Research article

Estimating fixed points of non-expansive mappings with an application

  • Received: 16 March 2021 Accepted: 15 June 2021 Published: 25 June 2021
  • MSC : 47H09, 47H10, 54H25

  • In this paper, we study a three step iterative scheme to estimate fixed points of non-expansive mappings in the framework of Banach spaces. Further, some convergence results are proved for such mappings. A nontrivial numerical example is presented to verify our assertions and main results. Finally, we approximate the solution of a boundary value problem of second order differential equation.

    Citation: Mohd Jubair, Faizan Ahmad Khan, Javid Ali, Yeşim Saraç. Estimating fixed points of non-expansive mappings with an application[J]. AIMS Mathematics, 2021, 6(9): 9590-9601. doi: 10.3934/math.2021558

    Related Papers:

  • In this paper, we study a three step iterative scheme to estimate fixed points of non-expansive mappings in the framework of Banach spaces. Further, some convergence results are proved for such mappings. A nontrivial numerical example is presented to verify our assertions and main results. Finally, we approximate the solution of a boundary value problem of second order differential equation.



    加载中


    [1] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274–276. doi: 10.1016/0022-247X(79)90024-6
    [2] W. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), 506–510. doi: 10.1090/S0002-9939-1953-0054846-3
    [3] S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc., 44 (1974), 147–150. doi: 10.1090/S0002-9939-1974-0336469-5
    [4] B. S. Thakur, D. Thakur, M. Postolache, Fixed points by a new iteration method, Filomat, 30 (2016), 2711–2720. doi: 10.2298/FIL1610711T
    [5] Y. Zhang, B. Hofmann, On the second-order asymptotical regularization of linear ill-posed inverse problems, Appl. Anal., 99 (2020), 1000–1025. doi: 10.1080/00036811.2018.1517412
    [6] R. P. Agrawal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically non-expansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79.
    [7] F. Gursoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a diffrential equation with retarted argument, (2007), arXiv: 1403.2546v2.
    [8] B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized non-expansive mappings, Appl. Math. Comp., 275 (2016), 147–155. doi: 10.1016/j.amc.2015.11.065
    [9] J. Ali, F. Ali, A new iterative scheme for approximating fixed points with an application to delay differential equation, J. Nonlinear Convex Anal., 21 (2020), 2151–2163.
    [10] V. Karakaya, N. E. H. Bouzara, K. Dogan, Y. Atlan, On different results for a new two-step iteration method under weak contraction mapping in Banach spaces, (2015), arXiv: 1507.00200v1.
    [11] K. Ullah, M. Arshad, New iteration process and numerical reckoning fixed points in Banach space, U. P. B. Sci. Bull. Series A, 79 (2017), 113–122.
    [12] K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzukis generalized non-expansive mappings via new iteration process, U. P. B. Sci. Bull. Series A, 32 (2018), 187–196.
    [13] T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math. (Basel), 23 (1972), 292–298. doi: 10.1007/BF01304884
    [14] Z. Opial, Weak convergence of the sequence of successive approximations for non-expansive mappings, Bull. Amer. Math. Soc., 73 (1967), 595–597.
    [15] C. E. Chidume, S. Maruster, Iterative methods for the computation of fixed points of demicontractive mappings, J. Comput. Appl. Math., 234 (2010), 861–882. doi: 10.1016/j.cam.2010.01.050
    [16] K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1990.
    [17] J. Schu, Weak and strong convergence to fixed points of asymptotically non-expansive mappings, Bull. Aust. Math. Soc., 43 (1991), 153–159. doi: 10.1017/S0004972700028884
    [18] H. F. Senter, W. G. Dotson, Approximating fixed points of non-expansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380. doi: 10.1090/S0002-9939-1974-0346608-8
    [19] M. Imdad, A. R. Khan, H. N. Saleh, W. M. Alfaqih, Some $\phi$-fixed point results for (F, $\phi$, $\alpha-\psi$)-contractive type mappings with applications, Mathematics, 7 (2019), 122. doi: 10.3390/math7020122
    [20] V. Gupta, R. K. Saini, M. Verma, Fixed point theorems for single valued $\alpha-\psi-$mappings in fuzzy metric spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2019), 392–400.
    [21] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi-$contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2489) PDF downloads(157) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog