Let N denote a sufficiently large real number. In this paper, we prove that for 1<c<10434977419, c≠43, for almost all real numbers T∈(N,2N] (in the sense of Lebesgue measure), the Diophantine inequality |pc1+pc2−T|<T−910c(10434977419−c) is solvable in primes p1,p2. In addition, it is proved that the Diophantine inequality |pc1+pc2+pc3+pc4−N|<N−910c(10434977419−c) is solvable in primes p1,p2,p3,p4. This result constitutes a refinement upon that of Li and Cai.
Citation: Jing Huang, Qian Wang, Rui Zhang. On a binary Diophantine inequality involving prime numbers[J]. AIMS Mathematics, 2024, 9(4): 8371-8385. doi: 10.3934/math.2024407
[1] | Jing Huang, Ao Han, Huafeng Liu . On a Diophantine equation with prime variables. AIMS Mathematics, 2021, 6(9): 9602-9618. doi: 10.3934/math.2021559 |
[2] | Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2−Dy2=−1 and x2−Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170 |
[3] | Jinyan He, Jiagui Luo, Shuanglin Fei . On the exponential Diophantine equation (a(a−l)m2+1)x+(alm2−1)y=(am)z. AIMS Mathematics, 2022, 7(4): 7187-7198. doi: 10.3934/math.2022401 |
[4] | Cheng Feng, Jiagui Luo . On the exponential Diophantine equation (q2l−p2k2n)x+(pkqln)y=(q2l+p2k2n)z. AIMS Mathematics, 2022, 7(5): 8609-8621. doi: 10.3934/math.2022481 |
[5] | Liuying Wu . On a Diophantine equation involving fractional powers with primes of special types. AIMS Mathematics, 2024, 9(6): 16486-16505. doi: 10.3934/math.2024799 |
[6] | Xinyan Li, Wenxu Ge . A Diophantine approximation problem with unlike powers of primes. AIMS Mathematics, 2025, 10(1): 736-753. doi: 10.3934/math.2025034 |
[7] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[8] | Ashraf Al-Quran . T-spherical linear Diophantine fuzzy aggregation operators for multiple attribute decision-making. AIMS Mathematics, 2023, 8(5): 12257-12286. doi: 10.3934/math.2023618 |
[9] | Shujie Zhou, Li Chen . On the sixth power mean values of a generalized two-term exponential sums. AIMS Mathematics, 2023, 8(11): 28105-28119. doi: 10.3934/math.20231438 |
[10] | Wenpeng Zhang, Yuanyuan Meng . On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo p. AIMS Mathematics, 2021, 6(7): 6961-6974. doi: 10.3934/math.2021408 |
Let N denote a sufficiently large real number. In this paper, we prove that for 1<c<10434977419, c≠43, for almost all real numbers T∈(N,2N] (in the sense of Lebesgue measure), the Diophantine inequality |pc1+pc2−T|<T−910c(10434977419−c) is solvable in primes p1,p2. In addition, it is proved that the Diophantine inequality |pc1+pc2+pc3+pc4−N|<N−910c(10434977419−c) is solvable in primes p1,p2,p3,p4. This result constitutes a refinement upon that of Li and Cai.
The Waring-Goldbach problem is that every natural number n can be represented as the type
n=pk1+⋯+pks, |
where s and k are given positive integers and p1,⋯,ps are prime variables. This well-known problem has spawned many analogues, which has attracted a large number of scholars to investigate and obtain many celebrated results. For instance, given c>1 is not an integer and ε>0. For every sufficiently large real N, suppose that h(c) is the smallest natural number s satisfying the inequality
|pc1+pc2+⋯+pcs−N|<ε | (1.1) |
with solutions in primes p1,⋯,ps. Piatetski-Shapiro showed in [13] that
lim supc→∞h(c)clogc≤4, |
and h(c)≤5 holds for 1<c<32. Based on this result and Vinogradov's three prime theorem, we can conjecture that h(c)≤3 for c near one. Tolev [14] first proved this conjecture. More precisely, Tolev [15] showed that, if 1<c<1514, the inequality has solutions in primes p1,p2,p3:
|pc1+pc2+pc3−N|<ε, |
where ε=N−1c(1514−c)log9N. Subsequently, this result was constantly improved by several authors (see [1,2,3,4,7,8]).
In 1999, Laporta [10] considered the corresponding binary problem. If 1<c<1514 fixed and ε=T1−1514clog8T, the following inequality
|pc1+pc2−T|<ε | (1.2) |
has a solution for all real numbers T∈(N,2N]∖T with |T|=O(Nexp(−13(logNc)15)). Later, the exponent of c was improved to
4336=1.944444⋯, 65=1.2, 5944=1.340909⋯ |
by Zhai and Cao [16], Kumchev and Laporta [9], and Li and Cai [11] successively.
In 2003, Zhai and Cao [17] first proved that the inequality
|pc1+pc2+⋯+pc4−N|<ε | (1.3) |
is solvable, where 1<c<8168. Afterwards, the exponent of c was improved to
9781=1.197530⋯, 65=1.2, 1193889=1.341957⋯ |
by Mu [12], Zhang and Li [18], and Li and Zhang [19] successively.
Here, we consider the cases s=2 and s=4 in inequality (1.1), and enlarge the exponent of c. Our results are as follows:
Theorem 1. Assume 1<c<10434977419, c≠43, and N is a sufficiently large real number. Suppose ε=T−910c(10434977419−c), and B0(T) is the number of solutions of inequality (1.2). Then, for all real numbers T∈(N,2N]∖T with |T|=O(Nexp(−13(logNc)15)), we obtain
B0(T)≫εT2c−1log2T. |
Theorem 2. Assume 1<c<10434977419, c≠43, and N is a sufficiently large real number. Suppose ε=T−910c(10434977419−c), and B0(N) is the number of solutions of inequality (1.3). Then, we obtain
B0(N)≫εN4c−1log4N. |
In this paper, our improvement mainly comes from the estimates of exponential sums. We transform the exponential sum into Type Ⅰ and Type Ⅱ sums by using Heath-Brown's identity. As a result, we improve the previous results by enlarging the upper bound of c. In addition, by using Lemma 2.8, the value of c=43 can be excluded.
Now, we will give some notations which are required throughout the paper.
Throughout this paper, suppose that N is a sufficiently large integer, Λ(n) stands for the von Mangoldt function, and |T| is the cardinality of the set T. a∼A means A<a≤2A. As usual, the constants in the ≪-symbols and O-terms are absolute or depend only on c.
In addition, we write
1<c<10434977419, c≠43; X=N1c4, ι=X50489154838−c2,K=X10434977419−c, e(t)=e2πit, ε=N−910c(10434977419−c),δ=11000(10434977419−c), E=exp(−(logNc)15),P=(2E2)13logN, S(t)=∑p∼Xe(pct)logp,I(t)=∫2XXe(uct)du. |
Next, we shall recall some preliminary lemmas that are necessary in this paper.
Lemma 2.1 ([15, Lemma 1]). Assume that ξ(y) is a function which is ω=[logX] times continuously differentiable and satisfies
{ξ(y)=1, |y|≤45ε,0<ξ(y)<1, 45ε<|y|≤ε,ξ(y)=0, |y|≥ε. |
For its Fourier transformation
Ξ(t)=∫∞−∞e(−ty)ξ(y)dy, |
then
|Ξ(t)|≤min(95ε,1π|t|,1π|t|(5ωπ|t|ε)ω). |
Lemma 2.2. ([15, Lemma 14]). If |t|≤ι, then
S(t)=I(t)+O(Xexp(−log15X)). |
Lemma 2.3 ([5, Lemma 3.1]). There is a trivial bound that
I(t)≪X1−c|t|−1. | (2.1) |
Lemma 2.4 ([15, Lemma 7]). There exist the following inequalities
(i)∫|t|<ι|S(t)|2dt≪X2−clog3X; | (2.2) |
(ii)∫|t|<ι|I(t)|2dt≪X2−clog3X; | (2.3) |
(iii)∫n+1n|S(t)|2dt≪Xlog3X uniformly in n. | (2.4) |
Lemma 2.5. We have
(i)∫∞−∞I2(t)Ξ(t)e(−Tt)dt≫εT2c−1, | (2.5) |
(ii)∫∞−∞I4(t)Ξ(t)e(−Nt)dt≫εX4−c. | (2.6) |
Proof. The above two inequalities (2.5) and (2.6) can be found in [9] and [17] independently.
Lemma 2.6 ([6, Lemma 5]). For any complex number αn, we have the inequality
|∑H≤n≤2Hαn|2≤(1+HU)∑0≤|u|≤U(1−|u|U)(∑H≤n≤2H−uαn+u¯αn), |
where H⩾1, U≤H, and ¯αn stands for the conjugate of αn.
Lemma 2.7 ([11, Lemma 2.3]). Suppose |D|>0 and A≤A′≤10A, then the inequality
∑A≤a≤A′e(Dac)≪(|D|Ac)κAλ−κ+A|D|Ac |
holds for any exponent pair (κ,λ) with 0≤κ≤12≤λ≤1.
Lemma 2.8 ([1, Therorem 2]). Suppose τ, υ are real numbers such that
τυ(τ−1)(υ−1)(τ−2)(τ+υ−2)(τ+υ−3)(τ+2υ−3)(2τ+υ−4)≠0. |
Let
∑I=∑a≤Aα(a)∑b∈Iae(Daτbυ), |
where D>0, A≥1, B≥1, |α(a)|≤1, and Ia is a subinterval of [B,2B]. Assume G=DAτBυ. For any η>0, then
∑I≪(G314A4156B2956+G15A34B1120+G18A1316B1116+A34B+AB34+G−1AB)(AB)η. |
Lemma 2.9 ([10, Lemma 1]).
V=maxN<v2≤2N∫2NN|∫ι<|t|≤Ke((v1−v2)t)dt|dv1≪logN. |
Lemma 2.10 ([10, Lemma 2]). Let the letters C and R be the sets of complex and real numbers, respectively. Suppose that ϝ1 and ϝ2 are measurable subsets of Rn, and
‖ |
stand for the usual norm and inner product in L^2(\digamma_i, \mathbb{C}) (i = 1, 2) , respectively.
Assume \varpi is a measurable complex-valued function defined on \digamma_1\times\digamma_2 , then
\sup\limits_{y\in\digamma_1}\int_{\digamma_2}|\varpi(y, t)|dt < +\infty, \ \sup\limits_{t\in\digamma_2}\int_{\digamma_1}|\varpi(y, t)|dt < +\infty. |
Hence,
\left|\int_{\digamma_1}\phi(y)\langle\psi, \varpi(y, \cdot)\rangle_2dy\right|\ll\|\psi\|_2\|\phi\|_1\left(\sup\limits_{y'\in\digamma_1}\int_{\digamma_1} \left|\langle\varpi(y, \cdot), \varpi(y', \cdot)\rangle_2\right|dy\right)^{\frac{1}{2}}, |
where \phi\in L^2(\digamma_1, \mathbb{C}) , \psi\in L^2(\digamma_2, \mathbb{C}) .
In this section, we transform the exponential sum into Type Ⅰ and Type Ⅱ sums by taking advantage of Lemma 3.1.
Lemma 3.1 ([6, Lemma 3]). For 3 < L < M < Q < X , \{Q\} = \frac{1}{2}, \ X\geq64Q^2L, \ Q\geq 4L^2, and\ M^3\geq32X , if G(n) is a complex valued function satisfying |G(n)|\leq1 , then the sum
\begin{align*} \sum\limits_{X\leq n\leq2X}\Lambda(n)G(n) \end{align*} |
may be decomposed into O(\log^{10}X) sums, each either of type I:
\sum\limits_{A\leq a\leq2A}\alpha(a)\sum\limits_{B\leq b\leq2B}G(ab) |
with B > Q , AB\asymp X, \ |\alpha(a)|\ll a^{\eta} , or of type II:
\sum\limits_{A\leq a\leq2A}\alpha(a)\sum\limits_{B\leq b\leq2B}\beta(b)G(ab) |
with L\ll B\ll M , AB\asymp X, \ |\alpha(a)| \ll a^{\eta}, |\beta(b)| \ll b^{\eta} .
Lemma 3.2. For any \eta > 0 , \alpha(a) is a sequence of complex numbers satisfying |\alpha(a)|\ll a^\eta . If \iota\leq|t|\leq \mathcal{K} and A\ll X^{\frac{3685827905}{6017314356}} , then
\mathfrak{S}_I = \sum\limits_{a\leq A}\alpha(a)\sum\limits_{X\leq ab\leq2X}e\left(t(ab)^c\right)\ll X^{\frac{1417193203}{1504328589}+2\eta}, |
where c \in (1, \frac{104349}{77419}] and c\neq\frac{4}{3} .
Proof. Suppose A\ll X^{\frac{3685827905}{10530300123}} , and we use Lemma 2.7 by choosing the exponent pair \left(\frac{2}{7}, \frac{4}{7}\right) , then
\begin{align*} \mathfrak{S}_I\ll& A^\eta\sum\limits_{a\leq A}\left|\sum\limits_{X\leq ab\leq2X}e\left(t(ab)^c\right)\right|\\ \ll& A^\eta\sum\limits_{a\leq A}\left((|t|X^c)^{\frac{2}{7}}X^{\frac{2}{7}}+\frac{1}{|t|X^{c-1}a}\right)\\ \ll&X^{\frac{1417193203}{1504328589}+2\eta}. \end{align*} |
In addition, suppose X^{\frac{3685827905}{10530300123}}\ll A\ll X^{\frac{3685827905}{6017314356}} , then from Lemma 2.8 we derive that
\begin{align*} \mathfrak{S}_I = &A^\eta\sum\limits_{a\leq A}\frac{a(m)}{A^\eta}\sum\limits_{X\leq ab\leq2X}e\left(t(ab)^c\right)\\ \ll&\left((\mathcal{K}X^c)^{\frac{3}{14}}A^{\frac{3}{14}}X^{\frac{29}{56}}+(\mathcal{K}X^c)^{\frac{1}{5}}A^{\frac{1}{5}}X^{\frac{11}{20}}+(\mathcal{K}X^c)^{\frac{1}{8}} A^{\frac{1}{8}}X^{\frac{11}{16}}\right.\\ &\left.+A^{-\frac{1}{4}}X+A^{\frac{1}{4}}X^{\frac{3}{4}}+(\iota X^c)^{-1}X\right)X^{2\eta}\\ \ll& X^{\frac{1417193203}{1504328589}+2\eta}. \end{align*} |
Combining the above two cases, we complete the proof of this lemma.
Lemma 3.3. For any \eta > 0 , \alpha(a) and \beta(b) are sequences of complex numbers satisfying |\alpha(a)|\ll a^\eta , |\beta(b)|\ll b^\eta . If \iota\leq|t|\leq \mathcal{K} and X^{\frac{174270772}{1504328589}}\ll A\ll X^{\frac{427164751875025}{1190813782635796}} , then
\mathfrak{S}_{II} = \sum\limits_{A < a\leq2A}\alpha(a)\sum\limits_{X < ab\leq2X}\beta(b)e\left(t(ab)^c\right)\ll X^{\frac{1417193203}{1504328589}+3\eta}. |
Proof. Let \mathcal{U} = X^{\frac{174270772}{1504328589}-\eta} . Cauchy's inequality and Lemma 2.6 gives us
\begin{align} |\mathfrak{S}_{II}|&\ll\left(\sum\limits_{b\in I_a}\left|\beta(b)\right|^2\right)^{1/2}\left(\sum\limits_{b\in I_a}\left|\sum\limits_{A < a\leq2A}\alpha(a)e(t(ab)^c)\right|^2\right)^{1/2} \\ &\ll X^{2\eta}\left(\frac{X^{2}}{\mathcal{U}}+\frac{X}{\mathcal{U}}\sum\limits_{1\leq u\leq \mathcal{U}}\sum\limits_{A\leq a\leq 2A-u}\left|E_u\right|\right)^{1/2}, \end{align} | (3.1) |
where I_a stands for a subinterval of \left[\frac{X}{2A}, \frac{2X}{A}\right] , and E_u = \sum_{b\in I_a}e\left(tb^c((a+u)^c-a^c)\right).
Following from Lemma 2.7 and choosing the exponent pair \left(\frac{13}{31}, \frac{16}{31}\right) , we obtain the estimate of E_u :
E_u\ll \left(|t|X^{c-1}u\right)^\frac{13}{31}X^\frac{16}{31}A^{-\frac{16}{31}}+\frac{1}{|t|X^{c-1}u}. |
Then, taking the estimate of E_u into (3.1), we get
\begin{align*} |\mathfrak{S}_{II}|\ll& X^{2\eta}\left(\frac{X^2}{\mathcal{U}}+\frac{X}{\mathcal{U}}\left(\mathcal{U}^\frac{44}{31}|\mathcal{K}|^\frac{13}{31}X^{\frac{13}{31}c+\frac{3}{31}}A^{\frac{15}{31}}+ X^{1-c}|\iota |^{-1}A\log \mathcal{U}\right)\right)^{1/2}\\ \ll&X^{\frac{1417193203}{1504328589}+3\eta}. \end{align*} |
Lemma 3.4. Assume that \eta is any arbitrarily small positive number and \iota\leq|t|\leq \mathcal{K} , then
\mathfrak{S}(t)\ll X^{\frac{1417193203}{1504328589}+5\eta}, |
where c \in (1, \frac{104349}{77419}] and c\neq\frac{4}{3} .
Proof. First of all, we define
\mathfrak{M}(t) = \sum\limits_{n\sim X}\Lambda(n)e(n^c t). |
Obviously, we can deduce that
\begin{align} \mathfrak{S}(t) = \mathfrak{M}(t)+O\left(X^\frac{1}{2}\right). \end{align} | (3.2) |
Suppose
L = X^{\frac{174270772}{1504328589}}, \ M = X^{\frac{427164751875025}{1190813782635796}}, \ Q = \left[X^{\frac{2331486451}{6017314356}}\right]+\frac{1}{2}. |
Following from Lemma 3.1 with G(n) = e(tn^c) , we reduce the sum \mathfrak{M}(t) of type Ⅰ:
\sum\limits_{A\leq a\leq2A}\alpha(a)\sum\limits_{B\leq b\leq2B}G(ab), \ B > Q |
or of type Ⅱ:
\sum\limits_{A\leq a\leq2A}\alpha(a)\sum\limits_{B\leq b\leq2B}\beta(b)G(ab), L\ll B\ll M. |
From this combined with Lemmas 3.2 and 3.3, we deduce
\mathfrak{M}(t)\ll X^{\frac{1417193203}{1504328589}+5\eta}. |
Inserting the bound of \mathfrak{M}(t) into (3.2), we finish the proof of Lemma 3.4.
In this section, we shall give the details of the proof of Theorem 1.
Let \xi(y) and \Xi(t) stand for the functions that appear in Lemma 2.1. For T\in[N, 2N] , we write
\mathfrak{B}(T) = \sum\limits_{p_1, p_2\sim X\atop|p_1^c+p_2^c-T| < \varepsilon}(\log p_1)(\log p_2). |
It suffices to show that \mathfrak{B}(T)\geq\mathfrak{B}_1(T) , where
\begin{align*} \mathfrak{B}_1(T)& = \sum\limits_{X < p_1, p_2\leq2X}(\log p_1)(\log p_2)\int_{-\infty}^\infty e((p_1^c+p_2^c-T)t)\Xi(t)dt\\ & = \int_{-\infty}^\infty \mathfrak{S}^2(t)\Xi(t)e(-T t)dt\\ & = \left(\int_{|t|\leq\iota}+\int_{\iota < |t|\leq \mathcal{K}}+\int_{|t| > \mathcal{K}}\right)\mathfrak{S}^2(t)\Xi(t)e(-Tt)dt\\ & = Q_1(T)+Q_2(T)+Q_3(T). \end{align*} |
In addition, we write
P(T) = \int_{-\infty}^\infty \mathcal{I}^2(t)e(-T t)\Xi(t)dt, \ P_1(T) = \int_{-\iota}^\iota \mathcal{I}^2(t)\Xi(t)e(-Tt)dt. |
Lemma 4.1. We have
\int_{\iota < |t|\leq \mathcal{K}}|\mathfrak{S}(t)|^2|\Xi(t)|dt\ll X\log^4X. |
Proof. It follows from Lemma 2.1 and (2.4) that
\begin{align*} &\int_{\iota < |t|\leq \mathcal{K}}|\mathfrak{S}(t)|^2|\Xi(t)|dt\\ &\ll \varepsilon\sum\limits_{0\leq n\leq\frac{1}{\varepsilon}}\int_n^{n+1}|\mathfrak{S}(t)|^2dt+\sum\limits_{\frac{1}{\varepsilon}-1\leq n\leq \mathcal{K}}\frac{1}{n}\int_n^{n+1}|\mathfrak{S}(t)|^2dt\\ &\ll X\log^4X. \end{align*} |
Lemma 4.2. We have
\int_{\iota < |t|\leq \mathcal{K}}|\mathfrak{S}(t)|^4|\Xi(t)|dt\ll\varepsilon^{\frac{1}{2}}X^{\frac{10007332969}{3008657178}-\frac{c}{2}+12\delta}. |
Proof. If V(t) is a continuous function defined for -\mathcal{K}\leq t\leq\mathcal{K} , then we find that
\begin{align} \left|\int_{\iota < |t|\leq \mathcal{K}}\mathfrak{S}(t)V(t)dt\right| & = \left|\sum\limits_{X < p\leq2 X}(\log p)\int_{\iota < |t|\leq \mathcal{K}}V(t)e(p^c t)dt\right|\\ &\leq\sum\limits_{X < p\leq2 X}(\log p)\left|\int_{\iota < |t|\leq \mathcal{K}}V(t)e(p^c t)dt\right|\\ &\leq(\log X)\sum\limits_{X < m\leq2 X}\left|\int_{\iota < |t|\leq \mathcal{K}}V(t)e(m^c t)dt\right|. \end{align} | (4.1) |
Suppose H(t) = \sum_{m\sim X}e(m^c t) . Using Cauchy's inequality, we deduce that
\begin{align} \left|\int_{\iota < |t|\leq \mathcal{K}}\mathfrak{S}(t)V(t)dt\right| &\leq X^\frac{1}{2}(\log X)\left|\sum\limits_{X < m\leq2 X}\left|\int_{\iota < |t|\leq \mathcal{K}}V(t)e(m^c t)dt\right|^2\right|^\frac{1}{2}\\ & = X^\frac{1}{2}(\log X)\left|\sum\limits_{X < m\leq2 X}\int_{\iota < |t|\leq \mathcal{K}}V(t)e(m^c t)dt\int_{\iota < |y|\leq \mathcal{K}}\overline{V(y)e(m^cy)}dy\right|^\frac{1}{2}\\ & = X^\frac{1}{2}(\log X)\left|\int_{\iota < |y|\leq \mathcal{K}}\overline{V(y)}dy\int_{\iota < |t|\leq \mathcal{K}}V(t)H(t-y)dt\right|^\frac{1}{2}\\ &\leq X^\frac{1}{2}(\log X)\left|\int_{\iota < |y|\leq \mathcal{K}}|V(y)|dy\int_{\iota < |t|\leq \mathcal{K}}|V(t)||H(t-y)|dt\right|^\frac{1}{2}. \end{align} | (4.2) |
Then, we estimate the inner integral in (4.2).
First, we need to consider H(t-y) . Following from Lemma 2.7 and choosing the exponent pair \left(\frac{19126}{58293}, \frac{31369}{58293}\right) , we obtain that the inequality
H(t)\ll(|t|X^c)^{\frac{19126}{58293}}X^{\frac{12243}{58293}}+\frac{X}{|t|X^c} |
holds for X^{-c} < |t|\leq2\mathcal{K} .
Combining with the trivial upper bound H(t-y)\ll X , we get
\begin{align} H(t-y)\ll\min\left((|t-y|X^c)^{\frac{19126}{58293}}X^{\frac{12243}{58293}}+\frac{X}{|t-y|X^c}, X\right). \end{align} | (4.3) |
Next, inserting the estimate of H(t-y) into the inner integral in (4.2), we find that
\begin{align} &\int_{\iota < |t|\leq \mathcal{K}}|V(t)||H(t-y)|dt\\ \ll&\int_{\iota < |t|\leq \mathcal{K}\atop|t-y|\leq X^{-c}}|V(t)||H(t-y)|dt+\int_{\iota < |t|\leq \mathcal{K}\atop X^{-c} < |t-y|\leq2\mathcal{K}}|V(t)||H(t-y)|dt\\ \ll&X\int_{\iota < |t|\leq \mathcal{K}\atop|t-y|\leq X^{-c}}|V(X)|dt+\int_{\iota < |t|\leq \mathcal{K}\atop X^{-c} < |t-y|\leq2\mathcal{K}}|V(t)|\left((|t-y|X^c)^{\frac{19126}{58293}}X^{\frac{12243}{58293}}+\frac{1}{|t-y|X^{c-1}}\right)dt\\ \ll&X\max\limits_{\iota < |t|\leq \mathcal{K}}|V(t)|\int_{|t-y|\leq X^{-c}}dt+X^{\frac{981206597}{1504328589}}\int_{\iota < |t|\leq \mathcal{K}}|V(t)|dt \end{align} | (4.4) |
\begin{align} &+X^{1-c}\max\limits_{\iota < |t|\leq \mathcal{K}}|V(t)|\int_{X^{-c} < |t-y|\leq2\mathcal{K}}\frac{1}{|t-y|}dt\\ \ll&X^{\frac{981206597}{1504328589}}\int_{\iota < |t|\leq \mathcal{K}}|V(t)|dt+X^{1-c}(\log X)\max\limits_{\iota < |t|\leq \mathcal{K}}|V(t)|. \end{align} | (4.5) |
From (4.2) and (4.4), we have
\begin{align} \left|\int_{\iota < |t|\leq \mathcal{K}}\mathfrak{S}(t)V(t)dt\right| \ll &X^{\frac{2485535186}{3008657178}}(\log X)\int_{\iota < |t|\leq \mathcal{K}}|V(t)|dt\\ &+X^{1-\frac{c}{2}}(\log^{\frac{3}{2}}X)\left|\max\limits_{\iota < |t|\leq \mathcal{K}}|V(t)|\int_{\iota < |t|\leq \mathcal{K}}|V(t)|dt\right|^\frac{1}{2}. \end{align} | (4.6) |
Taking V(t) = |\Xi(t)|\overline{\mathfrak{S}(t)}|\mathfrak{S}(t)| , from Lemmas 3.4 and 4.1 and (4.6), we get
\begin{align} &\int_{\iota < |t|\leq \mathcal{K}}|\Xi(t)||\mathfrak{S}(t)|^3 dt\\ = &\int_{\iota < |t|\leq \mathcal{K}}V(t)\mathfrak{S}(t)dt\\ \ll&X^{\frac{1242767598}{1504328589}}(\log X)\int_{\iota < |t|\leq \mathcal{K}}|\Xi(t)||\mathfrak{S}(t)|^2dt+\varepsilon^{\frac{1}{2}}X^{\frac{2921521792}{1504328589}-\frac{c}{2}+6\delta}\left|\int_{\iota < |t|\leq \mathcal{K}}|\Xi(t)||\mathfrak{S}(t)|^2dt\right|^{\frac{1}{2}}\\ \ll&X^{\frac{2747096182}{1504328589}}\log^5X+\varepsilon^{\frac{1}{2}}X^{\frac{7347372173}{3008657178}-\frac{c}{2}+7\delta}\\ \ll&X^{\frac{2747096182}{1504328589}+7\delta}. \end{align} | (4.7) |
Next, taking V(t) = |\Xi(t)|\overline{\mathfrak{S}(t)}|\mathfrak{S}(t)|^2 , by Lemma 3.4, (4.6), and (4.7), we obtain
\begin{align*} &\int_{\iota < |t|\leq \mathcal{K}}|\mathfrak{S}(t)|^4|\Xi(t)|dt\\ = &\int_{\iota < |t|\leq \mathcal{K}}V(t)\mathfrak{S}(t)dt\\ \ll&X^{\frac{1242767598}{1504328589}}(\log X)\int_{\iota < |t|\leq \mathcal{K}}|\mathfrak{S}(t)|^3|\Xi(t)|dt+\varepsilon^{\frac{1}{2}}X^{\frac{2420078929}{1002885726}-\frac{c}{2}+8\delta}\left|\int_{\iota < |t|\leq \mathcal{K}}|\mathfrak{S}(t)|^3|\Xi(t)|dt\right|^{\frac{1}{2}}\\ \ll&X^{\frac{3989863780}{1504328589}+8\delta}+\varepsilon^{\frac{1}{2}}X^{\frac{10007332969}{3008657178}-\frac{c}{2}+12\delta}\\ \ll&\varepsilon^{\frac{1}{2}}X^{\frac{10007332969}{3008657178}-\frac{c}{2}+12\delta}. \end{align*} |
Lemma 4.3 ([11, Lemma 3.3]). We have
\int_N^{2N}|Q_1(T)-P_1(T)|^2dT\ll\varepsilon^2N^{\frac{4}{c}-1}E^{\frac{1}{3}}. |
Lemma 4.4. We have
\int_N^{2N}|Q_2(T)|^2dT\ll\varepsilon^2N^{\frac{4}{c}-1}E^{\frac{1}{3}}. |
Proof. Suppose
\digamma_1 = \{T:T\sim N\}, \ \digamma_2 = \{t:\iota < |t|\leq \mathcal{K}\}. |
Taking advantage of Lemma 2.10 with \psi(t) = \Xi(t)\mathfrak{S}^2(t), \varpi(t, T) = e(T t), \phi(T) = \overline{Q_2(T)} , we obtain
\begin{align} \int_N^{2N}|Q_2(T)|^2dT = &\int_{\digamma_1}\overline{Q_2(T)}\langle \Xi(t)\mathfrak{S}^2(t), e(tT)\rangle_2dT\\ \ll&\left(\int_{\digamma_2}|\Xi(t)\mathfrak{S}^2(t)|^2dt\right)^{\frac{1}{2}}\left(\int_{\digamma_1}|\overline{Q_2(T)}|^2dT\right)^{\frac{1}{2}} \left(\sup\limits_{t'\in\digamma_1}\int_{\digamma_1}\left|\langle e(tT), e(t'T)\rangle_2\right|dt\right)^{\frac{1}{2}}. \end{align} | (4.8) |
According to Lemmas 2.1, 2.9, and 4.2, we get
\begin{align*} \int_N^{2N}|Q_2(T)|^2dT\ll&\mathbb{V}\int_{\iota < |t|\leq \mathcal{K}}|\mathfrak{S}(t)|^4|\Xi(t)|^2dt\\ \ll&\varepsilon(\log N)\int_{\iota < |t|\leq \mathcal{K}}|\mathfrak{S}(t)|^4|\Xi(t)|dt\\ \ll&\varepsilon^{\frac{3}{2}}X^{\frac{10007332969}{3008657178}-\frac{c}{2}+12\delta}\log N\\ \ll&\varepsilon^2N^{\frac{4}{c}-1}E^{\frac{1}{3}}. \end{align*} |
Hence, we finish the proof of this lemma.
Lemma 4.5. We have
\int_N^{2N}|Q_3(T)|^2dT\ll N. |
Proof. It follows from the estimate of \Xi(t) in Lemma 2.1 that
\begin{align*} \int_N^{2N}|Q_3(T)|^2dT\ll&N\left|\int_{t\geq\mathcal{K}}|\mathfrak{S}^2(t)||\Xi(t)|dt\right|^2\\ \ll&NX^4\left|\int_{t\geq\mathcal{K}}\left(\frac{5\omega}{\pi t\varepsilon}\right)^\omega\frac{dt} {t}\right|^2\\ \ll&NX^4\left(\frac{5\omega}{\pi \mathcal{K}\varepsilon}\right)^{2\omega}\\ \ll&N. \end{align*} |
Lemma 4.6. We have
\int_N^{2N}|\mathfrak{B}_1(T)-P(T)|^2dT\ll\varepsilon^2N^{\frac{4}{c}-1}E^{\frac{1}{3}}. |
Proof. We obtain
\begin{align} \int_N^{2N}|\mathfrak{B}_1(T)-P(T)|^2 = &\int_N^{2N}|Q_1(t)-P_1(T)+Q_2(t)+Q_3(t)+P_1(T)-P(T)|^2 \end{align} | (4.9) |
\begin{align} \leq&\int_N^{2N}|Q_1(T)-P_1(T)|^2dT+\int_N^{2N}|Q_2(T)|^2dT\\ &+\int_N^{2N}|Q_3(T)|^2dT+\int_N^{2N}|P(T)-P_1(T)|^2dT. \end{align} | (4.10) |
For the last integral, we will use Lemmas 2.1 and 2.3 to estimate and obtain
\begin{align} \int_N^{2N}|P(T)-P_1(T)|^2dT\ll&\int_N^{2N}\int_{|t| > \iota}|\mathcal{I}(t)|^4|\Xi(t)|^2dtdT\\ \ll&NX^{4-4c}\int_{|t| > \iota}|\Xi(t)|^2|t|^{-4}dt\\ \ll&\varepsilon^2NX^{4-4c}\iota^{-3}. \end{align} | (4.11) |
From (4.9) and (4.11), we have
\begin{align} \int_N^{2N}|\mathfrak{B}_1(T)-P(T)|^2dT\ll&\int_N^{2N}|Q_1(T)-P_1(T)|^2dT+\int_N^{2N}|Q_2(T)|^2dT\\ &+\int_N^{2N}|Q_3(T)|^2dT+\varepsilon^2NX^{4-4c}\iota^{-3}\\ \ll&\varepsilon^2N^{\frac{4}{c}-1}E^{\frac{1}{3}}, \end{align} | (4.12) |
where Lemmas 4.3, 4.4, and 4.5 are employed.
Lemma 4.6 implies
\begin{align} \mathfrak{B}_1(T) = P(T)+O\left(\varepsilon N^{\frac{2}{c}-1}E^\frac{1}{9}\right), \end{align} | (4.13) |
where T\in(N, 2N]\backslash \mathfrak{T} with |\mathfrak{T}| = O\left(NE^{1/3}\right) .
Then, it follows from (4.13) and (2.5) that
\begin{align} B_0(T)\geq\frac{\mathfrak{B}(T)}{\log^22X}\geq\frac{\mathfrak{B}_1(T)}{\log^22X}\geq\frac{P(T)}{\log^22X}\gg\frac{\varepsilon T^{\frac{2}{c}-1}}{\log^2T}. \end{align} | (4.14) |
Thus, we finish the proof of Theorem 1.
Suppose
\mathcal{B}(N) = \sum\limits_{X < p_1, \cdots, p_4\leq2X\atop|p_1^c+\cdots+p_4^c-N| < \varepsilon}(\log p_1)\cdots(\log p_4). |
It follows from the definition of \xi(y) and \Xi(t) in Lemma 2.1 that
\begin{equation} \mathcal{B}(N)\geq\mathcal{B}_1(N), \end{equation} | (5.1) |
where
\begin{align} \mathcal{B}_1(N)& = \int_{-\infty}^\infty \mathfrak{S}^4(t)\Xi(t)e(-N t)dt\\ & = \left(\int_{-\iota}^\iota+ \int_{\iota < |t|\leq \mathcal{K}}+\int_{|t| > \mathcal{K}}\right)\mathfrak{S}^4(t)\Xi(t)e(-N t)dt\\ & = \mathcal{Q}_1(N)+\mathcal{Q}_2(N)+\mathcal{Q}_3(N). \end{align} | (5.2) |
First of all, we need to estimate \mathcal{Q}_1(N) . Let
\begin{align*} \mathcal{P}_1(N) = &\int_{-\iota}^\iota \mathcal{I}^4(t)\Xi(t)e(-tN)dt, \\ \mathcal{P}(N) = &\int_{-\infty}^\infty \mathcal{I}^4(t)\Xi(t)e(-tN)dt, \end{align*} |
then we find that
\begin{align} \mathcal{Q}_1(N)& = \int_{-\iota}^\iota\mathfrak{S}^4(t)\Xi(t)e(-N t)dt\\ & = \mathcal{P}(N)+(\mathcal{P}_1(N)-\mathcal{P}(N))+(\mathcal{Q}_1(N)-\mathcal{P}_1(N)). \end{align} | (5.3) |
For the second integral in (5.3), we use Lemmas 2.1 and 2.3 to estimate and obtain
\begin{align} |\mathcal{P}_1(N)-\mathcal{P}(N)|\ll&\int_{-\iota}^\iota|\mathcal{I}(t)|^4|\Xi(t)|dt\\ \ll&X^{4-4c}\int_{|t| > \iota}|\Xi(t)||t|^{-4}dt\\ \ll&\varepsilon X^{4-4c}\iota^{-3}\\ \ll&\frac{\varepsilon X^{4-c}}{\log X}. \end{align} | (5.4) |
For the third integral in (5.3), we use Lemmas 2.1 and 2.2 to estimate and get
\begin{align} |\mathcal{Q}_1(N)-\mathcal{P}_1(N)| \ll&\int_{|t|\leq\iota}|\mathfrak{S}^4(t)-\mathcal{I}^4(t)||\Xi(t)|dt\\ \ll&\varepsilon\max\limits_{-\iota\leq t\leq\iota}|\mathfrak{S}(t)-\mathcal{I}(t)|\int_{|t|\leq\iota}(|\mathfrak{S}(t)|+|\mathcal{I}(t)|)(|\mathfrak{S}(t)|^2+|\mathcal{I}(t)|^2)dt\\ \ll&\varepsilon X\exp\left(-\log^{\frac{1}{5}}X\right)X \int_{|t|\leq\iota}(|\mathfrak{S}(t)|^2+|\mathcal{I}(t)|^2)dt\\ \ll&\varepsilon X^2\exp\left(-\log^{\frac{1}{5}}X\right)X^{2-c}(\log^3X)\\ \ll&\varepsilon X^{4-c}\exp\left(-\log^{\frac{1}{5}}X\right), \end{align} | (5.5) |
where (2.2) and (2.3) in Lemma 2.4 are utilized. Combining (2.6) and (5.3)–(5.5), we derive that
\begin{align} \mathcal{Q}_1(N)\gg\varepsilon X^{4-c}. \end{align} | (5.6) |
From Lemma 4.2, we have
\begin{align} \mathcal{Q}_2(N)\ll&\int_{\iota < |t|\leq \mathcal{K}}|\mathfrak{S}(t)|^4|\Xi(t) |dt\\ \ll&\varepsilon^{\frac{1}{2}}X^{\frac{10007332969}{3008657178}-\frac{c}{2}+12\delta}\\ \ll&\frac{\varepsilon X^{4-c}}{\log X}. \end{align} | (5.7) |
From Lemma 2.1, we obtain
\begin{align} \mathcal{Q}_3(N)\ll&\int_{-\mathcal{K}}^\mathcal{K}|\mathfrak{S}^4(t)||\Xi(t)|dt\\ \ll&X^4\int_{-\mathcal{K}}^\mathcal{K}\left(\frac{5\omega}{\pi|t|\varepsilon}\right)^\omega\frac{dt }{|t|}\\ \ll&X^4\left(\frac{5\omega}{\pi\mathcal{K}\varepsilon}\right)^\omega\\ \ll&1. \end{align} | (5.8) |
It follows from (5.2), (5.6)–(5.8) that
\begin{align} \mathcal{B}_1(N)\gg\varepsilon X^{4-c}. \end{align} | (5.9) |
From (5.1) and (5.9), we have
\begin{align} \mathcal{B}_0(N)\geq\frac{\mathcal{B}(N)}{\log^42X}\geq\frac{\mathcal{B}_1(N)}{\log^42X}\gg\frac{\varepsilon N^{\frac{4}{c}-1}}{\log^4N}. \end{align} | (5.10) |
Hence, we finish the proof of Theorem 2.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The paper is supported by National Natural Science Foundation of China (Grant No. 12171286).
The authors declare that they have no conflict of interest.
[1] |
R. Baker, A. Weingartner, A ternary Diophantine inequality over primes, Acta Arith., 162 (2014), 159–196. https://doi.org/10.4064/aa162-2-3 doi: 10.4064/aa162-2-3
![]() |
[2] | Y. C. Cai, On a Diophantine inequality involving prime numbers, (Chinese), Acta Mathematica Sinica: Chinese Series, 39 (1996), 733–742. |
[3] |
Y. C. Cai, A ternary Diophantine inequality involving primes, Int. J. Number Theory, 14 (2018), 2257–2268. https://doi.org/10.1142/S1793042118501361 doi: 10.1142/S1793042118501361
![]() |
[4] |
X. D. Cao, W. G. Zhai, A Diophantine inequality with prime numbers, (Chinese), Acta Mathematica Sinica: Chinese Series, 45 (2002), 361–370. https://doi.org/10.12386/A2002sxxb0046 doi: 10.12386/A2002sxxb0046
![]() |
[5] | S. W. Graham, G. A. Kolesnik, Van der Corpue's method of exponential sums, London: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511661976 |
[6] |
D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number theory, 16 (1983), 242–266. https://doi.org/10.1016/0022-314X(83)90044-6 doi: 10.1016/0022-314X(83)90044-6
![]() |
[7] |
A. Kumchev, A Diophantine inequality involving prime powers, Acta Arith., 89 (1999), 311–330. https://doi.org/10.4064/aa-89-4-311-330 doi: 10.4064/aa-89-4-311-330
![]() |
[8] |
A. Kumchev, T. Nedeva, On an equation with prime numbers, Acta Arith., 83 (1998), 117–126. https://doi.org/10.4064/aa-83-2-117-126 doi: 10.4064/aa-83-2-117-126
![]() |
[9] | A. Kumchev, M. B. S. Laporta, On a binary Diophantine inequality involving prime powers, In: Number theory for the Millennium II, Wellesley: A K Peters, 2002,307–329. |
[10] |
M. B. S. Laporta, On a binary Diophantine inequality involving prime numbers, Acta Math. Hungar., 83 (1999), 179–187. https://doi.org/10.1023/A:1006763805240 doi: 10.1023/A:1006763805240
![]() |
[11] |
S. H. Li, Y. C. Cai, On a binary Diophantine inequality involving prime numbers, Ramanujan J., 54 (2021), 571-–589. https://doi.org/10.1007/s11139-019-00222-4 doi: 10.1007/s11139-019-00222-4
![]() |
[12] |
Q. W. Mu, On a Diophantine inequality over primes, Advances in Mathematics (China), 44 (2015), 621–637. https://doi.org/10.11845/sxjz.2013046b doi: 10.11845/sxjz.2013046b
![]() |
[13] | I. I. Piatetski-Shapiro, On a variant of the Waring-Goldbach problem, (Russian), Mat. Sb., 30 (1952), 105–120. |
[14] | D. I. Tolev, Diophantine inequality involving prime numbers, (Russian), PhD Thesis, Moscow University, 1990. |
[15] |
D. I. Tolev, On a Diophantine inequality involving prime numbers, Acta Arith., 61 (1992), 289–306. https://doi.org/10.4064/aa-61-3-289-306 doi: 10.4064/aa-61-3-289-306
![]() |
[16] |
W. G. Zhai, X. D. Cao, On a binary Diophantine inequality, (Chinese), Advances in Mathematics (China), 32 (2003), 706–721. https://doi.org/10.3969/j.issn.1000-0917.2003.06.009 doi: 10.3969/j.issn.1000-0917.2003.06.009
![]() |
[17] |
W. G. Zhai, X. D. Cao, On a Diophantine inequality over primes, (Chinese), Advances in Mathematics (China), 32 (2003), 63–73. https://doi.org/10.3969/j.issn.1000-0917.2003.01.008 doi: 10.3969/j.issn.1000-0917.2003.01.008
![]() |
[18] |
M. Zhang, J. J. Li, On a Diophantine inequality over primes, J. Number Theory, 202 (2019), 220–253. https://doi.org/10.1016/j.jnt.2019.01.008 doi: 10.1016/j.jnt.2019.01.008
![]() |
[19] |
M. Zhang, J. J. Li, A Diophantine inequality with four prime variables, Int. J. Number Theory, 15 (2019), 1759–1770. https://doi.org/10.1142/S1793042119500982 doi: 10.1142/S1793042119500982
![]() |