13660-016-0983-6
    [9] Q. W. Mu, One diophantine inequality with unlike powers of prime variables, Int. J. Number Theory, 13 (2017), 1531–1545. https://doi.org/10.1142/S1793042117500853 doi: 10.1142/S1793042117500853
    [10] A. Languasco, A. Zaccagnini, A Diophantine problem with a prime and three squares of primes, J. Number Theory, 132 (2012), 3016–3028. https://doi.org/10.1016/j.jnt.2012.06.01 doi: 10.1016/j.jnt.2012.06.01
    [11] Z. X. Liu, Diophantine approximation by unlike powers of primes, Int. J. Number Theory, 13 (2017), 2445–2452. https://doi.org/10.1142/S1793042117501330 doi: 10.1142/S1793042117501330
    [12] Y. C. Wang, W. L. Yao, Diophantine approximation with one prime and three squares of primes, J. Number Theory, 180 (2017), 234–250. https://doi.org/10.1016/j.jnt.2017.04.013 doi: 10.1016/j.jnt.2017.04.013
    [13] Q. W. Mu, Y. Y. Qu, A note on Diophantine approximation by unlike powers of primes, Int. J. Number Theory, 14 (2018), 1651–1668. https://doi.org/10.1142/S1793042118501002 doi: 10.1142/S1793042118501002
    [14] G. Harman, The values of ternary quadratic forms at prime arguments, Mathematika, 51 (2004), 83–96. https://doi.org/10.1112/S0025579300015527 doi: 10.1112/S0025579300015527
    [15] G. Harman, A. V. Kumchev, On sums of squares of primes, Math. Proc. Cambridge, 140 (2006), 1–13. https://doi.org/10.1017/S0305004105008819
    [16] L. Zhu, Diophantine inequality by unlike powers of primes, Ramanujan J., 51 (2020), 307–318. https://doi.org/10.1007/s11139-019-00152-1 doi: 10.1007/s11139-019-00152-1
    [17] L. Zhu, Diophantine Inequality by unlike powers of primes, Chinese Ann. Math. B, 43 (2022), 125–136. https://doi.org/10.1007/s11401-022-0326-5 doi: 10.1007/s11401-022-0326-5
    [18] W. X. Ge, F. Zhao, The exceptional set for Diophantine inequality with unlike powers of prime variables, Czech. Math. J., 68 (2018), 149–168. https://doi.org/10.21136/CMJ.2018.0388-16 doi: 10.21136/CMJ.2018.0388-16
    [19] Q. W. Mu, Z. P. Gao, A note on the exceptional set for Diophantine approximation with mixed powers of primes, Ramanujan J., 60 (2023), 551–570. https://doi.org/10.1007/s11139-022-00633-w doi: 10.1007/s11139-022-00633-w
    [20] H. F. Liu, R. Liu, On the exceptional set for Diophantine inequality with unlike powers of primes, Lith. Math. J., 64 (2024), 34–52. https://doi.org/10.1007/s10986-024-09624-4 doi: 10.1007/s10986-024-09624-4
    [21] W. P. Li, W. X. Ge, Diophantine approximation of prime variables, Acta Math. Sin., 62 (2019), 49–58. https://doi.org/10.12386/A2019sxxb0005 doi: 10.12386/A2019sxxb0005
    [22] G. Harman, Trigonometric sums over primes I, Mathematika, 28 (1981), 249–254. https://doi.org/10.1112/S0025579300010305 doi: 10.1112/S0025579300010305
    [23] A. V. Kumchev, On Weyl sums over primes and almost primes, Mich. Math. J., 54 (2006), 243–268. https://doi.org/10.1307/MMJ/1156345592 doi: 10.1307/MMJ/1156345592
    [24] J. Brüdern, The Davenport-Heilbronn Fourier transform method and some Diophantine inequalities, In: Number Theory and its Applications (Kyoto, 1997), Dordrecht: Kluwer Acad. Publ., 2 (1999), 59–87.
    [25] C. Bauer, An improvement on a theorem of the Goldbach-Waring type, Rocky Mt. J. Math., 31 (2001), 1151–1170. https://doi.org/10.1216/RMJM/1021249436 doi: 10.1216/RMJM/1021249436
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(90) PDF downloads(25) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog