Research article

On a Diophantine equation involving fractional powers with primes of special types

  • Received: 23 March 2024 Revised: 22 April 2024 Accepted: 25 April 2024 Published: 13 May 2024
  • MSC : 11L07, 11L20, 11N35, 11N36

  • Suppose that $ N $ is a sufficiently large real number. In this paper it is proved that for $ 2 < c < \frac{990}{479} $, the Diophantine equation

    $ \left[p_{1}^{c}\right]+\left[p_{2}^{c}\right]+\left[p_{3}^{c}\right]+\left[p_{4}^{c}\right]+\left[p_{5}^{c}\right] = N $

    is solvable in primes $ p_{1}, p_{2}, p_{3}, p_4, p_5 $ such that each of the numbers $ p_{i}+2, i = 1, 2, 3, 4, 5 $ has at most $ \left[\frac{6227}{3960-1916c}\right] $ prime factors.

    Citation: Liuying Wu. On a Diophantine equation involving fractional powers with primes of special types[J]. AIMS Mathematics, 2024, 9(6): 16486-16505. doi: 10.3934/math.2024799

    Related Papers:

  • Suppose that $ N $ is a sufficiently large real number. In this paper it is proved that for $ 2 < c < \frac{990}{479} $, the Diophantine equation

    $ \left[p_{1}^{c}\right]+\left[p_{2}^{c}\right]+\left[p_{3}^{c}\right]+\left[p_{4}^{c}\right]+\left[p_{5}^{c}\right] = N $

    is solvable in primes $ p_{1}, p_{2}, p_{3}, p_4, p_5 $ such that each of the numbers $ p_{i}+2, i = 1, 2, 3, 4, 5 $ has at most $ \left[\frac{6227}{3960-1916c}\right] $ prime factors.



    加载中


    [1] K. Buriev, Additive problems with prime numbers, Ph.D. thesis, Moscow University, 1989.
    [2] R. Baker, Some Diophantine equations and inequalities with primes, Funct. Approx. Comment. Math., 64 (2021), 203–250. https://doi.org/10.7169/facm/1912 doi: 10.7169/facm/1912
    [3] J. Brüdern, E. Fouvry, Lagrange's Four Squares Theorem with almost prime variables, J. Reine Angew. Math., 454 (1994), 59–96. https://doi.org/10.1515/crll.1994.454.59 doi: 10.1515/crll.1994.454.59
    [4] J. R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica, 16 (1973), 157–176.
    [5] Y. C. Cai, M. G. Lu, Additive problems involving primes of special type, Acta Arith., 140 (2009), 189–204. https://doi.org/10.4064/aa140-2-6 doi: 10.4064/aa140-2-6
    [6] Y. C. Cai, On a Diophantine equation involving primes, Ramanujan J., 50 (2019), 151–162. https://doi.org/10.1007/s11139-018-0027-6 doi: 10.1007/s11139-018-0027-6
    [7] S. W. Graham, G. Kolesnik, Van der Corput's Method of Exponential Sums, New York: Cambridge University Press, 1991. https://doi.org/10.1017/cbo9780511661976
    [8] G. Greaves, Sieves in Number Theory, Berlin: Springer, 2001. https://doi.org/10.1007/978-3-662-04658-6
    [9] L. K. Hua, Some results in additive prime number theory, Quart. J. Math. Oxford, 9 (1938), 68–80. https://doi.org/10.1093/qmath/os-9.1.68 doi: 10.1093/qmath/os-9.1.68
    [10] D. R. Heath-Brown, The Pjatecki$\mathop {\rm{i}}\limits^ \vee $-Šapiro prime number theorem, J. Number Theory, 16 (1983), 242–266. https://doi.org/10.1016/0022-314X(83)90044-6 doi: 10.1016/0022-314X(83)90044-6
    [11] H. Iwaniec, E. Kowalski, Analytic Number Theory, New York: American Mathematical Society, 2004.
    [12] A. Kumchev, T. Nedeva, On an equation with prime numbers, Acta Arith., 83 (1998), 117–126. https://doi.org/10.4064/aa-83-2-117-126 doi: 10.4064/aa-83-2-117-126
    [13] M. Laporta, D. I. Tolev, On an equation with prime numbers, Mat. Zametki, 57 (1995), 926–929. https://doi.org/10.1007/bf02304564 doi: 10.1007/bf02304564
    [14] J. Li, M. Zhang, On a Diophantine inequality with five prime variables, preprint paper, 2018.
    [15] J. Li, M. Zhang, On a Diophantine equation with three prime variables, Integers, 10 (2019), A39.
    [16] J. Li, F. Xue, M. Zhang, On a ternary Diophantine equality involving fractional powers with prime variables of a special form, Ramanujan J., 58 (2022), 1171–1199. https://doi.org/10.1007/s11139-021-00517-5 doi: 10.1007/s11139-021-00517-5
    [17] S. Li, On a Diophantine equation with prime numbers, Int. J. Number Theory, 15 (2019), 1601–1616. https://doi.org/10.1142/s1793042119300011 doi: 10.1142/s1793042119300011
    [18] K. Matomäki, X. Shao, Vinogradov's three primes theorem with almost twin primes, Compos. Math., 153 (2017), 1220–1256. https://doi.org/10.1112/s0010437x17007072 doi: 10.1112/s0010437x17007072
    [19] Z. H. Petrov, On an equation involving fractional powers with prime numbers of a special type, God. Sofiĭ. Univ. "Sv. Kliment Okhridski." Fac. Mat. Inform., 104 (2017), 171–183.
    [20] O. Robert, P. Sargos, Three-dimensional exponential sums with monomials, J. Reine Angew. Math., 591 (2006), 1–20. https://doi.org/10.1515/crelle.2006.012 doi: 10.1515/crelle.2006.012
    [21] B. I. Segal, A general theorem concerning some properties of an arithmetical function, C. R. Acad. Sci. URSS, 3 (1933), 95–98.
    [22] B. I. Segal, The Waring theorem with fractional and irrational degrees, in Russian, Trudy Mat. Inst. Stekov, 5 (1933), 73–86.
    [23] E. G. Titchmarsh, The Theory of the Riemann Zeta-Function, New York: Oxford University Press, 1986.
    [24] D. I. Tolev, Additive problems with prime numbers of special type, Acta Arith., 96 (2000), 53–88. https://doi.org/10.4064/aa96-1-2 doi: 10.4064/aa96-1-2
    [25] I. M. Vinogradov, Representation of an odd number as a sum of three primes, C. R. (Doklady) Acad. Sci. URSS, 15 (1937), 291–294.
    [26] R. C. Vaughan, An elementary method in prime number theory, Acta Arith., 37 (1980), 111–115. https://doi.org/10.4064/aa-37-1-111-115 doi: 10.4064/aa-37-1-111-115
    [27] W. G. Zhai, X. D. Cao, A Diophantine equation with prime numbers, in Chinese, Acta Math. Sin., 45 (2002), 443–454.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(177) PDF downloads(14) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog