In this paper, we study a three step iterative scheme to estimate fixed points of non-expansive mappings in the framework of Banach spaces. Further, some convergence results are proved for such mappings. A nontrivial numerical example is presented to verify our assertions and main results. Finally, we approximate the solution of a boundary value problem of second order differential equation.
Citation: Mohd Jubair, Faizan Ahmad Khan, Javid Ali, Yeşim Saraç. Estimating fixed points of non-expansive mappings with an application[J]. AIMS Mathematics, 2021, 6(9): 9590-9601. doi: 10.3934/math.2021558
In this paper, we study a three step iterative scheme to estimate fixed points of non-expansive mappings in the framework of Banach spaces. Further, some convergence results are proved for such mappings. A nontrivial numerical example is presented to verify our assertions and main results. Finally, we approximate the solution of a boundary value problem of second order differential equation.
[1] | S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274–276. doi: 10.1016/0022-247X(79)90024-6 |
[2] | W. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), 506–510. doi: 10.1090/S0002-9939-1953-0054846-3 |
[3] | S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc., 44 (1974), 147–150. doi: 10.1090/S0002-9939-1974-0336469-5 |
[4] | B. S. Thakur, D. Thakur, M. Postolache, Fixed points by a new iteration method, Filomat, 30 (2016), 2711–2720. doi: 10.2298/FIL1610711T |
[5] | Y. Zhang, B. Hofmann, On the second-order asymptotical regularization of linear ill-posed inverse problems, Appl. Anal., 99 (2020), 1000–1025. doi: 10.1080/00036811.2018.1517412 |
[6] | R. P. Agrawal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically non-expansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
[7] | F. Gursoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a diffrential equation with retarted argument, (2007), arXiv: 1403.2546v2. |
[8] | B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized non-expansive mappings, Appl. Math. Comp., 275 (2016), 147–155. doi: 10.1016/j.amc.2015.11.065 |
[9] | J. Ali, F. Ali, A new iterative scheme for approximating fixed points with an application to delay differential equation, J. Nonlinear Convex Anal., 21 (2020), 2151–2163. |
[10] | V. Karakaya, N. E. H. Bouzara, K. Dogan, Y. Atlan, On different results for a new two-step iteration method under weak contraction mapping in Banach spaces, (2015), arXiv: 1507.00200v1. |
[11] | K. Ullah, M. Arshad, New iteration process and numerical reckoning fixed points in Banach space, U. P. B. Sci. Bull. Series A, 79 (2017), 113–122. |
[12] | K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzukis generalized non-expansive mappings via new iteration process, U. P. B. Sci. Bull. Series A, 32 (2018), 187–196. |
[13] | T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. (Basel), 23 (1972), 292–298. doi: 10.1007/BF01304884 |
[14] | Z. Opial, Weak convergence of the sequence of successive approximations for non-expansive mappings, Bull. Amer. Math. Soc., 73 (1967), 595–597. |
[15] | C. E. Chidume, S. Maruster, Iterative methods for the computation of fixed points of demicontractive mappings, J. Comput. Appl. Math., 234 (2010), 861–882. doi: 10.1016/j.cam.2010.01.050 |
[16] | K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1990. |
[17] | J. Schu, Weak and strong convergence to fixed points of asymptotically non-expansive mappings, Bull. Aust. Math. Soc., 43 (1991), 153–159. doi: 10.1017/S0004972700028884 |
[18] | H. F. Senter, W. G. Dotson, Approximating fixed points of non-expansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380. doi: 10.1090/S0002-9939-1974-0346608-8 |
[19] | M. Imdad, A. R. Khan, H. N. Saleh, W. M. Alfaqih, Some $\phi$-fixed point results for (F, $\phi$, $\alpha-\psi$)-contractive type mappings with applications, Mathematics, 7 (2019), 122. doi: 10.3390/math7020122 |
[20] | V. Gupta, R. K. Saini, M. Verma, Fixed point theorems for single valued $\alpha-\psi-$mappings in fuzzy metric spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2019), 392–400. |
[21] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi-$contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014 |