Let $ N $ denote a sufficiently large real number. In this paper, we prove that for $ 1 < c < \frac{104349}{77419} $, $ c\neq\frac{4}{3} $, for almost all real numbers $ T\in(N, 2N] $ (in the sense of Lebesgue measure), the Diophantine inequality $ |p_1^c+p_2^c-T| < T^{-\frac{9}{10c}\left(\frac{104349}{77419}-c\right)} $ is solvable in primes $ p_1, p_2 $. In addition, it is proved that the Diophantine inequality $ |p_1^c+p_2^c+p_3^c+p_4^c-N| < N^{-\frac{9}{10c}\left(\frac{104349}{77419}-c\right)} $ is solvable in primes $ p_1, p_2, p_3, p_4 $. This result constitutes a refinement upon that of Li and Cai.
Citation: Jing Huang, Qian Wang, Rui Zhang. On a binary Diophantine inequality involving prime numbers[J]. AIMS Mathematics, 2024, 9(4): 8371-8385. doi: 10.3934/math.2024407
Let $ N $ denote a sufficiently large real number. In this paper, we prove that for $ 1 < c < \frac{104349}{77419} $, $ c\neq\frac{4}{3} $, for almost all real numbers $ T\in(N, 2N] $ (in the sense of Lebesgue measure), the Diophantine inequality $ |p_1^c+p_2^c-T| < T^{-\frac{9}{10c}\left(\frac{104349}{77419}-c\right)} $ is solvable in primes $ p_1, p_2 $. In addition, it is proved that the Diophantine inequality $ |p_1^c+p_2^c+p_3^c+p_4^c-N| < N^{-\frac{9}{10c}\left(\frac{104349}{77419}-c\right)} $ is solvable in primes $ p_1, p_2, p_3, p_4 $. This result constitutes a refinement upon that of Li and Cai.
[1] | R. Baker, A. Weingartner, A ternary Diophantine inequality over primes, Acta Arith., 162 (2014), 159–196. https://doi.org/10.4064/aa162-2-3 doi: 10.4064/aa162-2-3 |
[2] | Y. C. Cai, On a Diophantine inequality involving prime numbers, (Chinese), Acta Mathematica Sinica: Chinese Series, 39 (1996), 733–742. |
[3] | Y. C. Cai, A ternary Diophantine inequality involving primes, Int. J. Number Theory, 14 (2018), 2257–2268. https://doi.org/10.1142/S1793042118501361 doi: 10.1142/S1793042118501361 |
[4] | X. D. Cao, W. G. Zhai, A Diophantine inequality with prime numbers, (Chinese), Acta Mathematica Sinica: Chinese Series, 45 (2002), 361–370. https://doi.org/10.12386/A2002sxxb0046 doi: 10.12386/A2002sxxb0046 |
[5] | S. W. Graham, G. A. Kolesnik, Van der Corpue's method of exponential sums, London: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511661976 |
[6] | D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number theory, 16 (1983), 242–266. https://doi.org/10.1016/0022-314X(83)90044-6 doi: 10.1016/0022-314X(83)90044-6 |
[7] | A. Kumchev, A Diophantine inequality involving prime powers, Acta Arith., 89 (1999), 311–330. https://doi.org/10.4064/aa-89-4-311-330 doi: 10.4064/aa-89-4-311-330 |
[8] | A. Kumchev, T. Nedeva, On an equation with prime numbers, Acta Arith., 83 (1998), 117–126. https://doi.org/10.4064/aa-83-2-117-126 doi: 10.4064/aa-83-2-117-126 |
[9] | A. Kumchev, M. B. S. Laporta, On a binary Diophantine inequality involving prime powers, In: Number theory for the Millennium II, Wellesley: A K Peters, 2002,307–329. |
[10] | M. B. S. Laporta, On a binary Diophantine inequality involving prime numbers, Acta Math. Hungar., 83 (1999), 179–187. https://doi.org/10.1023/A:1006763805240 doi: 10.1023/A:1006763805240 |
[11] | S. H. Li, Y. C. Cai, On a binary Diophantine inequality involving prime numbers, Ramanujan J., 54 (2021), 571-–589. https://doi.org/10.1007/s11139-019-00222-4 doi: 10.1007/s11139-019-00222-4 |
[12] | Q. W. Mu, On a Diophantine inequality over primes, Advances in Mathematics (China), 44 (2015), 621–637. https://doi.org/10.11845/sxjz.2013046b doi: 10.11845/sxjz.2013046b |
[13] | I. I. Piatetski-Shapiro, On a variant of the Waring-Goldbach problem, (Russian), Mat. Sb., 30 (1952), 105–120. |
[14] | D. I. Tolev, Diophantine inequality involving prime numbers, (Russian), PhD Thesis, Moscow University, 1990. |
[15] | D. I. Tolev, On a Diophantine inequality involving prime numbers, Acta Arith., 61 (1992), 289–306. https://doi.org/10.4064/aa-61-3-289-306 doi: 10.4064/aa-61-3-289-306 |
[16] | W. G. Zhai, X. D. Cao, On a binary Diophantine inequality, (Chinese), Advances in Mathematics (China), 32 (2003), 706–721. https://doi.org/10.3969/j.issn.1000-0917.2003.06.009 doi: 10.3969/j.issn.1000-0917.2003.06.009 |
[17] | W. G. Zhai, X. D. Cao, On a Diophantine inequality over primes, (Chinese), Advances in Mathematics (China), 32 (2003), 63–73. https://doi.org/10.3969/j.issn.1000-0917.2003.01.008 doi: 10.3969/j.issn.1000-0917.2003.01.008 |
[18] | M. Zhang, J. J. Li, On a Diophantine inequality over primes, J. Number Theory, 202 (2019), 220–253. https://doi.org/10.1016/j.jnt.2019.01.008 doi: 10.1016/j.jnt.2019.01.008 |
[19] | M. Zhang, J. J. Li, A Diophantine inequality with four prime variables, Int. J. Number Theory, 15 (2019), 1759–1770. https://doi.org/10.1142/S1793042119500982 doi: 10.1142/S1793042119500982 |