Research article Special Issues

On a Diophantine equation with prime variables

  • Received: 04 February 2021 Accepted: 23 June 2021 Published: 25 June 2021
  • MSC : 11J25, 11L03, 11P32

  • Let $ [\alpha] $ denote the integer part of the real number $ \alpha $, $ N $ be a sufficiently large integer and $ (\kappa, \lambda) $ be the exponent pair. In this paper, we prove that for $ 1 < c < \frac{3+3\kappa-\lambda}{3\kappa+2} $, the Diophantine equation $ [p_1^c]+[p_2^c]+[p_3^c] = N $ is solvable in prime variables $ p_1, p_2, p_3 $. If we take $ (\kappa, \lambda) = \left(\frac{81}{242}, \frac{132}{242}\right) $, we can get the range $ 1 < c < \frac{837}{727} $, which improves the previous result of Cai.

    Citation: Jing Huang, Ao Han, Huafeng Liu. On a Diophantine equation with prime variables[J]. AIMS Mathematics, 2021, 6(9): 9602-9618. doi: 10.3934/math.2021559

    Related Papers:

  • Let $ [\alpha] $ denote the integer part of the real number $ \alpha $, $ N $ be a sufficiently large integer and $ (\kappa, \lambda) $ be the exponent pair. In this paper, we prove that for $ 1 < c < \frac{3+3\kappa-\lambda}{3\kappa+2} $, the Diophantine equation $ [p_1^c]+[p_2^c]+[p_3^c] = N $ is solvable in prime variables $ p_1, p_2, p_3 $. If we take $ (\kappa, \lambda) = \left(\frac{81}{242}, \frac{132}{242}\right) $, we can get the range $ 1 < c < \frac{837}{727} $, which improves the previous result of Cai.



    加载中


    [1] G. I. Arkhipov, A. N. Zhitkov, On the Waring problem with non-integer degrees, Izv. Akad. Nauk SSSR, 48 (1984), 1138–1150.
    [2] K. Buriev, Additive problems with prime numbers, Moscow University Thesis, 1989.
    [3] E. P. Balanzario, M. Z. Garaev, R. Zuazua, Exceptional set of a representation with fractional powers, Acta Math. Hung., 114 (2007), 103–115. doi: 10.1007/s10474-006-0516-8
    [4] Y. C. Cai, On a Diophantine equation involving primes, Ramanujan J., 50 (2019), 151–162. doi: 10.1007/s11139-018-0027-6
    [5] J. M. Deshouillers, Problème de waring avec exposants non entiers, B. Soc. Math. Fr., 101 (1973), 285–295.
    [6] S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, London: Cambridge University Press, 1991.
    [7] X. Han, H. F. Liu, D. Y. Zhang, A system of two Diophantine inequalities with primes, J. Math., 2021, 6613947.
    [8] X. Han, X. F. Yan, D. Y. Zhang, On Fourier coefficients of the symmetric Square $L$-function at Piatetski-Shapiro prime twins, Mathematics, 9 (2021), 1254. doi: 10.3390/math9111254
    [9] D. R. Heath-Brown, The Pjateckiǐ-Šapiro prime number theorem, J. Number Theory, 16 (1983), 242–266. doi: 10.1016/0022-314X(83)90044-6
    [10] H. F. Liu, J. Huang, Diophantine approximation with mixed powers of primes, Taiwanese J. Math., 23 (2019), 1073–1090.
    [11] J. Huang, W. G. Zhai, D. Y. Zhang, $\Omega$-result for the index of composition of an integral ideal, AIMS Mathematics, 6 (2021), 4979–4988. doi: 10.3934/math.2021292
    [12] J. Huang, W. G. Zhai, D. Y. Zhang, Diophantine inequalities over Piatetski-Shapiro primes, Front. Math. China, 16 (2021), DOI: 10.1007/s11464-021-0916-7.
    [13] C. H. Jia, The distribution of square-free numbers, Sci. China Ser. A, 36 (1993), 154–169.
    [14] A. Kumchev, A Diophantine inequality involving prime powers, Acta Arith., 89 (1999), 311–330. doi: 10.4064/aa-89-4-311-330
    [15] A. V. Kumchev, A binary additive equation involving fractional powers, Int. J. Number Theory., 5 (2009), 281–292. doi: 10.1142/S1793042109002092
    [16] A. Kumchev, T. Nedeva, On an equation with prime numbers, Acta Arith., 83 (1998), 117–126. doi: 10.4064/aa-83-2-117-126
    [17] M. Laporta, On a binary problem with prime numbers, Math. Balkanica (N. S.), 13 (1999), 119–123.
    [18] M. B. S. Laporta, D. I. Tolev, On an equation with prime numbers, Mat. Zametki, 57 (1995), 926–929 (In Russian), translated in Math. Notes, 57 (1995), 654–657.
    [19] T. Y. Li, H. F. Liu, Diophantine approximation over Piatetski-Shapiro primes, J. Number Theory, 211 (2020), 184–198. doi: 10.1016/j.jnt.2019.10.002
    [20] H. F. Liu, A divisor problem attached to regular quadratic forms, Lith. Math. J., 59 (2019), 169–184. doi: 10.1007/s10986-019-09436-x
    [21] H. F. Liu, Diophantine approximation with one prime, two squares of primes and powers of two, Ramanujan J., 51 (2020), 85–97. doi: 10.1007/s11139-018-0121-9
    [22] H. F. Liu, S. Li, D. Y. Zhang, Power moments of automorphic L-function attached to Maass formsx, Int. J. Number Theory, 12 (2016), 427–443. doi: 10.1142/S1793042116500251
    [23] H. Q. Liu, On the number of abelian groups of a given order, Acta Arith., 59 (1991), 261–277. doi: 10.4064/aa-59-3-261-277
    [24] L. Ma, X. F. Yan, Resonance between the representation function and exponential functions over arithemetic progression, J. Math., 2021, 6616348.
    [25] I. I. Piatetski-Shapiro, On a variant of the Waring-Goldbach problem, Mat. Sb. (N. S.), 30 (1952), 105–120.
    [26] P. Sargos, Points entiers au voisinage d'une courbe, sommes trigonometriques courtes et paires d'exposants, P. Lond. Math. Soc., 70 (1995), 285–312.
    [27] B. I. Segal, On a theorem similar to the Waring theorem, Dokl. Akad. Nauk SSSR, 1 (1933), 47–49.
    [28] B. I. Segal, The Waring theorem with fractional and irrational degrees, Trudy Mat. Inst. Stekov, 5 (1933), 73–86.
    [29] P. Song, W. G. Zhai, D. Y. Zhang, Power moments of Hecke eigenvalues for congruence group, J. Number Theory, 198 (2019), 139–158. doi: 10.1016/j.jnt.2018.10.006
    [30] Y. K. Sui, W. G. Zhai, D. Y. Zhang, $\Omega$-Result for the index of composition of an integer, Int. J. Number Theory, 14 (2018), 339–348. doi: 10.1142/S1793042118500215
    [31] Q. F. Sun, D. Y. Zhang, Sums of the triple divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246. doi: 10.1016/j.jnt.2016.04.010
    [32] R. Zhang, X. Han, D. Y. Zhang, Power moments of the Riesz mean error term of symmetric square L-function in short intervals, Symmetry, 12 (2020), 2036. doi: 10.3390/sym12122036
    [33] D. Y. Zhang; M. M. Lü, W. G. Zhai, On the mean value of the index of composition of an integer $II$, Int. J. Number Theory, 9 (2013), 431–445. doi: 10.1142/S1793042112501424
    [34] D. Y. Zhang, Y. N. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_0(N)$, Ramanujan J., 47 (2018), 685–700. doi: 10.1007/s11139-018-0051-6
    [35] D. Y. Zhang, Y. N. Wang, Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form, J. Number Theory, 176 (2017), 211–225. doi: 10.1016/j.jnt.2016.12.018
    [36] D. Y. Zhang, W. G. Zhai, On the Waring-Goldbach problem in thin sets of primes (II), Acta Math. Sin. (Chin. Ser.), 48 (2005), 809–816.
    [37] D. Y. Zhang, W. G. Zhai, On the mean value of the index of composition of an integral ideal $(II)$, J. Number Theory, 133 (2013), 1086–1110. doi: 10.1016/j.jnt.2012.09.003
    [38] D. Y. Zhang, W. G. Zhai, On the distribution of Hecke eigenvalues over Piatetski-Shapiro prime twins, Acta Math. Sin. (Engl. Ser.), 2021, In presss.
    [39] W. G. Zhai, X. D. Cao, A Diophantine equation with prime numbers, Acta Math. Sin. (Chin. Ser.), 45 (2002), 443–454.
    [40] L. Zhu, An additive equation involving fractional powers, Acta Math. Hungar., 159 (2019), 174–186. doi: 10.1007/s10474-019-00979-6
    [41] W. G. Zhai, On a system of two diophantine inequalities with prime numbers, Acta Arith., 92 (2000), 31–46. doi: 10.4064/aa-92-1-31-46
    [42] W. G. Zhai, On the simultaneous distribution of the fractional parts of different powers of prime numbers, J. Number Theory, 86 (2001), 133–155. doi: 10.1006/jnth.2000.2563
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2684) PDF downloads(215) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog