This paper was concerned with the following Kirchhoff type equation involving the fractional Laplace operator $ (-\Delta)^{s} $
$ \begin{cases} \left(1+\alpha\int_{\mathbb{R}^{3}}|(-\Delta)^{\frac{s}{2}}u|^{2}dx\right)(-\Delta)^{s} u+\mu K(x)u = g(x)|u|^{p-2}u, &{\rm in}\ \mathbb{R}^{3}, \\ u\in H^{s}(\mathbb{R}^{3}), \ \end{cases} $
where $ \alpha, \ \mu > 0 $, $ s\in [\frac{3}{4}, 1) $, $ 2 < p < 4 $. By filtration of the Nehari manifold and variational techniques, we obtained the existence of one and two positive solutions under some conditions imposed on $ K $ and $ g $.
Citation: Jie Yang, Lintao Liu, Haibo Chen. Multiple positive solutions to the fractional Kirchhoff-type problems involving sign-changing weight functions[J]. AIMS Mathematics, 2024, 9(4): 8353-8370. doi: 10.3934/math.2024406
This paper was concerned with the following Kirchhoff type equation involving the fractional Laplace operator $ (-\Delta)^{s} $
$ \begin{cases} \left(1+\alpha\int_{\mathbb{R}^{3}}|(-\Delta)^{\frac{s}{2}}u|^{2}dx\right)(-\Delta)^{s} u+\mu K(x)u = g(x)|u|^{p-2}u, &{\rm in}\ \mathbb{R}^{3}, \\ u\in H^{s}(\mathbb{R}^{3}), \ \end{cases} $
where $ \alpha, \ \mu > 0 $, $ s\in [\frac{3}{4}, 1) $, $ 2 < p < 4 $. By filtration of the Nehari manifold and variational techniques, we obtained the existence of one and two positive solutions under some conditions imposed on $ K $ and $ g $.
[1] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. http://dx.doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[2] | J. H. He, Q. T. Ain, New promises and future challenges of fractal calculus: From two-scale thermo-dynamics to fractal variational principle, Therm. Sci., 24 (2020), 659–681. http://dx.doi.org/10.2298/TSCI200127065H doi: 10.2298/TSCI200127065H |
[3] | T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Partial Differ. Eq., 20 (1995), 1725–1741. |
[4] | C. O. Alves, G. M. Figueiredo, Multi-bump solutions for a Kirchhoff-type problem, Adv. Nonlinear Anal., 5 (2016), 1–26. http://dx.doi.org/10.1515/anona-2015-0101 doi: 10.1515/anona-2015-0101 |
[5] | T. Bartsch, A. Pankov, Z. Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549–569. http://dx.doi.org/10.1142/S0219199701000494 doi: 10.1142/S0219199701000494 |
[6] | J. T. Sun, Y. H. Chen, T. F. Wu, Z. S. Feng, Positive solutions of a superlinear Kirchhoff type equation in $\mathbb{R}^{N} (N\geq 4)$, Commun. Nonlinear Sci. Numer. Simul., 71 (2019), 141–160. http://dx.doi.org/10.1016/j.cnsns.2018.11.002 doi: 10.1016/j.cnsns.2018.11.002 |
[7] | J. T. Sun, T. F. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differ. Equ., 256 (2014), 1771–1792. http://dx.doi.org/10.1016/j.jde.2013.12.006 doi: 10.1016/j.jde.2013.12.006 |
[8] | J. T. Sun, T. F. Wu, Steep potential well may help Kirchhoff type equations to generate multiple solutions, Nonlinear Anal., 190 (2020), 111609. http://dx.doi.org/10.1016/j.na.2019.111609 doi: 10.1016/j.na.2019.111609 |
[9] | L. G. Zhao, H. D. Liu, F. K. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differ. Equ., 255 (2013), 1–23. http://dx.doi.org/10.1016/j.jde.2013.03.005 doi: 10.1016/j.jde.2013.03.005 |
[10] | F. B. Zhang, M. Du, Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well, J. Differ. Equ., 269 (2020), 10085–10106. http://dx.doi.org/10.1016/j.jde.2020.07.013 doi: 10.1016/j.jde.2020.07.013 |
[11] | G. F. Che, H. B. Chen, T. F. Wu, Existence and multiplicity of positive solutions for fractional Laplacian systems with nonlinear coupling, J. Math. Phys., 60 (2019), 081511. http://dx.doi.org/10.1063/1.5087755 doi: 10.1063/1.5087755 |
[12] | Z. S. Liu, H. J. Luo, Z. T. Zhang, Dancer-Fǔcik spectrum for fractional Schrödinger operators with a steep potential well on $\mathbb{R}^{N}$, Nonlinear Anal., 189 (2019), 111565. http://dx.doi.org/10.1016/j.na.2019.06.024 doi: 10.1016/j.na.2019.06.024 |
[13] | M. Niu, Z. Tang, Least energy solutions of nonlinear Schrödinger equations involving the fractional Laplacian and potential wells, Sci. China Math., 60 (2017), 261–276. https://doi.org/10.1007/s11425-015-0830-3 doi: 10.1007/s11425-015-0830-3 |
[14] | L. Yang, Z. S. Liu, Multiplicity and concentration of solutions for fractional Schrödinger equation with sublinear perturbation and steep potential well, Comput. Math. Appl., 72 (2016), 1629–1640. http://dx.doi.org/10.1016/j.camwa.2016.07.033 doi: 10.1016/j.camwa.2016.07.033 |
[15] | A. Aberqi, A. Ouaziz, Morse's theory and local linking for a fractional $(p_1(x, \cdot), p_2(x, \cdot))$: Laplacian problems on compact manifolds, J. Pseudo-Differ. Oper., 14 (2023). http://dx.doi.org/10.1007/s11868-023-00535-5 doi: 10.1007/s11868-023-00535-5 |
[16] | Z. Liu, M. Squassina, J. Zhang, Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension, Nonlinear Differ. Equ. Appl., 24 (2017). http://dx.doi.org/10.1007/s00030-017-0473-7 doi: 10.1007/s00030-017-0473-7 |
[17] | Z. Liu, V. Rădulescu, Z. Yuan, Concentration of solutions for fractional Kirchhoff equations with discontinuous reaction, Z. Angew. Math. Phys., 73 (2022). http://dx.doi.org/10.1007/s00033-022-01849-y doi: 10.1007/s00033-022-01849-y |
[18] | A. Cotsiolis, N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225–236. http://dx.doi.org/10.1016/j.jmaa.2004.03.034 doi: 10.1016/j.jmaa.2004.03.034 |
[19] | K. J. Brown, Y. P. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differ. Eq., 193 (2003), 481–499. http://dx.doi.org/10.1016/S0022-0396(03)00121-9 doi: 10.1016/S0022-0396(03)00121-9 |
[20] | J. M. Marcos do Ó, X. M. He, P. K. Mishra, Fractional Kirchhoff problem with critical indefinite nonlinearity, Math. Nachr., 292 (2019), 615–632. http://dx.doi.org/10.1002/mana.201800044 doi: 10.1002/mana.201800044 |
[21] | H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. |
[22] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. |
[23] | J. Yang, H. B. Chen, Z. S. Feng, Multiple positive solutions to the fractional Kirchhoff problem with critical indefinite nonlinearities, Electron. J. Differ. Eq., 2020 (2020), 1–21. |
[24] | B. Abdellaoui, R. Bentifour, Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications, J. Funct. Anal., 272 (2017), 3998–4029. http://dx.doi.org/10.1016/j.jfa.2017.02.007 doi: 10.1016/j.jfa.2017.02.007 |