Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Web analytics and supply chain transportation firms' financial performance

  • In the dynamic landscape of today's digitized markets, organizations harness the power of vast and swiftly accessible data to glean invaluable insights. A significant portion of this data emanates from user behavior on business websites. Unraveling the intricacies of this user behavior has become paramount for businesses, serving as the compass guiding the adaptation and evolution of their digital marketing strategies. Embarking on an exploration of this digital frontier, our study delves into the virtual domains of enterprises entrenched in the supply chain sector of the Greek economy. The spotlight falls upon four dominant transportation firms of the Greek supply chain sector, to unravel the relationship between their website activities and the prediction of their stock market prices. Our analytical tools, adorned with sophisticated statistical methodologies, embracing normality tests, correlations, ANOVA, linear regressions and the utilization of regression residual tests were deployed with precision. As the analytical methodology was deployed, a revelation emerged: The digital footprints left by customers on the virtual domains of supply chain firms provided the ability to predict and influence stock prices. Metrics such as bounce rates, the influx of new visitors and the average time on websites emerged as important factors, that could predict the fluctuations in the stock prices of these Greek supply chain firms. Web analytics have been discerned as a determining factor for predicting the course of transportation firms' stock prices. It serves as a clarion call for global scrutiny, inviting scholars and practitioners alike to scrutinize analogous firms on a global canvas. In this convergence of virtual footprints and financial trajectories lies not just a revelation for today but a harbinger of insights that resonate far beyond the digital borders of the Hellenic transportation sector.

    Citation: Nikolaos T. Giannakopoulos, Damianos P. Sakas, Nikos Kanellos, Christos Christopoulos. Web analytics and supply chain transportation firms' financial performance[J]. National Accounting Review, 2023, 5(4): 405-420. doi: 10.3934/NAR.2023023

    Related Papers:

    [1] Shumoua F. Alrzqi, Fatimah A. Alrawajeh, Hany N. Hassan . An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method. AIMS Mathematics, 2024, 9(4): 8661-8688. doi: 10.3934/math.2024420
    [2] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [3] Zhengang Zhao, Yunying Zheng, Xianglin Zeng . Finite element approximation of fractional hyperbolic integro-differential equation. AIMS Mathematics, 2022, 7(8): 15348-15369. doi: 10.3934/math.2022841
    [4] Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274
    [5] Jian-Gen Liu, Jian Zhang . A new approximate method to the time fractional damped Burger equation. AIMS Mathematics, 2023, 8(6): 13317-13324. doi: 10.3934/math.2023674
    [6] Weiwen Wan, Rong An . Convergence analysis of Euler and BDF2 grad-div stabilization methods for the time-dependent penetrative convection model. AIMS Mathematics, 2024, 9(1): 453-480. doi: 10.3934/math.2024025
    [7] Shanhao Yuan, Yanqin Liu, Yibin Xu, Qiuping Li, Chao Guo, Yanfeng Shen . Gradient-enhanced fractional physics-informed neural networks for solving forward and inverse problems of the multiterm time-fractional Burger-type equation. AIMS Mathematics, 2024, 9(10): 27418-27437. doi: 10.3934/math.20241332
    [8] Xin Zhao, Xin Liu, Jian Li . Convergence analysis and error estimate of finite element method of a nonlinear fluid-structure interaction problem. AIMS Mathematics, 2020, 5(5): 5240-5260. doi: 10.3934/math.2020337
    [9] Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112
    [10] Muhammad Asim Khan, Norma Alias, Umair Ali . A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time. AIMS Mathematics, 2023, 8(6): 13725-13746. doi: 10.3934/math.2023697
  • In the dynamic landscape of today's digitized markets, organizations harness the power of vast and swiftly accessible data to glean invaluable insights. A significant portion of this data emanates from user behavior on business websites. Unraveling the intricacies of this user behavior has become paramount for businesses, serving as the compass guiding the adaptation and evolution of their digital marketing strategies. Embarking on an exploration of this digital frontier, our study delves into the virtual domains of enterprises entrenched in the supply chain sector of the Greek economy. The spotlight falls upon four dominant transportation firms of the Greek supply chain sector, to unravel the relationship between their website activities and the prediction of their stock market prices. Our analytical tools, adorned with sophisticated statistical methodologies, embracing normality tests, correlations, ANOVA, linear regressions and the utilization of regression residual tests were deployed with precision. As the analytical methodology was deployed, a revelation emerged: The digital footprints left by customers on the virtual domains of supply chain firms provided the ability to predict and influence stock prices. Metrics such as bounce rates, the influx of new visitors and the average time on websites emerged as important factors, that could predict the fluctuations in the stock prices of these Greek supply chain firms. Web analytics have been discerned as a determining factor for predicting the course of transportation firms' stock prices. It serves as a clarion call for global scrutiny, inviting scholars and practitioners alike to scrutinize analogous firms on a global canvas. In this convergence of virtual footprints and financial trajectories lies not just a revelation for today but a harbinger of insights that resonate far beyond the digital borders of the Hellenic transportation sector.



    In this article, we consider the following time-fractional generalized Rosenau-RLW-Burgers equation:

    utC0Dαtuxx+C0Dβtuxxxx+uxuxx+f(u)x=g(x,t), (x,t)Ω×J, (1.1)

    with boundary conditions

    u(x,t)=uxx(x,t)=0, (x,t)Ω×ˉJ, (1.2)

    and initial condition

    u(x,0)=u0(x), xΩ, (1.3)

    where Ω=(a,b) is the spatial domain, J=(0,T] is the time interval with T(0,), and g(x,t) is a known source term function. The nonlinear term f(u) satisfies the assumption condition |f(u)|cf(u)|u|, where cf(u) is a positive constant on u. C0Dαtu and C0Dβtu are both Caputo fractional derivatives with 0<α,β<1. Since C0Dγtu=γ(uu0)tγ, all of the above Caputo fractional derivatives can be converted into the Riemann-Liouville fractional derivative, note that

    γutγ=1Γ(1γ)tt0u(x,s)(ts)γds,0<γ<1. (1.4)

    Specifically, when α=1, β=1, (1.1) degenerates into the generalized Rosenau-RLW-Burgers equation which can be seen as the combined system between the generalized Rosenau-RLW equation and the generalized Rosenau-Burgers equation.

    The RLW equation, the Rosenau equation, and their combined systems with other equations are significant mathematical and physical equations that effectively describe nonlinear wave behaviors. These equations have become interesting topics in the study of nonlinear dispersion dynamics. Since obtaining analytical solutions for these equations is challenging, studying their numerical methods is paramount. Over the years, there has been extensive research on numerical methods for solving this type of equation. In [1], Atouani and Omrani discussed the numerical solution of the Rosenau-RLW (RRLW) equation based on the Galerkin finite element method. In [2], He and Pan developed a three-level, linearly implicit finite difference method for solving the generalized Rosenau-Kawahara-RLW equation. In [3], Wongsaijai and Poochinapan developed a pseudo-compact finite difference scheme for solving the generalized Rosenau-RLW-Burgers equation. In [4], Mouktonglang et al. analyzed a generalized Rosenau-RLW-Burgers equation with periodic initial-boundary value. For more papers on related equations, please refer to [5,6,7,8]. It is worth noting that the literature on the fractional generalized Rosenau-RLW-Burgers equation is relatively scarce, and its analytical solution is difficult to obtain. Therefore, we have to consider effective numerical methods such as finite element methods [9,10,11,12], finite difference methods [13,14,15], finite volume methods [16], spectral methods [17,18,19], and mixed finite element methods [20,21,22]. In addition, the existence of time-fractional derivatives increases the difficulty of studying numerical methods. Therefore, it is crucial to choose an appropriate high-order approximation formula for the fractional derivative to establish a stable numerical scheme for (1.1).

    In 1986, Lubich [23] proposed the convolution quadrature (CQ) formula for Riemann Liouville fractional operators using the discrete convolution. In [24], Chen et al. developed an alternating direction implicit fractional trapezoidal rule type to solve a two-dimensional fractional evolution equation. In [25], Jin et al. proposed a corrected approximation formula for high-order BDFs through appropriate initial modifications to discretize fractional evolution equations. Based on the CQ formula, in [26], Liu et al. developed the shifted convolution quadrature (SCQ) theory, which extended the CQ formula at xnθ and discussed the constraints of parameter θ. In [27], Yin et al. studied the generalized BDF2-θ with the finite element method for solving the fractional mobile/immobile transport model, and also developed a correction scheme by adding the starting part to restore convergence order. For more related papers, please refer to [28,29,30,31,32,33].

    In this article, we develop the generalized BDF2-θ in time combined with the mixed finite element method in space to solve (1.1). The focuses of this article are as follows:

    ● It is noted that the time-fractional generalized Rosenau-RLW-Burgers equation containing two time-fractional operators is studied.

    ● The stability of the time-fractional generalized Rosenau-RLW-Burgers equation (1.1) based on the mixed finite element method is given.

    ● Based on a comprehensive analysis of some numerical examples, the numerical method's feasibility and effectiveness have been extensively validated. Specifically, the issue of decreasing the convergence rate of nonsmooth solutions is solved by adding correction terms.

    The structure of this article is as follows: In Section 2, the generalized BDF2-θ is introduced, and the fully discrete mixed finite element scheme is provided. In Section 3, the existence and uniqueness theorem for the fully discrete mixed finite element scheme is given. In Section 4, the stability of the scheme is proved. In Section 5, some numerical examples with smooth and nonsmooth solutions based on the discrete scheme are presented. In Section 6, some conclusions are given.

    In this section, we present the fully discrete mixed finite element scheme for (1.1) in space, which combines the generalized BDF2-θ in time. The generalized BDF2-θ with the starting part is introduced in [27]. Further, we divide the time interval [0,T] into 0=t0<t1<<tN1<tN=T, and let tn=nτ(n=1,2,,N), where τ is time step length size and N is a positive integer.

    For the convenience of research, set ˆu:=uu0, and assume that ˆu has the following form:

    ˆu(x,t)=ˆu1(x,t)+ˆu2(x,t):=κj=1cjtσj+tσκ+1ϕ(x,t), (2.1)

    where cj=c(x), 1<σ1<σ2<<σκ<σκ+1 and ϕ(x,t) is sufficiently differentiable with respect to t.

    Using ˆu:=uu0, we can write (1.1)–(1.3) as

    ˆutαˆuxxtα+βˆuxxxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t),(x,t)Ω×J, (2.2)

    with boundary conditions

    ˆu(x,t)=ˆuxx(x,t)=0,(x,t)Ω×ˉJ, (2.3)

    and initial condition

    ˆu(x,0)=0,xΩ, (2.4)

    where ˆg(x,t)=g(x,t)+(u0)x(u0)xx.

    Now, we introduce an auxiliary variable q=ˆuxx to obtain the following coupled system:

    ˆutαˆuxxtα+βqxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t), (2.5)

    and

    q=ˆuxx. (2.6)

    Multiplying (2.5) and (2.6) by vH10 and wH10, respectively, integrating the result equations, and using integration by parts, we obtain the following weak form:

    (ˆut,v)+(αˆuxtα,vx)(βqxtβ,vx)(ˆu,vx)+(ˆux,vx)(f(ˆu),vx)=(ˆg,v),vH10, (2.7)

    and

    (q,w)+(ˆux,wx)=0,wH10. (2.8)

    To provide the fully discrete numerical scheme, we first introduce the relevant formulas and lemmas for the generalized BDF2-θ.

    For smooth functions ˆu and q in [0,T], we let ˆun=ˆu(,tn), qn=(,tn). The approximation formula for the Riemann-Liouville fractional derivative at time tnθ with the generalized BDF2-θ is

    γˆunθtγ=τγnj=0ω(γ)jˆunj+τγκj=1ω(γ)n,jˆuj+Rnθγ:=Ψγ,nτˆu+Sγ,nτ,κˆu+Rnθγ, (2.9)

    where |Rnθγ|Cτ2.

    The discrete convolution part is denoted as

    Ψγ,nτˆu:=τγnj=0ω(γ)jˆunj, (2.10)

    and the starting part is

    Sγ,nτ,κˆu:=τγκj=1ω(γ)n,jˆuj. (2.11)

    The convolution weights {ω(γ)j}j=0 in (2.10) are generated by the following generating function:

    ω(γ)(ξ)=(3γ2θ2γ2γ2θγξ+γ2θ2γξ2)γ. (2.12)

    Lemma 2.1. [27] We give the convolution weights {ω(γ)j}j=0 of the generalized BDF2-θ as follows:

    ω(γ)0=(3γ2θ2γ)γ,ω(γ)1=2(θγ)(2γ3γ2θ)1γ,ω(γ)j=2γj(3γ2θ)[2(γθ)(j1γ1)ω(γ)j1+(γ2θ)(1j22γ)ω(γ)j2],j2. (2.13)

    Lemma 2.2. [27] The starting weights {ω(γ)n,j}κj=1 of the generalized BDF2-θ are given as the following:

    κj=1ω(γ)n,jj=Γ(+1)Γ(γ+1)(nθ)γnj=1ω(γ)njj,=σ1,σ2,,σκ. (2.14)

    Lemma 2.3. [12,15] For ˆuC4[0,π], the following two approximate formulas at tnθ hold:

    g(tnθ)=gnθ+O(τ2),f(ˆu(tnθ))=f(ˆunθ)+O(τ2), (2.15)

    where gnθ:=(1θ)gn+θgn1 and f(ˆunθ):=(2θ)f(ˆun1)(1θ)f(ˆun2).

    Next, we have the following approximate formula:

    ˆu(tnθ)=ˆunθ+S0,nτ,κˆu+O(τ2):=(1θ)ˆun+θˆun1+S0,nτ,κˆu+O(τ2). (2.16)

    Without considering the starting part, we can obtain the weak form of (2.5) and (2.6) at tnθ:

    (Ψ1,nτˆu,v)+(Ψα,nτˆux,vx)(Ψβ,nτqx,vx)(ˆunθ,vx)+(ˆunθx,vx)=(f(ˆunθ),vx)+(ˆgnθ,v)(Rnθ1,v), (2.17)

    and

    (qnθ,w)+(ˆunθx,wx)=(Rnθ2,w), (2.18)

    where Rnθ1=O(τ2) and Rnθ2=O(τ2).

    To establish the fully discrete mixed finite element scheme, we introduce the following finite element space:

    Vh={vh|vhH10,vh|IiPk(Ii),IiTh,k1},

    where Th is a subdivision of ˉΩ=[a,b] into M subintervals Ii=[xi1,xi], with hi=xixi1, h=max1iMhi, and Pk(Ii) represent the polynomials with a degree less than or equal to k in Ii.

    Next, we provide linear basis functions {φi}Mi=1 of finite element space Vh as follows:

    φi(x)={1+xxihi,xIi,1xxihi+1,xIi+1,0,others, (2.19)
    φM(x)={1+xxMhM,xIM,0,others. (2.20)

    Based on the above finite element space, we find {Unθ,Qnθ}Vh×Vh satisfying

    (Ψ1,nτU,V)+(Ψα,nτUx,Vx)(Ψβ,nτQx,Vx)(Unθ,Vx)+(Unθx,Vx)=(f(Unθ),Vx)+(ˆgnθ,V),VVh, (2.21)

    and

    (Qnθ,W)+(Unθx,Wx)=0,WVh. (2.22)

    Theorem 3.1. The solution of the fully discrete mixed finite element scheme (2.21) and (2.22) is uniquely solvable.

    Proof. Taking basis functions {φi}Mi=1 of finite element space Vh, we have

    Un=Mi=1uniφi,Qn=Mi=1qniφi. (3.1)

    Taking V=φj and W=φj from (2.21) and (2.22), we have

    τ1ω(1)0AUn+ταω(α)0BUn+(1θ)BUn(1θ)CUnτβω(β)0BQn=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk, (3.2)

    and

    (1θ)BUn+(1θ)AQn=θBUnθAQn, (3.3)

    where

    A=[(φi,φj)]T1i,jM,B=[(φix,φjx)]T1i,jM,C=[(φi,φjx)]T1i,jM,Fnθ=[(f(Unθ),φ1x),,(f(Unθ),φMx)]T,Gnθ=[(gnθ,φ1),,(gnθ,φM)]T.

    Obviously, A and B are symmetric and positive definite. Further, processing the boundary and simplifying the right-hand term, we have

    (τ1ω(1)0˜A+ταω(α)0˜B+(1θ)˜B(1θ)˜C)Unτβω(β)0˜BQn=Hn1, (3.4)

    and

    (1θ)˜BUn+(1θ)˜AQn=Hn2, (3.5)

    where

    Hn1=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk,Hn2=θBUnθAQn.

    Multiplying (3.4) by τ˜A1, we have

    (ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C)Unτ1βω(β)0˜A1˜BQn=τ˜A1Hn1. (3.6)

    Further, rewrite (3.5) as

    Qn=Hn3, (3.7)

    where Hn3=(1θ)1˜A1Hn2˜A1˜BUn.

    Substitute (3.7) into (3.6) to obtain

    KUn=Hn4, (3.8)

    where

    K=ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C+τ1βω(β)0˜A1˜B˜A1˜B,
    Hn4=τ˜A1Hn1+τ1β(1θ)1ω(β)0˜A1˜B˜A1Hn2.

    It is easy to see that (3.7) and (3.8) are equivalent to (3.4) and (3.5). Due to τ being small enough and E being an identity matrix, the matrix K is invertible. Additionally, since Uk(k=0,1,,n1) is known, after multiple iterations, (3.7) and (3.8) have a unique solution.

    Remark 3.1. Since we introduce the auxiliary variable q=ˆuxx to transform (2.2) into a first-order system (2.5) and (2.6), according to [34,35], the mixed finite element scheme (2.21) and (2.22) do not need to satisfy the LBB condition. In [36], the LBB condition is a condition for the problem to be well posed. From this perspective, typically satisfying the LBB condition is to obtain the existence and uniqueness of a solution. Although the mixed finite element scheme in this article does not need to satisfy the LBB condition, it still satisfies the existence and uniqueness of a solution.

    Lemma 4.1. [12,14] For UmVh, satisfying Um=0(m<0), we have

    (Ψ1,mtU,Umθ)14τ(H[Um]H[Um1]), m1,

    where

    H[Um]=(32θ)

    and

    \mathbb{H}[U^m]\ge\frac{1}{1-\theta}\|U^m\|^2,\ m\ge1.

    Lemma 4.2. [27] } {For any vector (v^0, v^1, \cdots, v^{n-1})\in \mathbb{R}^n , defining \{\omega_k^{(\gamma)}\}_{k = 0}^{\infty}\; (0 < \gamma < 1) be a sequence of coefficients of the generating function \omega^{(\gamma)}(\xi) in (2.12) and 0\le\theta\le\min\{\gamma, \frac{1}{2}\} , we have

    \sum\limits_{m = 1}^{n-1}v^m\sum\limits_{k = 1}^{m}\omega_{m-k}^{(\gamma)} v^k\ge0,\ n\ge1.

    Theorem 4.1. Let u^n_h = U^n+\bar{u}_h^0 , where \bar{u}_h^0 is an approximation of u_0 , the following stability of the fully discrete scheme (2.21) and (2.22) holds:

    \begin{equation} \|u_h^L\|^2\ \le\ C\left(\|\bar{u}_h^0 \|^2+\tau\sum\limits_{n = 1}^{L}\|g^{n-\theta} \|^2\right),\ 1\le L \le N, \end{equation} (4.1)

    where C is a positive constant independent of h and \tau .

    Proof. Taking V = U^{n-\theta} , W = \Psi_{\tau}^{\beta, n}Q , (2.21) and (2.22) can be written as

    \begin{equation} \begin{split} &(\Psi_{\tau}^{1,n} U,U^{n-\theta})+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)-(\Psi_{\tau}^{\beta,n}Q_{x},U^{n-\theta}_x)+\|U_{x}^{n-\theta }\|^2\\ = &(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}), \end{split} \end{equation} (4.2)

    and

    \begin{equation} (Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+(U^{n-\theta}_{x},\Psi_{\tau}^{\beta,n}Q_x) = 0. \end{equation} (4.3)

    Adding (4.2) and (4.3), we have

    \begin{equation} \begin{split} &(\Psi_{\tau}^{1,n} U,U^{n-\theta})+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)+(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+\|U_{x}^{n-\theta }\|^2\\ = &(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}). \end{split} \end{equation} (4.4)

    Using Lemma 4.1, we obtain

    \begin{equation} \begin{split} &\frac{1}{4\tau}(\mathbb{H}[U^n]-\mathbb{H}[U^{n-1}])+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)+(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+\|U_{x}^{n-\theta }\|^2\\ \le&(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}). \end{split} \end{equation} (4.5)

    Multiply (4.5) by 4\tau and sum it with respect to n from 1 to L to get

    \begin{equation} \begin{split} &\mathbb{H}[U^L]-\mathbb{H}[U^{0}]+ 4\tau\sum\limits_{n = 1}^{L}(\Psi_t^{\alpha,n} U_{x},U^{n-\theta}_x)+ 4\tau\sum\limits_{n = 1}^{L}(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+ 4\tau\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2\\ \le&4\tau\left(\sum\limits_{n = 1}^{L}(U^{n-\theta},U^{n-\theta}_x)+\sum\limits_{n = 1}^{L}(f(U^{n-\theta}),U^{n-\theta}_x)+\sum\limits_{n = 1}^{L}(\hat{g}^{n-\theta},U^{n-\theta})\right). \end{split} \end{equation} (4.6)

    By the Hölder inequality and Young inequality, the three terms on the right-hand side of (4.6) can be expanded to

    \begin{equation} \sum\limits_{n = 1}^{L}(U^{n-\theta},U^{n-\theta}_x)\le\frac{1}{2}\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2+\frac{1}{2}\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2, \end{equation} (4.7)
    \begin{equation} \begin{split} \sum\limits_{n = 1}^{L}(f(U^{n-\theta}),U^{n-\theta}_x) \le&\sum\limits_{n = 1}^{L}\|c_f(U^{n-\theta})\|_{\infty}\|U^{n-\theta}\|\|U^{n-\theta}_x\| \\ \le& C\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2+\frac{1}{2}\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2, \end{split} \end{equation} (4.8)
    \begin{equation} \sum\limits_{n = 1}^{L}(\hat{g}^{n-\theta},U^{n-\theta})\le\frac{1}{2}\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2 +\frac{1}{2}\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2, \end{equation} (4.9)

    where we use the bounded condition \|c_f(U^{n-\theta})\|_{\infty}\leq C .

    Substituting (4.7)–(4.9) into (4.6), we arrive at

    \begin{equation} \begin{split} & \mathbb{H}[U^L]-\mathbb{H}[U^{0}]+ 4\tau\sum\limits_{n = 1}^{L}(\Psi_t^{\alpha,n} U_{x},U^{n-\theta}_x)+ 4\tau\sum\limits_{n = 1}^{L}(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)\\ \le& C\tau \left(\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2+\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2\right). \end{split} \end{equation} (4.10)

    In what follows, using Lemmas 4.1 and 4.2 and the Gronwall inequality, we have

    \begin{equation} \|U^L\|^2-\|U^0\|^2\le C\tau\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2. \end{equation} (4.11)

    Since U^0 = 0 , we obtain

    \begin{equation} \|U^L\|^2\le C\tau\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2. \end{equation} (4.12)

    Noting that U^L = u^L_h-\bar{u}_h^0 and using the triangle inequality, the conclusion of this theorem is derived.

    In this section, we present numerical simulation results for both smooth and nonsmooth solutions to verify the effectiveness of the numerical scheme. Next, we set the nonlinear term f(u) = u^2 , the spatial domain \Omega = (0, 1) , and the time interval J = (0, 1] .

    Example 5.1 The exact solution is u(x, t) = t^{2}\sin(2\pi x) satisfying u(x, 0) = 0 , and the known source function g(x, t) is given by

    \begin{equation} g(x,t) = \sin(2\pi x)\left(2t+\frac{8\pi ^2t^{2-\alpha}}{\Gamma(3-\alpha)}+\frac{32\pi^4t^{2-\beta}}{\Gamma(3-\beta)}+4\pi^2t^2\right)+2\pi t^2\cos(2\pi x)+2\pi t^4\sin(4\pi x ). \end{equation} (5.1)

    In Table 1, fixing \tau = 1/1000 and choosing h = 1/10, 1/20, 1/40, 1/80 , we provide the L^2 -errors and the spatial convergence rates for u and q with different parameters \alpha , \beta , and \theta , where \theta\le\min\{\alpha, \beta, \frac{1}{2}\} . Similarly, in Table 2, taking h = 1/1000 , we calculate the L^2 -errors and the time convergence rates with \tau = 1/10, 1/20, 1/40, 1/80 . From Tables 1 and 2, one can see that the convergence rates in both space and time are close to 2 when the exact solution is smooth. In Table 3, if \theta > \min\{\alpha, \beta, \frac{1}{2}\} , the convergence accuracy will be unstable, which verifies the range of \theta values from a numerical perspective. To observe the effect of numerical simulation more clearly, we provide the comparison images between numerical solutions and exact solutions. In Figure 1, we show distinct comparison images of the numerical solutions of u_h and q_h and the exact solutions of u and q with \tau = 1/1000 , h = 1/80 , \alpha = 0.2 , \beta = 0.8 , and \theta = 0.2 .

    Table 1.  Spatial convergence results with \tau = 1/1000 .
    \alpha \beta \theta h \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 2.2165E-02 - 2.6449E-02 -
    0.2 1/20 5.6375E-03 1.9752 6.1401E-03 2.1069
    1/40 1.4151E-03 1.9941 1.5121E-03 2.0217
    1/80 3.5399E-04 1.9992 3.8250E-04 1.9830
    1/10 2.2165E-02 - 2.6470E-02 -
    0.2 0.8 -0.5 1/20 5.6369E-03 1.9753 6.1607E-03 2.1032
    1/40 1.4146E-03 1.9945 1.5327E-03 2.0070
    1/80 3.5346E-04 2.0008 4.0308E-04 1.9269
    1/10 2.2164E-02 - 2.6490E-02 -
    -1 1/20 5.6364E-03 1.9754 6.1810E-03 2.0996
    1/40 1.4141E-03 1.9949 1.5530E-03 1.9928
    1/80 3.5293E-04 2.0024 4.2346E-04 1.8747
    1/10 2.1828E-02 - 4.0463E-02 -
    0.5 1/20 5.5499E-03 1.9756 9.6844E-03 2.0629
    1/40 1.3932E-03 1.9941 2.3964E-03 2.0148
    1/80 3.4861E-04 1.9987 5.9910E-04 2.0000
    1/10 2.1828E-02 - 4.0465E-02 -
    0.5 0.5 0.2 1/20 5.5499E-03 1.9757 9.6868E-03 2.0626
    1/40 1.3931E-03 1.9941 2.3988E-03 2.0137
    1/80 3.4854E-04 1.9989 6.0151E-04 1.9956
    1/10 2.1826E-02 - 4.0523E-02 -
    -1 1/20 5.5484E-03 1.9759 9.7445E-03 2.0561
    1/40 1.3916E-03 1.9953 2.4564E-03 1.9880
    1/80 3.4706E-04 2.0035 6.5921E-04 1.8977
    1/10 2.1399E-02 - 5.8275E-02 -
    0.2 1/20 5.4386E-03 1.9763 1.4195E-02 2.0375
    1/40 1.3651E-03 1.9943 3.5279E-03 2.0085
    1/80 3.4156E-04 1.9988 8.8248E-04 1.9992
    1/10 2.1399E-02 - 5.8276E-02 -
    0.8 0.2 0 1/20 5.4386E-03 1.9763 1.4196E-02 2.0374
    1/40 1.3650E-03 1.9943 3.5290E-03 2.0082
    1/80 3.4153E-04 1.9989 8.8360E-04 1.9978
    1/10 2.1396E-02 - 5.8410E-02 -
    -1 1/20 5.4352E-03 1.9769 1.4329E-02 2.0272
    1/40 1.3616E-03 1.9970 3.6619E-03 1.9683
    1/80 3.3812E-04 2.0097 1.0167E-03 1.8487

     | Show Table
    DownLoad: CSV
    Table 2.  Time convergence results with h = 1/1000 .
    \alpha \beta \theta \tau \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 1.9614E-03 - 7.7510E-02 -
    0.2 1/20 5.0017E-04 1.9714 1.9814E-02 1.9679
    1/40 1.2703E-04 1.9773 5.0533E-03 1.9712
    1/80 3.2128E-05 1.9832 1.2867E-03 1.9736
    1/10 7.2565E-03 - 2.8650E-01 -
    0.2 0.8 -0.5 1/20 1.8309E-03 1.9867 7.2335E-02 1.9858
    1/40 4.6032E-04 1.9919 1.8206E-02 1.9903
    1/80 1.1551E-04 1.9946 4.5778E-03 1.9917
    1/10 1.2197E-02 - 4.8151E-01 -
    -1 1/20 3.1215E-03 1.9662 1.2329E-01 1.9655
    1/40 7.8542E-04 1.9907 3.1091E-02 1.9875
    1/80 1.9579E-04 2.0042 7.8135E-03 1.9924
    1/10 5.3041E-04 - 2.1042E-02 -
    0.5 1/20 1.3386E-04 1.9863 5.3622E-03 1.9724
    1/40 3.3676E-05 1.9910 1.3637E-03 1.9753
    1/80 8.4582E-06 1.9933 3.4761E-04 1.9720
    1/10 1.1457E-03 - 4.5326E-02 -
    0.5 0.5 0.2 1/20 2.8884E-04 1.9879 1.1461E-02 1.9836
    1/40 7.2679E-05 1.9907 2.8911E-03 1.9871
    1/80 1.8260E-05 1.9929 7.2972E-04 1.9862
    1/10 1.5622E-02 - 6.1668E-01 -
    -1 1/20 4.0111E-03 1.9615 1.5838E-01 1.9611
    1/40 1.0095E-03 1.9904 3.9868E-02 1.9901
    1/80 2.5362E-04 1.9929 1.0017E-02 1.9928
    1/10 5.2861E-04 - 2.0885E-02 -
    0.5 1/20 1.3465E-04 1.9730 5.3245E-03 1.9717
    1/40 3.4107E-05 1.9811 1.3530E-03 1.9765
    1/80 8.5857E-06 1.9901 3.4270E-04 1.9812
    1/10 2.2763E-03 - 8.9851E-02 -
    0.8 0.5 0 1/20 5.7402E-04 1.9875 2.2660E-02 1.9874
    1/40 1.4460E-04 1.9890 5.7086E-03 1.9889
    1/80 3.6405E-05 1.9899 1.4372E-03 1.9898
    1/10 1.5534E-02 - 6.1313E-01 -
    -1 1/20 3.9902E-03 1.9609 1.5749E-01 1.9609
    1/40 1.0033E-03 1.9917 3.9605E-02 1.9916
    1/80 2.5177E-04 1.9946 9.9391E-03 1.9945

     | Show Table
    DownLoad: CSV
    Table 3.  Time convergence results with h = 1/1000 .
    \alpha \beta \theta \tau \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 2.4519E-03 - 9.6803E-02 -
    0.1 0.9 0.11 1/20 6.2095E-04 1.9813 2.4519E-02 1.9811
    1/40 5.2080E-04 0.2538 2.0647E-02 0.2480
    1/80 4.0699E+02 -19.5758 1.6068E+04 -19.5699
    1/10 1.8093E-03 - 7.1425E-02 -
    0.5 0.5 0.51 1/20 4.5109E-04 2.0039 1.7808E-02 2.0039
    1/40 2.0018E-04 1.1721 7.8154E-03 1.1881
    1/80 5.1099E-04 -1.3520 2.0090E-02 -1.3621
    1/10 4.8552E-04 - 1.9119E-02 -
    0.8 0.2 0.21 1/20 1.2438E-04 1.9647 4.8398E-03 1.9820
    1/40 5.8298E-05 1.0933 2.2123E-03 1.1294
    1/80 2.3759E-02 -8.6708 9.3790E-01 -8.7277

     | Show Table
    DownLoad: CSV
    Figure 1.  u_h , q_h and u , q with \tau = 1/1000 , h = 1/80 , \alpha = 0.2 , \beta = 0.8 , \theta = 0.2 .

    Example 5.2 In this example, we consider the case where the nonsmooth solution is taken as u = (t^{\alpha+\beta}+t^3) \sin(2\pi x) , and the known source term g(x, t) is

    \begin{equation} \begin{split} g(x,t) = &\sin(2\pi x)\left[(\alpha+\beta)t^{\alpha+\beta-1}+3t^2+4\pi^2\left(\frac{t^{\beta}\Gamma(\alpha+\beta+1)}{\Gamma(\beta+1)}+\frac{6t^{3-\alpha}}{\Gamma(4-\alpha)}\right)\right]\\ &+\sin(2\pi x)\left[16\pi^4\left(\frac{t^{\alpha}\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)}+\frac{6t^{3-\beta}}{\Gamma(4-\beta)}\right)+4\pi^2(t^{\alpha+\beta}+t^3)\right]\\ &+2\pi (t^{\alpha+\beta}+t^3)\cos(2\pi x)+2\pi(t^{\alpha+\beta} +t^3)^2\sin(4\pi x ). \end{split} \end{equation} (5.2)

    Table 4 presents the L^2 -errors and the spatial convergence rates of u and q before and after adding the starting parts with h = 1/10, 1/20, 1/40, 1/80 , \tau = 1/2000 , where Erroro denotes the error before adding the starting parts and Errorc denotes the error after adding the starting parts.

    Table 4.  Spatial convergence results with \alpha = 0.9 , \beta = 0.2 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.2694E-02 - 4.2693E-02 - 1.2162E-01 - 1.2163E-01 -
    0.2 1/20 1.0850E-02 1.9763 1.0850E-02 1.9763 2.9675E-02 2.0351 2.9679E-02 2.0349
    1/40 2.7235E-03 1.9942 2.7234E-03 1.9942 7.3708E-03 2.0094 7.3746E-03 2.0088
    1/80 6.8165E-04 1.9984 6.8155E-04 1.9985 1.8361E-03 2.0051 1.8400E-03 2.0029
    1/10 4.2693E-02 - 4.2692E-02 - 1.2165E-01 - 1.2168E-01 -
    -0.5 1/20 1.0849E-02 1.9764 1.0849E-02 1.9764 2.9706E-02 2.0340 2.9728E-02 2.0331
    1/40 2.7227E-03 1.9945 2.7221E-03 1.9947 7.4017E-03 2.0048 7.4237E-03 2.0016
    1/80 6.8085E-04 1.9996 6.8028E-04 2.0005 1.8671E-03 1.9871 1.8891E-03 1.9744
    1/10 4.2691E-02 - 4.2690E-02 - 1.2172E-01 - 1.2177E-01 -
    -1 1/20 1.0848E-02 1.9766 1.0846E-02 1.9767 2.9776E-02 2.0314 2.9822E-02 2.0297
    1/40 2.7209E-03 1.9952 2.7197E-03 1.9957 7.4714E-03 1.9947 7.5178E-03 1.9880
    1/80 6.7905E-04 2.0025 6.7786E-04 2.0044 1.9368E-03 1.9477 1.9833E-03 1.9224

     | Show Table
    DownLoad: CSV

    The spatial convergence rate is almost unaffected before and after correction, based on a comparison of the data in Table 5. In Tables 6 and 7, we present the L^2 -errors and the time convergence rates of u and q before and after adding the starting parts. Without the addition of the starting parts, the time convergence rates are unstable and cannot reach the second-order convergence results computed by the generalized BDF2- \theta . After adding the starting parts, the time convergence rates keep around 2 , indicating that the starting part plays a major role in correcting the time convergence rates.

    Table 5.  Spatial convergence results with \alpha = 0.5 , \beta = 0.7 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3949E-02 - 4.3948E-02 - 6.8838E-02 - 6.8891E-02 -
    0.5 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6266E-02 2.0814 1.6318E-02 2.0778
    1/40 2.8070E-03 1.9934 2.8057E-03 1.9940 3.9696E-03 2.0348 4.0219E-03 2.0205
    1/80 7.0358E-04 1.9963 7.0222E-04 1.9984 9.4708E-04 2.0674 9.9935E-04 2.0088
    1/10 4.3949E-02 - 4.3948E-02 - 6.8842E-02 - 6.8897E-02 -
    0.2 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6270E-02 2.0811 1.6324E-02 2.0774
    1/40 2.8069E-03 1.9935 2.8055E-03 1.9940 3.9739E-03 2.0336 4.0279E-03 2.0189
    1/80 7.0346E-04 1.9964 7.0206E-04 1.9986 9.5140E-04 2.0624 1.0054E-03 2.0023
    1/10 4.3948E-02 - 4.3946E-02 - 6.8877E-02 - 6.8974E-02 -
    -1 1/20 1.1176E-02 1.9754 1.1174E-02 1.9756 1.6304E-02 2.0788 1.6401E-02 2.0722
    1/40 2.8061E-03 1.9938 2.8035E-03 1.9948 4.0077E-03 2.0244 4.1049E-03 1.9984
    1/80 7.0259E-04 1.9978 7.0007E-04 2.0017 9.8520E-04 2.0243 1.0824E-03 1.9231

     | Show Table
    DownLoad: CSV
    Table 6.  Time convergence results with \alpha = 0.9 , \beta = 0.2 , h = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 2.1916E-03 - 4.2694E-02 - 8.6515E-02 - 1.2162E-01 -
    0.2 1/20 1.6194E-03 0.4365 1.0850E-02 1.9763 6.3929E-02 0.4365 2.9675E-02 2.0351
    1/40 1.0890E-03 0.5725 2.7235E-03 1.9942 4.2990E-02 0.5725 7.3710E-03 2.0093
    1/80 6.8790E-04 0.6627 6.8165E-04 1.9984 2.7157E-02 0.6627 1.8364E-03 2.0050
    1/10 2.5540E-03 - 4.2693E-02 - 1.0123E-01 - 1.2164E-01 -
    0 1/20 1.1111E-03 1.2007 1.0850E-02 1.9763 4.3864E-02 1.2065 2.9692E-02 2.0345
    1/40 7.7616E-04 0.5176 2.7231E-03 1.9944 3.0641E-02 0.5176 7.3878E-03 2.0069
    1/80 5.0234E-04 0.6277 6.8122E-04 1.9990 1.9831E-02 0.6277 1.8531E-03 1.9952
    1/10 2.4652E-02 - 4.2689E-02 - 9.7312E-01 - 1.2182E-01 -
    -0.5 1/20 7.1878E-03 1.7781 1.0845E-02 1.9768 2.8376E-01 1.7779 2.9872E-02 2.0279
    1/40 1.9420E-03 1.8880 2.7184E-03 1.9962 7.6702E-02 1.8874 7.5673E-03 1.9809
    1/80 5.5906E-04 1.7965 6.7658E-04 2.0064 2.2071E-02 1.7971 2.0329E-03 1.8962

     | Show Table
    DownLoad: CSV
    Table 7.  Time convergence results with \alpha = 0.5 , \beta = 0.7 , h = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.1456E-02 - 4.3948E-02 - 4.5228E-01 - 6.8880E-02 -
    0.5 1/20 5.0680E-03 1.1767 1.1176E-02 1.9754 2.0008E-01 1.1767 1.6307E-02 2.0786
    1/40 2.2184E-03 1.1919 2.8060E-03 1.9939 8.7577E-02 1.1919 4.0110E-03 2.0235
    1/80 9.6796E-04 1.1965 7.0250E-04 1.9979 3.8213E-02 1.1965 9.8850E-04 2.0207
    1/10 5.4375E-03 - 4.3948E-02 - 2.1466E-01 - 6.8904E-02 -
    0.2 1/20 2.5220E-03 1.1084 1.1176E-02 1.9754 9.9562E-02 1.1084 1.6332E-02 2.0769
    1/40 1.1387E-03 1.1472 2.8053E-03 1.9941 4.4952E-02 1.1472 4.0351E-03 2.0170
    1/80 5.0160E-04 1.1828 7.0188E-04 1.9989 1.9802E-02 1.1827 1.0126E-03 1.9946
    1/10 2.8636E-02 - 4.3948E-02 - 1.1304E+00 - 6.8904E-02 -
    -1 1/20 7.7097E-03 1.8931 1.1176E-02 1.9754 3.0439E-01 1.8929 1.6332E-02 2.0769
    1/40 1.9098E-03 2.0133 2.8053E-03 1.9941 7.5437E-02 2.0126 4.0351E-03 2.0170
    1/80 6.3574E-04 1.5869 7.0188E-04 1.9989 2.5098E-02 1.5877 1.0126E-03 1.9946

     | Show Table
    DownLoad: CSV

    In Figure 2, we obtain the comparison images between the numerical solution and the exact solution with \tau = 1/1000 , h = 1/80 , \alpha = 0.9 , \beta = 0.2 , and \theta = 0.2 . In Figures 3 and 4, we present the space and time convergence rate images of u_h and q_h under different parameters \alpha , \beta , and \theta . From Figure 4, one can see that the corrected scheme with the starting parts can effectively restore the second-order convergence rate for the nonsmooth problem.

    Figure 2.  u_h , q_h and u , q with \tau = 1/2000 , h = 1/80 , \alpha = 0.9 , \beta = 0.2 , \theta = 0.2 .
    Figure 3.  The spatial convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .
    Figure 4.  The time convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .

    Example 5.3. To better investigate the effect of changes of two fractional parameters \alpha and \beta on the convergence rates, we introduce the numerical example with two nonsmooth terms. Here, we take the nonsmooth solution u with

    u = (t^{1+\alpha}+t^{1+\beta}+t^3) \sin(2\pi x),

    and the known source term

    \begin{equation} \begin{split} g(x,t) = &\sin(2\pi x)\left[(1+\alpha)t^\alpha+(1+\beta)t^\beta+3t^2+4\pi^2\left(t\Gamma(2+\alpha)+\frac{t^{1+\beta-\alpha}\Gamma(2+\beta)}{\Gamma(2+\beta-\alpha)}+\frac{6t^{3-\alpha}}{\Gamma(4-\alpha)}\right)\right]\\ &+\sin(2\pi x)\left[16\pi^4\left(\frac{t^{1+\alpha-\beta}\Gamma(2+\alpha)}{\Gamma(2+\alpha-\beta)}+t\Gamma(2+\beta)+\frac{6t^{3-\beta}}{\Gamma(4-\beta)}\right)+4\pi^2(t^{1+\alpha}+t^{1+\beta}+t^3)\right]\\ &+2\pi (t^{1+\alpha}+t^{1+\beta}+t^3)\cos(2\pi x)+2\pi(t^{1+\alpha}+t^{1+\beta}+t^3)^2\sin(4\pi x ). \end{split} \end{equation} (5.3)

    In Table 8, we provide the errors of \|u_h-u\| and \|q_h-q\| and the spatial convergence rates under different parameters, which indicate that the corrected term hardly affects the spatial convergence rate.

    Table 8.  Spatial convergence results with \alpha = 0.5 , \beta = 0.6 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 6.5710E-02 - 6.5710E-02 - 1.1335E-01 - 1.1335E-01 -
    0.5 1/20 1.6709E-02 1.9755 1.6709E-02 1.9755 2.7037E-02 2.0678 2.7037E-02 2.0678
    1/40 4.1946E-03 1.9940 4.1946E-03 1.9940 6.6773E-03 2.0176 6.6775E-03 2.0175
    1/80 1.0498E-03 1.9984 1.0498E-03 1.9984 1.6615E-03 2.0068 1.6617E-03 2.0066
    1/10 6.5710E-02 - 6.5710E-02 - 1.1336E-01 - 1.1336E-01 -
    0.2 1/20 1.6708E-02 1.9755 1.6708E-02 1.9755 2.7042E-02 2.0676 2.7042E-02 2.0676
    1/40 4.1944E-03 1.9940 4.1944E-03 1.9940 6.6826E-03 2.0167 6.6825E-03 2.0167
    1/80 1.0497E-03 1.9986 1.0497E-03 1.9985 1.6668E-03 2.0033 1.6667E-03 2.0034
    1/10 6.5709E-02 - 6.5709E-02 - 1.1339E-01 - 1.1339E-01 -
    -0.5 1/20 1.6708E-02 1.9756 1.6708E-02 1.9756 2.7078E-02 2.0661 2.7077E-02 2.0662
    1/40 4.1935E-03 1.9943 4.1935E-03 1.9943 6.7188E-03 2.0109 6.7178E-03 2.0110
    1/80 1.0487E-03 1.9995 1.0487E-03 1.9995 1.7031E-03 1.9801 1.7020E-03 1.9808

     | Show Table
    DownLoad: CSV

    In Tables 911, fixing \tau = 1/4000 , choosing h = 1/10, 1/20, 1/40, 1/80 , and changing parameters \alpha , \beta , and \theta , we provide the L^2 -errors and the time convergence rates for u and q based on the corrected scheme and uncorrected scheme. The impact of different fractional parameters on the time convergence rates of nonsmooth problems is evident from Tables 911. Furthermore, one can see that the corrected scheme with the starting part can effectively restore the second-order convergence rate.

    Table 9.  Time convergence results with \alpha = 0.1 , \beta = 0.9 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 8.9204E-03 - 6.2820E-03 - 3.5216E-01 - 2.4809E-01 -
    0.1 1/20 5.2261E-03 0.7714 1.8535E-03 1.7609 2.0632E-01 0.7714 7.3209E-02 1.7608
    1/40 2.6562E-03 0.9764 4.9663E-04 1.9001 1.0486E-01 0.9764 1.9628E-02 1.8992
    1/80 1.2855E-03 1.0470 1.2782E-04 1.9580 5.0749E-02 1.0470 5.0645E-03 1.9544
    1/10 1.1291E-02 - 9.1163E-03 - 4.4575E-01 - 3.5998E-01
    0 1/20 6.8182E-03 0.7277 2.7085E-03 1.7510 2.6917E-01 0.7277 1.0696E-01 1.7509
    1/40 3.4949E-03 0.9641 7.2773E-04 1.8960 1.3797E-01 0.9641 2.8751E-02 1.8954
    1/80 1.6987E-03 1.0408 1.8766E-04 1.9553 6.7062E-02 1.0408 7.4268E-03 1.9528
    1/10 2.1457E-02 - 2.6030E-02 - 1.1105E+00 - 1.7696E+00 -
    -0.5 1/20 1.4552E-02 0.5603 8.3150E-03 1.6464 8.5207E-01 0.3822 6.2053E-01 1.5118
    1/40 7.7887E-03 0.9017 2.2980E-03 1.8554 4.7736E-01 0.8359 1.7762E-01 1.8047
    1/80 3.8350E-03 1.0222 6.0067E-04 1.9357 2.3888E-01 0.9988 4.7205E-02 1.9118

     | Show Table
    DownLoad: CSV
    Table 10.  Time convergence results with \alpha = 0.5 , \beta = 0.6 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3621E-03 - 3.6704E-03 - 1.7226E-01 - 1.4498E-01 -
    0.5 1/20 1.0876E-03 2.0039 9.5152E-04 1.9476 4.2941E-02 2.0042 3.7576E-02 1.9480
    1/40 3.3133E-04 1.7148 2.4178E-04 1.9765 1.3080E-02 1.7150 9.5356E-03 1.9784
    1/80 1.1132E-04 1.5735 6.1138E-05 1.9835 4.3948E-03 1.5735 2.3985E-03 1.9912
    1/10 1.4643E-03 - 1.0614E-03 - 5.8318E-02 - 4.2803E-02 -
    0.2 1/20 4.8956E-04 1.5806 3.0032E-04 1.8214 1.9326E-02 1.5934 1.2126E-02 1.8197
    1/40 1.6670E-04 1.5542 7.8625E-05 1.9335 6.5811E-03 1.5541 3.1895E-03 1.9267
    1/80 5.7051E-05 1.5470 1.9768E-05 1.9918 2.2523E-03 1.5470 8.1546E-04 1.9676
    1/10 8.7609E-03 - 6.8360E-03 - 3.4601E-01 - 2.7011E-01 -
    0 1/20 2.2404E-03 1.9673 1.9129E-03 1.8374 8.8510E-02 1.9669 7.5599E-02 1.8371
    1/40 5.6418E-04 1.9895 5.0061E-04 1.9340 2.2304E-02 1.9886 1.9798E-02 1.9330
    1/80 1.5985E-04 1.8194 1.2738E-04 1.9746 6.3107E-03 1.8214 5.0505E-03 1.9709

     | Show Table
    DownLoad: CSV
    Table 11.  Time convergence results with \alpha = 0.9 , \beta = 0.1 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.2779E-03 - 4.4043E-04 - 5.0452E-02 - 2.5629E-02 -
    0.1 1/20 1.0267E-03 0.3157 1.1804E-04 1.8996 4.0534E-02 0.3158 7.0942E-03 1.8531
    1/40 7.5884E-04 0.4362 3.0793E-05 1.9386 2.9957E-02 0.4362 1.8662E-03 1.9265
    1/80 5.0089E-04 0.5993 8.1141E-06 1.9241 1.9774E-02 0.5993 4.7828E-04 1.9642
    1/10 4.3621E-03 - 1.4545E-03 - 7.7482E-02 - 6.1261E-02 -
    0 1/20 1.8873E-03 0.6822 3.9496E-04 1.8807 4.6434E-02 0.7387 1.6763E-02 1.8697
    1/40 9.2034E-04 0.3539 1.0228E-04 1.9492 3.6333E-02 0.3539 4.3730E-03 1.9386
    1/80 6.1337E-04 0.5854 2.5740E-05 1.9904 2.4215E-02 0.5854 1.1169E-03 1.9692
    1/10 9.0746E-03 - 6.1035E-03 - 3.5896E-01 - 2.4209E-01 -
    -0.1 1/20 2.3761E-03 1.9332 1.7550E-03 1.7982 9.4044E-02 1.9324 6.9621E-02 1.7980
    1/40 7.1647E-04 1.7296 4.6664E-04 1.9111 2.8284E-02 1.7333 1.8526E-02 1.9100
    1/80 5.9682E-04 0.2636 1.1984E-04 1.9612 2.3561E-02 0.2636 4.7711E-03 1.9572

     | Show Table
    DownLoad: CSV

    To further validate the performance of the parameter \theta in numerical simulations with nonsmooth solutions, we provide the computing data in Table 12, from which one can see that the parameter \theta still needs to satisfy \theta\le \min\{\alpha, \beta, \frac{1}{2}\} , whether before or after correction. Notably, when \theta is negative, as long as it is not much less than 0, we can still obtain second-order convergence accuracy.

    Table 12.  Time convergence results with \alpha = 0.7 , \beta = 0.3 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 3.3675E-03 - 2.0604E-03 - 1.3333E-01 - 8.2027E-02 -
    0.31 1/20 1.2977E-03 1.3757 5.3018E-04 1.9584 5.1287E-02 1.3783 2.1127E-02 1.9570
    1/40 1.9442E-03 -0.5833 1.4145E-04 1.9062 7.6738E-02 -0.5813 5.6232E-03 1.9096
    1/80 6.1733E-02 -4.9888 1.3510E-04 0.0663 2.4372E+00 -4.9892 5.3212E-03 0.0797
    1/10 4.5472E-02 - 3.0346E-02 - 1.7952E+00 - 1.1983E+00 -
    -0.5 1/20 1.2127E-02 1.9067 9.1861E-03 1.7240 4.7880E-01 1.9066 3.6273E-01 1.7240
    1/40 3.1344E-03 1.9520 2.4851E-03 1.8861 1.2376E-01 1.9518 9.8141E-02 1.8859
    1/80 7.9608E-04 1.9772 6.4304E-04 1.9504 3.1447E-02 1.9766 2.5407E-02 1.9496
    1/10 1.1762E+00 - 3.4223E-01 - 4.6430E+01 - 1.3512E+01 -
    -5 1/20 3.9521E-01 1.5734 1.9704E-01 0.7964 1.5601E+01 1.5734 7.7788E+00 0.7966
    1/40 1.2069E-01 1.7113 7.7857E-02 1.3396 4.7643E+00 1.7113 3.0736E+00 1.3396
    1/80 3.3458E-02 1.8509 2.4673E-02 1.6579 1.3208E+00 1.8509 9.7402E-01 1.6579

     | Show Table
    DownLoad: CSV

    The time convergence rates of u and q are compared before and after correction with different parameters \alpha , \beta , and \theta in Figure 5, where the slope of the line segment indicates the convergence rate. The slope of each line segment in the corrected images is the same regardless of the parameters chosen, indicating that the introduction of the starting part has a significant effect on the time convergence rates for the case with nonsmooth solutions.

    Figure 5.  The time convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .

    In this article, the spatial mixed finite element method with the generalized BDF2- \theta for solving the time-fractional generalized Rosenau-RLW-Burgers equation was presented. Detailed proofs of stability were shown. The numerical scheme's effectiveness and feasibility were verified by conducting numerical examples that included both smooth and nonsmooth solutions. The numerical examples with good regularity indicated that our algorithm with changed parameters \alpha , \beta , and \theta can maintain second-order convergence in time. Especially, the nonsmooth examples demonstrated that adding the correction term could effectively solve the problem of reduced order caused by weak singularity.

    N. Yang: Writing–original draft, Formal analysis, Software; Y. Liu: Methodology, Validation, Formal analysis, Funding acquisition, Supervision, Writing–review & editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China (12061053), Young Innovative Talents Project of Grassland Talents Project and Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2413).

    The authors declare that they have no conflicts of interest.



    [1] Akhil NSB, Kumar V, Raj R, et al. (2023) Adoption of human resource sourcing strategies for managing supply chain performance during COVID-19 crisis: evidence from manufacturing companies. Int J Product Perform Manag. https://doi.org/10.1108/IJPPM-06-2023-0292
    [2] Amado A, Cortez P, Rita P, et al. (2018) Research trends on Big Data in Marketing: A text mining and topic modeling based literature analysis. Eur Res Manag Bus Econ 24: 1–7. https://doi.org/10.1016/j.iedeen.2017.06.002 doi: 10.1016/j.iedeen.2017.06.002
    [3] Barbosa MW, Vicente ADLC, Ladeira MB, et al. (2018) Managing supply chain resources with big data analytics: a systematic review. Int J Logist Res Appl 21: 177–200. https://doi/10.1080/13675567.2017.1369501 doi: 10.1080/13675567.2017.1369501
    [4] Barrales-Molina V, Martínez-López FJ, Gázquez-Abad JC (2014) Dynamic marketing capabilities: Toward an integrative framework. Int J Manag Rev 16: 397–416. https://doi.org/10.1111/ijmr.12026 doi: 10.1111/ijmr.12026
    [5] Cao G, Duan Y, Banna ΑΕ (2019) A dynamic capability view of marketing analytics: Evidence from UK firms. Ind Mark Manag 76: 72–83. https://doi.org/10.1016/j.indmarman.2018.08.002 doi: 10.1016/j.indmarman.2018.08.002
    [6] Chase CW (2013) Demand-driven forecasting: A structured approach to forecasting. New Jersey: John Wiley & Sons. https://doi.org/10.1002/9781118691861
    [7] Chen D, Preston DS, Swink M (2015) How the use of big data analytics affects value creation in supply chain management. J Manag Inf Syst 32: 4–39. 10.1080/07421222.2015.1138364 doi: 10.1080/07421222.2015.1138364
    [8] Chowdhury LAM, Rana T, Akter M, et al. (2018) Impact of intellectual capital on financial performance: evidence from the Bangladeshi textile sector. J Account Organ Change 14: 429–454. https://doi.org/10.1108/JAOC-11-2017-0109 doi: 10.1108/JAOC-11-2017-0109
    [9] DuHadway S, Carnovale S, Hazen B (2019) Understanding risk management for intentional supply chain disruptions: risk detection, risk mitigation, and risk recovery. Ann Oper Res 283: 179–198. 10.1007/s10479-017-2452-0 doi: 10.1007/s10479-017-2452-0
    [10] Erevelles S, Fukawa N, Swayne L (2016) Big Data consumer analytics and the transformation of marketing. J Bus Res 69: 897–904. 10.1016/j.jbusres.2015.07.001 doi: 10.1016/j.jbusres.2015.07.001
    [11] Fagan JC (2014) The Suitability of Web Analytics Key Performance Indicators in the Academic Library Environment. J Acad Librariansh 40: 25–34. http://dx.doi.org/10.1016/j.acalib.2013.06.005 doi: 10.1016/j.acalib.2013.06.005
    [12] Fan SK, Lau RYK, Zhao JL (2015) Demystifying Big Data Analytics for Business Intelligence Through the Lens of Marketing Mix. Big Data Res 2: 28–32. https://doi.org/10.1016/j.bdr.2015.02.006 doi: 10.1016/j.bdr.2015.02.006
    [13] Gangaraju PK, Raj R, Kumar V, et al. (2023) Financial performance in Industry 4.0 agile supply chains: evidence from manufacturing companies. TQM J. https://doi.org/10.1108/TQM-07-2023-0214
    [14] Germann F, Lilien GL, Rangaswamy A (2013) Performance implications of deploying marketing analytics. Int J Res Mark 30: 114–128. 10.1016/j.ijresmar.2012.10.001 doi: 10.1016/j.ijresmar.2012.10.001
    [15] Ghadge A, Kaklamanou M, Choudhary S, et al. (2017) Implementing environmental practices within the Greek dairy supply chain: Drivers and barriers for SMEs. Ind Manag Data Syst 117: 1995–2014. https://doi.org/10.1108/IMDS-07-2016-0270 doi: 10.1108/IMDS-07-2016-0270
    [16] Hassani H, Huang X, Silva E (2018) Digitalisation and big data mining in banking. Big Data Cogn Comput 2: 18. https://doi.org/10.3390/bdcc2030018
    [17] Hajli N, Tajvidi M, Gbadamosi A, et al. (2020) Understanding market agility for new product success with big data analytics. Ind Mark Manag 86: 135–143. https://doi.org/10.1016/j.indmarman.2019.09.010 doi: 10.1016/j.indmarman.2019.09.010
    [18] Hedin H, Hirvensalo I, Vaarnas M (2014) The Handbook of Market Intelligence: Understand, Compete and Grow in Global Markets. New Jersey: John Wiley & Sons.
    [19] Hung JL, He W, Shen J (2020) Big data analytics for supply chain relationship in banking. Ind Mark Manag 86: 144–153. https://doi.org/10.1016/j.indmarman.2019.11.001 doi: 10.1016/j.indmarman.2019.11.001
    [20] Jabbar A, Akhtar P, Dani S (2020) Real-time big data processing for instantaneous marketing decisions: A problematization approach. Ind Mark Manag 90: 558–569. https://doi.org/10.1016/j.indmarman.2019.09.001 doi: 10.1016/j.indmarman.2019.09.001
    [21] Jacobs A (2009) The pathologies of big data. Commun ACM 52: 36–44. https://doi.org/10.1145/1536616.1536632 doi: 10.1145/1536616.1536632
    [22] Jeon S, Hong B, Chang V (2018) Pattern graph tracking-based stock price prediction using big data. Future Gener Comput Syst 80: 171–187. http://dx.doi.org/10.1016/j.future.2017.02.010 doi: 10.1016/j.future.2017.02.010
    [23] Jha A, Sharma RRK, Kumar V, et al. (2022) Designing Supply Chain Performance System: A Strategic Study on Indian Manufacturing Sector. Supply Chain Manag 27: 66–88. https://doi.org/10.1108/SCM-05-2020-0198 doi: 10.1108/SCM-05-2020-0198
    [24] Kaufman BE (2015) The RBV theory foundation of strategic HRM: critical flaws, problems for research and practice, and an alternative economics paradigm. Hum Resour Manag J 25: 516–540. https://doi.org/10.1111/1748-8583.12085 doi: 10.1111/1748-8583.12085
    [25] Kaur P, Arora S (2015) Regression and Endogeneity Bias in Big Marketing Data. 4th International Conference on Eco-friendly Computing and Communication Systems, Procedia Computer Science 70: 41–47. 10.1016/j.procs.2015.10.025 doi: 10.1016/j.procs.2015.10.025
    [26] Kumar A, Shankar R, Aljohani NR (2020a) A big data driven framework for demand-driven forecasting with effects of marketing-mix variables. Ind Mark Manag 90: 493–507. https://doi.org/10.1016/j.indmarman.2019.05.003 doi: 10.1016/j.indmarman.2019.05.003
    [27] Kumar V, Verma P, Jha A, et al. (2020) Dynamics of a medium value consumer apparel supply chain key parameters. Int J Product Perform Manag 71: 445–476. https://doi.org/10.1108/IJPPM-10-2019-0501 doi: 10.1108/IJPPM-10-2019-0501
    [28] Kumar V, Verma P, So TC, et al. (2022) Managing supply chains during COVID-19 outbreak: a case of Hong Kong toy manufacturing company. J Humanit Logist Supply Chain Manag 12: 502–531. https://doi.org/10.1108/JHLSCM-10-2021-0109 doi: 10.1108/JHLSCM-10-2021-0109
    [29] Kumar V, Raj R, Verma P, et al. (2023) Assessing Risk and Sustainability Factors in Spice Supply Chain Management. Oper Manag Res, 1–20. https://doi.org/10.1007/s12063-023-00424-6 doi: 10.1007/s12063-023-00424-6
    [30] Lambert DM, Cooper MC, Pagh JD (1998) Supply chain management: implementation issues and research opportunities. Int J Logist Manag 9: 1–20. https://doi.org/10.1108/09574099810805807 doi: 10.1108/09574099810805807
    [31] Leeflang PS, Verhoef PC, Dahlstrφm P, et al. (2014) Challenges and solutions for marketing in a digital era. Eur Manag J 32: 1–12. https://doi.org/10.1016/j.emj.2013.12.001 doi: 10.1016/j.emj.2013.12.001
    [32] Lilien GL (2016) The B2B knowledge gap. Int J Res Mark 33: 543–556. https://doi.org/10.1016/j.ijresmar.2016.01.003 doi: 10.1016/j.ijresmar.2016.01.003
    [33] Mikalef P, Krogstie J, Pappas IO, et al. (2019) Exploring the relationship between big data analytics capability and competitive performance: the mediating roles of dynamic and operational capabilities. Inf Manag 57: 103169. https://doi.org/10.1016/j.im.2019.05.004
    [34] Morgan NA (2012) Marketing and business performance. J Acad Mark Sci 40: 102–119. https://doi.org/10.1007/s11747-011-0279-9 doi: 10.1007/s11747-011-0279-9
    [35] Ngai EW, Xiu L, Chau DC (2009) Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst Appl 36: 2592–2602. https://doi.org/10.1016/j.eswa.2008.02.021 doi: 10.1016/j.eswa.2008.02.021
    [36] Raj R, Kumar V, Shah B (2023) Big data analytics adaptive prospects in sustainable manufacturing supply chain. Benchmarking: An International Journal. https://doi.org/10.1108/BIJ-11-2022-0690
    [37] Raguseo E, Vitari C, Pigni F (2020) Profiting from big data analytics: The moderating roles of industry concentration and firm size. Int J Prod Econ 229: 107758. https://doi.org/10.1016/j.ijpe.2020.107758
    [38] Sachan S, Kumar V, Vardhan S, et al. (2023) Key supply chain strategies for post-COVID-19 recovery: evidence from an Indian smart furniture industry. Int J Emerg Mark 18: 1378–1396. https://doi.org/10.1108/IJOEM-12-2021-1926 doi: 10.1108/IJOEM-12-2021-1926
    [39] Sakas DP, Giannakopoulos NT, Trivellas P (2023a) Exploring affiliate marketing's impact on customers' brand engagement and vulnerability in the online banking service sector. Int J Bank Mark. https://doi.org/10.1108/IJBM-01-2023-0009
    [40] Sakas DP, Giannakopoulos NT, Nasiopoulos DK, et al. (2023b) Assessing the Efficacy of Cryptocurrency Applications' Affiliate Marketing Process on Supply Chain Firms' Website Visibility. Sustainability 15: 7326. https://doi.org/10.3390/su15097326
    [41] Sakas DP, Giannakopoulos NT, Kanellos N, et al. (2023) Supply Chain Firms' Financial Performance Connection with Digital Marketing Website Data. Economic and Social Development: Book of Proceedings, 116–124.
    [42] Sakas DP, Giannakopoulos NT, Margaritis M, et al. (2023d) Modeling Supply Chain Firms' Stock Prices in the Fertilizer Industry through Innovative Cryptocurrency Market Big Data. Int J Financial Stud 11: 88. https://doi.org/10.3390/ijfs11030088
    [43] Sathi M (2014) Engaging customers using big data: how Marketing analytics are transforming business. New York: Palgrave Macmillan.
    [44] Sena V, Ozdemir S (2020) Spillover effects of investment in big data analytics in B2B relationships: what is the role of human capital? Ind Mark Manag 86: 77–89. https://doi.org/10.1016/j.indmarman.2019.05.016
    [45] Sharda R, Delen D, Turban E (2015) Business intelligence and analytics: Systems for decision support 10. London: Pearson.
    [46] Sharma R, Mithas S, Kankanhalli A (2014) Transforming decision-making processes: a research agenda for understanding the impact of business analytics on organizations. Eur J Inf Syst 23: 433–441. https://doi.org/10.1057/ejis.2014.17 doi: 10.1057/ejis.2014.17
    [47] Sivarajah U, Irani Z, Gupta S, et al. (2020) Role of big data and social media analytics for business to business sustainability: a participatory web context. Ind Mark Manag 86: 163–179. https://doi.org/10.1016/j.indmarman.2019.04.005 doi: 10.1016/j.indmarman.2019.04.005
    [48] Story V, O'Malley L, Hart S (2011) Roles, role performance, and radical innovation competencies. Ind Mark Manag 40: 952–966. https://doi.org/10.1016/j.indmarman.2011.06.025 doi: 10.1016/j.indmarman.2011.06.025
    [49] Tan W, Blake MB, Saleh I, et al. (2013) Social-network-sourced big data analytics. IEEE Internet Comput 17: 62–69. 10.1109/MIC.2013.100 doi: 10.1109/MIC.2013.100
    [50] Tang O, Musa SN (2011) Identifying risk issues and research advancements in supply chain risk management. Int J Prod Econ 133: 25–34. https://doi.org/10.1016/j.ijpe.2010.06.013 doi: 10.1016/j.ijpe.2010.06.013
    [51] Trivellas P, Malindretos G, Reklitis P (2020) Implications of Green Logistics Management on Sustainable Business and Supply Chain Performance: Evidence from a Survey in the Greek Agri-Food Sector. Sustainability 12: 10515. https://doi.org/10.3390/su122410515
    [52] Troisi Ο, Maione G, Grimaldi M, et al. (2020) Growth hacking: Insights on data-driven decision-making from three firms. Ind Mark Manag 90: 538–557. https://doi.org/10.1016/j.indmarman.2019.08.005 doi: 10.1016/j.indmarman.2019.08.005
    [53] Tseng PH, Liao CH (2015) Supply Chain Integration, Information Technology, Market Orientation and Firm Performance in Container Shipping Firms. Int J Logist Manag 26: 82–106. https://doi.org/10.1108/IJLM-09-2012-0088 doi: 10.1108/IJLM-09-2012-0088
    [54] Verma P, Kumar V (2017) Conquering the Emerging Markets: Enhance Supply Chain and Diversified Firm Performance. LAP LAMBERT Academic Publishing.
    [55] Vorhies DW, Morgan NA (2005) Benchmarking marketing capabilities for sustainable competitive advantage. J Mark 69: 80–94. https://doi.org/10.1509/jmkg.69.1.80.55505 doi: 10.1509/jmkg.69.1.80.55505
    [56] Vorhies DW, Orr LM, Bush VD (2011) Improving customer-focused marketing capabilities and firm financial performance via marketing exploration and exploitation. J Acad Mark Sci 39: 736–756. https://doi.org/10.1007/s11747-010-0228-z doi: 10.1007/s11747-010-0228-z
    [57] Waller MA, Fawcett SE (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J Bus Logist 34: 77–84. https://doi.org/10.1111/jbl.12010
    [58] Wamba SF, Gunasekaran A, Akter S, et al. (2017) Big data analytics and firm performance: Effects of dynamic capabilities. J Bus Res 70: 356–365. http://dx.doi.org/10.1016/j.jbusres.2016.08.009 doi: 10.1016/j.jbusres.2016.08.009
    [59] Wedel M, Kannan PK (2016) Marketing analytics for data-rich environments. J Mark 80: 97–121. https://doi.org/10.1509/jm.15.0413 doi: 10.1509/jm.15.0413
    [60] Wu X, Zhu X, Wu G, et al. (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26: 97–107. https://doi.org/10.1109/TKDE.2013.109 doi: 10.1109/TKDE.2013.109
    [61] Zaridis A, Vlachos I, Bourlakis M (2021) SMEs strategy and scale constraints impact on agri-food supply chain collaboration and firm performance. Prod Plan Control 32: 1165–1178. https://doi.org/10.1080/09537287.2020.1796136 doi: 10.1080/09537287.2020.1796136
    [62] Zheng K, Zhang Z, Song B (2020) E-commerce logistics distribution mode in big-data context: a case analysis of JD. COM. Ind Mark Manag 86: 154–162. https://doi.org/10.1016/j.indmarman.2019.10.009
    [63] Zokaei K, Hines P (2007) Achieving consumer focus in supply chains. Int J Phys Distrib Logist Manag 37: 223–247. https://doi.org/10.1108/09600030710742434 doi: 10.1108/09600030710742434
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1532) PDF downloads(94) Cited by(1)

Figures and Tables

Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog