Research article Special Issues

On a binary Diophantine inequality involving prime numbers

  • Received: 15 January 2024 Revised: 21 February 2024 Accepted: 23 February 2024 Published: 28 February 2024
  • MSC : 11J25

  • Let $ N $ denote a sufficiently large real number. In this paper, we prove that for $ 1 < c < \frac{104349}{77419} $, $ c\neq\frac{4}{3} $, for almost all real numbers $ T\in(N, 2N] $ (in the sense of Lebesgue measure), the Diophantine inequality $ |p_1^c+p_2^c-T| < T^{-\frac{9}{10c}\left(\frac{104349}{77419}-c\right)} $ is solvable in primes $ p_1, p_2 $. In addition, it is proved that the Diophantine inequality $ |p_1^c+p_2^c+p_3^c+p_4^c-N| < N^{-\frac{9}{10c}\left(\frac{104349}{77419}-c\right)} $ is solvable in primes $ p_1, p_2, p_3, p_4 $. This result constitutes a refinement upon that of Li and Cai.

    Citation: Jing Huang, Qian Wang, Rui Zhang. On a binary Diophantine inequality involving prime numbers[J]. AIMS Mathematics, 2024, 9(4): 8371-8385. doi: 10.3934/math.2024407

    Related Papers:

  • Let $ N $ denote a sufficiently large real number. In this paper, we prove that for $ 1 < c < \frac{104349}{77419} $, $ c\neq\frac{4}{3} $, for almost all real numbers $ T\in(N, 2N] $ (in the sense of Lebesgue measure), the Diophantine inequality $ |p_1^c+p_2^c-T| < T^{-\frac{9}{10c}\left(\frac{104349}{77419}-c\right)} $ is solvable in primes $ p_1, p_2 $. In addition, it is proved that the Diophantine inequality $ |p_1^c+p_2^c+p_3^c+p_4^c-N| < N^{-\frac{9}{10c}\left(\frac{104349}{77419}-c\right)} $ is solvable in primes $ p_1, p_2, p_3, p_4 $. This result constitutes a refinement upon that of Li and Cai.



    加载中


    [1] R. Baker, A. Weingartner, A ternary Diophantine inequality over primes, Acta Arith., 162 (2014), 159–196. https://doi.org/10.4064/aa162-2-3 doi: 10.4064/aa162-2-3
    [2] Y. C. Cai, On a Diophantine inequality involving prime numbers, (Chinese), Acta Mathematica Sinica: Chinese Series, 39 (1996), 733–742.
    [3] Y. C. Cai, A ternary Diophantine inequality involving primes, Int. J. Number Theory, 14 (2018), 2257–2268. https://doi.org/10.1142/S1793042118501361 doi: 10.1142/S1793042118501361
    [4] X. D. Cao, W. G. Zhai, A Diophantine inequality with prime numbers, (Chinese), Acta Mathematica Sinica: Chinese Series, 45 (2002), 361–370. https://doi.org/10.12386/A2002sxxb0046 doi: 10.12386/A2002sxxb0046
    [5] S. W. Graham, G. A. Kolesnik, Van der Corpue's method of exponential sums, London: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511661976
    [6] D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number theory, 16 (1983), 242–266. https://doi.org/10.1016/0022-314X(83)90044-6 doi: 10.1016/0022-314X(83)90044-6
    [7] A. Kumchev, A Diophantine inequality involving prime powers, Acta Arith., 89 (1999), 311–330. https://doi.org/10.4064/aa-89-4-311-330 doi: 10.4064/aa-89-4-311-330
    [8] A. Kumchev, T. Nedeva, On an equation with prime numbers, Acta Arith., 83 (1998), 117–126. https://doi.org/10.4064/aa-83-2-117-126 doi: 10.4064/aa-83-2-117-126
    [9] A. Kumchev, M. B. S. Laporta, On a binary Diophantine inequality involving prime powers, In: Number theory for the Millennium II, Wellesley: A K Peters, 2002,307–329.
    [10] M. B. S. Laporta, On a binary Diophantine inequality involving prime numbers, Acta Math. Hungar., 83 (1999), 179–187. https://doi.org/10.1023/A:1006763805240 doi: 10.1023/A:1006763805240
    [11] S. H. Li, Y. C. Cai, On a binary Diophantine inequality involving prime numbers, Ramanujan J., 54 (2021), 571-–589. https://doi.org/10.1007/s11139-019-00222-4 doi: 10.1007/s11139-019-00222-4
    [12] Q. W. Mu, On a Diophantine inequality over primes, Advances in Mathematics (China), 44 (2015), 621–637. https://doi.org/10.11845/sxjz.2013046b doi: 10.11845/sxjz.2013046b
    [13] I. I. Piatetski-Shapiro, On a variant of the Waring-Goldbach problem, (Russian), Mat. Sb., 30 (1952), 105–120.
    [14] D. I. Tolev, Diophantine inequality involving prime numbers, (Russian), PhD Thesis, Moscow University, 1990.
    [15] D. I. Tolev, On a Diophantine inequality involving prime numbers, Acta Arith., 61 (1992), 289–306. https://doi.org/10.4064/aa-61-3-289-306 doi: 10.4064/aa-61-3-289-306
    [16] W. G. Zhai, X. D. Cao, On a binary Diophantine inequality, (Chinese), Advances in Mathematics (China), 32 (2003), 706–721. https://doi.org/10.3969/j.issn.1000-0917.2003.06.009 doi: 10.3969/j.issn.1000-0917.2003.06.009
    [17] W. G. Zhai, X. D. Cao, On a Diophantine inequality over primes, (Chinese), Advances in Mathematics (China), 32 (2003), 63–73. https://doi.org/10.3969/j.issn.1000-0917.2003.01.008 doi: 10.3969/j.issn.1000-0917.2003.01.008
    [18] M. Zhang, J. J. Li, On a Diophantine inequality over primes, J. Number Theory, 202 (2019), 220–253. https://doi.org/10.1016/j.jnt.2019.01.008 doi: 10.1016/j.jnt.2019.01.008
    [19] M. Zhang, J. J. Li, A Diophantine inequality with four prime variables, Int. J. Number Theory, 15 (2019), 1759–1770. https://doi.org/10.1142/S1793042119500982 doi: 10.1142/S1793042119500982
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(680) PDF downloads(85) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog