Let $ \lambda_{1} $, $ \lambda_{2} $, $ \lambda_{3} $, and $ \lambda_{4} $ be non-zero real numbers, not all negative. Suppose that $ {{{\lambda }_{1}}}/{{{\lambda }_{3}}}\; $is irrational and algebraic, $ \delta > 0 $, and the set $ \mathcal{V} $ is a well-spaced sequence. In this paper, we prove that, for any $ \varepsilon > 0 $, the number of $ v\in \mathcal{V} $ with $ v\le X $ such that the inequality
$ \begin{align} \left| {{\lambda }_{1}}{{p}_{1}}+{{\lambda }_{2}}{{p}_{2}}^{2}+{{\lambda }_{3}}{{p}_{3}}^{3}+{{\lambda }_{4}}{{p}_{4}}^{4}-v \right|<{{v}^{-\delta }} \end{align} $
has no solution in primes $ {{p}_{1}} $, $ {{p}_{2}} $, $ {{p}_{3}} $, $ {{p}_{4}} $ that does not exceed $ O({{X}^{1-\frac{83}{144}+2\delta +2\varepsilon }}) $.
Citation: Xinyan Li, Wenxu Ge. A Diophantine approximation problem with unlike powers of primes[J]. AIMS Mathematics, 2025, 10(1): 736-753. doi: 10.3934/math.2025034
Let $ \lambda_{1} $, $ \lambda_{2} $, $ \lambda_{3} $, and $ \lambda_{4} $ be non-zero real numbers, not all negative. Suppose that $ {{{\lambda }_{1}}}/{{{\lambda }_{3}}}\; $is irrational and algebraic, $ \delta > 0 $, and the set $ \mathcal{V} $ is a well-spaced sequence. In this paper, we prove that, for any $ \varepsilon > 0 $, the number of $ v\in \mathcal{V} $ with $ v\le X $ such that the inequality
$ \begin{align} \left| {{\lambda }_{1}}{{p}_{1}}+{{\lambda }_{2}}{{p}_{2}}^{2}+{{\lambda }_{3}}{{p}_{3}}^{3}+{{\lambda }_{4}}{{p}_{4}}^{4}-v \right|<{{v}^{-\delta }} \end{align} $
has no solution in primes $ {{p}_{1}} $, $ {{p}_{2}} $, $ {{p}_{3}} $, $ {{p}_{4}} $ that does not exceed $ O({{X}^{1-\frac{83}{144}+2\delta +2\varepsilon }}) $.
[1] | K. Prachar, Über ein Problem vom Waring-Goldbach'schen Typ II, Monatsh. Math., 57 (1953), 113–116. https://doi.org/10.1007/BF01299628 doi: 10.1007/BF01299628 |
[2] | X. M. Ren, K. M. Tsang, Waring-Goldbach problem for unlike powers, Acta Math. Sin., 23 (2007), 265–280. https://doi.org/10.1007/s10114-005-0733-z doi: 10.1007/s10114-005-0733-z |
[3] | R. C. Vaughan, Diophantine approximation by prime numbers I, P. Lond. Math. Soc., 28 (1974), 373–384. https://doi.org/10.1112/plms/s3-28.2.373 doi: 10.1112/plms/s3-28.2.373 |
[4] | K. Matomäki, Diophantine approximation by primes, Glasgow Math. J., 52 (2010), 87–106. https://doi.org/10.1017/S0017089509990176 doi: 10.1017/S0017089509990176 |
[5] | S. I. Dimitrov, Diophantine approximation by special primes, arXiv Preprint, 2017. |
[6] | S. I. Dimitrov, Diophantine approximation with one prime of the form $ p = x^2 + y^2 + 1 $, Lith. Math. J., 61 (2021), 445–459. https://doi.org/10.1063/1.5082104 doi: 10.1063/1.5082104 |
[7] | S. I. Dimitrov, Diophantine approximation by Piatetski-Shapiro primes, Indian J. Pure Ap. Mat., 53 (2022), 875–883. https://doi.org/10.1007/s13226-021-00193-7 doi: 10.1007/s13226-021-00193-7 |
[8] | W. X. Ge, W. P. Li, One diophantine inequality with unlike powers of prime variables, J. Inequal. Appl., 33 (2016), 8. https://doi.org/10.1186/s13660-016-0983-6 doi: 10.1186/s13660-016-0983-6 |
[9] | Q. W. Mu, One diophantine inequality with unlike powers of prime variables, Int. J. Number Theory, 13 (2017), 1531–1545. https://doi.org/10.1142/S1793042117500853 doi: 10.1142/S1793042117500853 |
[10] | A. Languasco, A. Zaccagnini, A Diophantine problem with a prime and three squares of primes, J. Number Theory, 132 (2012), 3016–3028. https://doi.org/10.1016/j.jnt.2012.06.01 doi: 10.1016/j.jnt.2012.06.01 |
[11] | Z. X. Liu, Diophantine approximation by unlike powers of primes, Int. J. Number Theory, 13 (2017), 2445–2452. https://doi.org/10.1142/S1793042117501330 doi: 10.1142/S1793042117501330 |
[12] | Y. C. Wang, W. L. Yao, Diophantine approximation with one prime and three squares of primes, J. Number Theory, 180 (2017), 234–250. https://doi.org/10.1016/j.jnt.2017.04.013 doi: 10.1016/j.jnt.2017.04.013 |
[13] | Q. W. Mu, Y. Y. Qu, A note on Diophantine approximation by unlike powers of primes, Int. J. Number Theory, 14 (2018), 1651–1668. https://doi.org/10.1142/S1793042118501002 doi: 10.1142/S1793042118501002 |
[14] | G. Harman, The values of ternary quadratic forms at prime arguments, Mathematika, 51 (2004), 83–96. https://doi.org/10.1112/S0025579300015527 doi: 10.1112/S0025579300015527 |
[15] | G. Harman, A. V. Kumchev, On sums of squares of primes, Math. Proc. Cambridge, 140 (2006), 1–13. https://doi.org/10.1017/S0305004105008819 |
[16] | L. Zhu, Diophantine inequality by unlike powers of primes, Ramanujan J., 51 (2020), 307–318. https://doi.org/10.1007/s11139-019-00152-1 doi: 10.1007/s11139-019-00152-1 |
[17] | L. Zhu, Diophantine Inequality by unlike powers of primes, Chinese Ann. Math. B, 43 (2022), 125–136. https://doi.org/10.1007/s11401-022-0326-5 doi: 10.1007/s11401-022-0326-5 |
[18] | W. X. Ge, F. Zhao, The exceptional set for Diophantine inequality with unlike powers of prime variables, Czech. Math. J., 68 (2018), 149–168. https://doi.org/10.21136/CMJ.2018.0388-16 doi: 10.21136/CMJ.2018.0388-16 |
[19] | Q. W. Mu, Z. P. Gao, A note on the exceptional set for Diophantine approximation with mixed powers of primes, Ramanujan J., 60 (2023), 551–570. https://doi.org/10.1007/s11139-022-00633-w doi: 10.1007/s11139-022-00633-w |
[20] | H. F. Liu, R. Liu, On the exceptional set for Diophantine inequality with unlike powers of primes, Lith. Math. J., 64 (2024), 34–52. https://doi.org/10.1007/s10986-024-09624-4 doi: 10.1007/s10986-024-09624-4 |
[21] | W. P. Li, W. X. Ge, Diophantine approximation of prime variables, Acta Math. Sin., 62 (2019), 49–58. https://doi.org/10.12386/A2019sxxb0005 doi: 10.12386/A2019sxxb0005 |
[22] | G. Harman, Trigonometric sums over primes I, Mathematika, 28 (1981), 249–254. https://doi.org/10.1112/S0025579300010305 doi: 10.1112/S0025579300010305 |
[23] | A. V. Kumchev, On Weyl sums over primes and almost primes, Mich. Math. J., 54 (2006), 243–268. https://doi.org/10.1307/MMJ/1156345592 doi: 10.1307/MMJ/1156345592 |
[24] | J. Brüdern, The Davenport-Heilbronn Fourier transform method and some Diophantine inequalities, In: Number Theory and its Applications (Kyoto, 1997), Dordrecht: Kluwer Acad. Publ., 2 (1999), 59–87. |
[25] | C. Bauer, An improvement on a theorem of the Goldbach-Waring type, Rocky Mt. J. Math., 31 (2001), 1151–1170. https://doi.org/10.1216/RMJM/1021249436 doi: 10.1216/RMJM/1021249436 |