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Abstract: Suppose that N is a sufficiently large real number. In this paper it is proved that for 2 < c <
990
479 , the Diophantine equation [

pc
1
]
+

[
pc

2
]
+

[
pc

3
]
+

[
pc

4
]
+

[
pc

5
]
= N

is solvable in primes p1, p2, p3, p4, p5 such that each of the numbers pi + 2, i = 1, 2, 3, 4, 5 has at most[
6227

3960−1916c

]
prime factors.
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1. Introduction

For a fixed integer k ≥ 1 and sufficiently large integer N, the well-known Waring-Goldbach problem
is devoted to investigating the solvability of the following Diophantine equality

N = pk
1 + pk

2 + · · · + pk
s (1.1)

in prime variables p1, p2, . . . , ps. Numerous mathematicians have derived many splendid results in
this field. For instance, in 1937, Vinogradov [25] proved that such a representation of the type (1.1)
exists for every sufficiently large odd integer N with k = 1, s = 3. Later in 1938, based upon
Vinogradov’s work, Hua [9] showed that (1.1) is solvable for every sufficiently large integer N
satisfying that N ≡ 5 (mod 24) with k = 2, s = 5.

In 1933, Segal [21, 22] studied the following anolog of the well-known Waring problem. Suppose
that c > 1 and c < N; there exists a positive integer s = s(c) such that for every sufficiently large natural
number N, the equation

N =
[
mc

1
]
+

[
mc

2
]
+ · · · +

[
mc

s
]
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has a solution with m1,m2, . . . ,ms integers, where [t] denotes the integral part of any t ∈ R.
To obtain a result that is analogous to the ternary Goldbach problem, in 1995, Laporta and Tolev [13]

considered the equation [
pc

1
]
+

[
pc

2
]
+

[
pc

3
]
= N, (1.2)

where p1, p2, p3 are prime numbers, c ∈ R, c > 1,N ∈ N, and [t] denotes the integral part of t. They
proved that if 1 < c < 17

16 and N is a sufficiently large integer, then the Eq (1.2) has a solution in prime
numbers p1, p2, p3. Later, the upper bound of c was enlarged to

12
11
,

258
235
,

137
119
,

3113
2703

,
3581
3106

by Kumchev and Nedeva [12], Zhai and Cao [27], Cai [6], Li and Zhang [15], and Baker [2],
successively and respectively.

On the other hand, as an analogue of Hua’s theorem on five prime squares, Li and Zhang [14] first
studied the solvability of the Diophantine equation

[pc
1] + [pc

2] + [pc
3] + [pc

4] + [pc
5] = N (1.3)

in prime numbers p1, p2, p3, p4, p5. They proved that if 1 < c < 4109054
1999527 , c , 2 and N is a sufficiently

large integer, then the Eq (1.3) has a solution in prime numbers p1, p2, p3, p4, p5. Later this result was
improved by Li [17] who enlarged the upper bound for c to 408

197 , and by Baker [2] who replaced 408
197

by 609
293 .
For any natural number r, let Pr denote an almost-prime with at most r prime factors, counted

according to multiplicity. There are many papers that are devoted to the study of problems involving
primes of a special type. In 1973, Chen [4] established that there exist infinitely many primes p such
that p + 2 has at most 2 prime factors. In 2000, Tolev [24] proved that for every sufficiently large
integer N ≡ 3 (mod 6), the equation

p1 + p2 + p3 = N (1.4)

has a solution in prime numbers p1, p2, p3 such that p1 + 2 ∈ P2, p2 + 2 ∈ P5, p3 + 2 ∈ P7. After
that, this result was improved by some mathematicians, and the best result in this field was obtained
by Matomäki and Shao [18], who showed that for every sufficiently large integer N ≡ 3 (mod 6) the
Eq (1.4) has a solution in prime numbers p1, p2, p3 such that p1 + 2, p2 + 2, p3 + 2 ∈P2.

Bearing in mind the result of [18], it is natural for us to conjecture that if c is close to 1, then the
Eq (1.2) is solvable in primes p1, p2, p3 such that pi + 2 ∈ P2. An attempt to establish this kind of
the result was first made by Petrov [19], who showed that, for 1 < c < 17

16 and every sufficiently large
integer N, the Eq (1.2) is solvable in prime numbers p1, p2, p3 such that each of the numbers pi + 2
has at most [ 95

17−16c ] prime factors, counted according to multiplicity. Recently, Li et al. [16] improved
Petrov’s result; they extended the range of c to 1 < c < 2173

1930 and reduced the number of prime factors
of pi + 2, i = 1, 2, 3 to [ 11387

4346−3860c ].
Referencing Hua’s work, Tolev [24] also showed that for every sufficiently large integer

N ≡ 5 (mod 24), the equation
p2

1 + p2
2 + p2

3 + p2
4 + p2

5 = N (1.5)

has a solution in prime numbers p1, p2, p3, p4, p5 such that p1 + 2 ∈ P2, p2 + 2 ∈ P2, p3 + 2 ∈
P5, p4 + 2 ∈ P5 and p5 + 2 ∈ P8. And later in 2009, Cai and Lu [5] improved Tolev’s result
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by showing that the Eq (1.5) has a solution in prime numbers p1, p2, p3, p4, p5 such that p1 + 2 ∈
P2, p2+2 ∈P2, p3+2 ∈P4, p4+2 ∈P4 and p5+2 ∈P5. Motivated by Petrov [19] and Tolev [24],
it is reasonable to conjecture that if N is a sufficiently large natural number and c is close to 2, then
the Eq (1.3) has a solution in prime numbers p1, p2, p3, p4, p5 such that pi + 2 are almost-primes of a
certain fixed order.

In this paper, we shall prove the following result.

Theorem 1.1. Suppose that 2 < c < 990
479 and let N be a sufficiently large natural number. Then

the equation (1.3) has a solution in prime numbers p1, p2, p3, p4, p5 such that each of the numbers
p1+2, p2+2, p3+2, p4+2 and p5+2 has at most

[
6227

3960−1916c

]
prime factors, counted with the multiplicity.

2. Preliminaries

Throughout this paper, the letter p, with or without subscript, always stand for prime numbers. We
use ε to denote a sufficiently small positive number, and the value of ε may change from statement
to statement. As usual, we use µ(n),Λ(n), φ(n) and τ(n) to denote Möbius’ function, von Mangolds’
function, Euler’s function and the Dirichlet divisor function, respectively. We write f = O(g) or,
equivalently, f ≪ g if | f | ≤ Cg for some positive number C. If we have simultaneously, that A ≪ B
and B ≪ A, then we shall write A ≍ B. Moreover, we shall use (m, n) and [m, n] for the greatest
common divisor and the least common multiple of the integers m and n, respectively. And we use e(α)
to denote e2πiα. In addition, we define

2 < c <
990
479
, X =

(N
3

) 1
c

, δ =
990
479
− c, ξ =

3c
2
−

5
2
, (2.1)

η =
4δ
13
, D = Xδ, z = Xη, τ = Xξ−c, P(z) =

∏
2<p<z

p,

log p =
5∏

j=1

(log p j), λ±(d) Rosser’s weights of order D.

Lemma 2.1. Suppose that D > 4 is a real number and let λ±(d) represent the Rosser functions of level
D. Then we have the following properties:

(1) For any positive integer d we have∣∣∣λ±(d)
∣∣∣ ≤ 1, λ±(d) = 0 if d > D or µ(d) = 0.

(2) If n ∈ N then ∑
d|n

λ−(d) ≤
∑
d|n

µ(d) ≤
∑
d|n

λ+(d). (2.2)

(3) If z ∈ R and if

P(z) =
∏

2<p<z

p, B =
∏

2<p<z

(
1 −

1
p

)
, N ± =

∑
d|P(z)

λ±(d)
φ(d)

, s0 =
log D
log z

, (2.3)

then we have
B ≤ N + ≤ B

(
F (s0) + O

(
(log D)−1/3

))
,
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B ≥ N − ≥ B
(

f (s0) + O
(
(log D)−1/3

))
,

where F(s) and f (s) denote the classical functions in the linear sieve theory that are respectively
defined by

F(s) =
2eγ

s

(
1 +

∫ s−1

2

log(t − 1)
t

dt
)
, 3 < s ≤ 5

and
f (s) =

2eγ log(s − 1)
s

, 2 < s ≤ 4.

Here γ denotes the Euler constant.

Proof. This is a special case of the work by Greaves [8]. □

Lemma 2.2. Let

Λi =
∑

d|(pi+2,P(z))

µ(d), Λ±i =
∑

d|(pi+2,P(z))

λ±(d), i = 1, 2, 3, 4, 5.

Then we have

Λ1Λ2Λ3Λ4Λ5 ≥ Λ
−
1Λ
+
2Λ
+
3Λ
+
4Λ
+
5 + Λ

+
1Λ
−
2Λ
+
3Λ
+
4Λ
+
5 + Λ

+
1Λ
+
2Λ
−
3Λ
+
4Λ
+
5

+ Λ+1Λ
+
2Λ
+
3Λ
−
4Λ
+
5 + Λ

+
1Λ
+
2Λ
+
3Λ
+
4Λ
−
5 − 4Λ+1Λ

+
2Λ
+
3Λ
+
4Λ
+
5 .

Proof. The proof is the same as in Lemma 13 of [3]. □

Lemma 2.3. Suppose that f (x) : [a, b] → R has continuous derivatives of arbitrary order on [a, b],
where 1 ≤ a < b ≤ 2a. Suppose further that∣∣∣ f ( j)(x)

∣∣∣ ≍ λ1a1− j, j ≥ 1, x ∈ [a, b].

Then for any exponential pair (κ, λ), we have∑
a<n≤b

e( f (n)) ≪ λκ1aλ + λ−1
1 .

Proof. See (3.3.4) of [7]. □

Lemma 2.4. For any complex number zn, we have∣∣∣∣∣∣∣ ∑a<n≤b

zn

∣∣∣∣∣∣∣
2

≤

(
1 +

b − a
Q

) ∑
|q|<Q

(
1 −
|q|
Q

) ∑
a<n,n+q≤b

zn+qzn,

where Q is any positive integer.

Proof. See Lemma 8.17 of [11]. □

Lemma 2.5. Let t be a non-integer, α ∈ (0, 1) and H ≥ 3. Then we have

e(−α{t}) =
∑
|h|≤H

ch(α)e(ht) + O
(
min

(
1,

1
H∥t∥

))
,

where
ch(α) =

1 − e(−α)
2πi(h + α)

.
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Proof. See Lemma 12 of [1]. □

Lemma 2.6. For any real number θ, we have

min
(
1,

1
H∥θ∥

)
=

+∞∑
h=−∞

ahe(hθ),

where

ah ≪ min
(
log 2H

H
,

1
|h|
,

H
h2

)
.

Proof. See (3) of [10]. □

Lemma 2.7. Let f (x) be a real differentiable function such that f ′(x) is monotonic and f ′(x) ≥ m > 0,
or f ′(x) ≤ −m < 0, throughout the interval [a, b]. Then∫ b

a
e( f (x))dx ≪

1
m
.

Proof. See Lemma 4.2 of [23]. □

Lemma 2.8. Suppose that M > 1, c > 1, c < Z and γ > 0. Let A (M; c, γ) denote the number of
solutions of the following inequalities∣∣∣nc

1 + nc
2 − nc

3 − nc
4

∣∣∣ < γ, M < n1, n2, n3, n4 ≤ 2M.

Then we have
A (M; c, γ) ≪

(
γM4−c + M2

)
Mε.

Proof. See Theorem 2 of [20]. □

3. Beginning of the proof

The central focus of this paper is the study of the sum

Γ =
∑

X
2 <p1,p2,p3,p4,p5≤X

[pc
1]+[pc

2]+[pc
3]+[pc

4]+[pc
5]=N

(pi+2,P(z))=1
i=1,2,3,4,5

log p.

In order to prove Theorem 1.1, we need only to show that Γ > 0. By the trivial orthogonality relation
given by ∫ 1

0
e(αh)dα =

1, if h = 0,
0, otherwise

we can write Γ as

Γ =
∑

X
2 <p1,p2,p3,p4,p5≤X

(pi+2,P(z))=1
i=1,2,3,4,5

(log p)
∫ 1−τ

−τ

e
(
(
[
pc

1
]
+

[
pc

2
]
+

[
pc

3
]
+

[
pc

4
]
+

[
pc

5
]
− N)α

)
dα. (3.1)
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By the definition of Λi in Lemma 2.2, we can see that

Λi =
∑

d|(pi+2,P(z))

µ(d) =

1, if (pi + 2, P(z)) = 1,
0, otherwise.

Then by Lemma 2.2 we find that

Γ =
∑

X
2 <p1,p2,p3,p4,p5≤X

(log p)Λ1Λ2Λ3Λ4Λ5

∫ 1−τ

−τ

e
(
(
[
pc

1
]
+

[
pc

2
]
+

[
pc

3
]
+

[
pc

4
]
+

[
pc

5
]
− N)α

)
dα

≥
∑

X
2 <p1,p2,p3,p4,p5≤X

(log p)
∫ 1−τ

−τ

e
(
(
[
pc

1
]
+

[
pc

2
]
+

[
pc

3
]
+

[
pc

4
]
+

[
pc

5
]
− N)α

)
dα

×
(
Λ−1Λ

+
2Λ
+
3Λ
+
4Λ
+
5 + Λ

+
1Λ
−
2Λ
+
3Λ
+
4Λ
+
5 + Λ

+
1Λ
+
2Λ
−
3Λ
+
4Λ
+
5 + Λ

+
1Λ
+
2Λ
+
3Λ
−
4Λ
+
5

+Λ+1Λ
+
2Λ
+
3Λ
+
4Λ
−
5 − 4Λ+1Λ

+
2Λ
+
3Λ
+
4Λ
+
5
)

= Γ1 + Γ2 + Γ3 + Γ4 + Γ5 − 4Γ6, (3.2)

By the symmetric property, we have

Γ1 = Γ2 = Γ3 = Γ4 = Γ5 =
∑

X
2 <p1,p2,p3,p4,p5≤X

(log p)Λ−1Λ
+
2Λ
+
3Λ
+
4Λ
+
5

×

∫ 1−τ

−τ

e
(
(
[
pc

1
]
+

[
pc

2
]
+

[
pc

3
]
+

[
pc

4
]
+

[
pc

5
]
− N)α

)
dα,

Γ6 =
∑

X
2 <p1,p2,p3,p4,p5≤X

(log p)Λ+1Λ
+
2Λ
+
3Λ
+
4Λ
+
5

×

∫ 1−τ

−τ

e
(
(
[
pc

1
]
+

[
pc

2
]
+

[
pc

3
]
+

[
pc

4
]
+

[
pc

5
]
− N)α

)
dα.

Hence, by (3.1) and (3.2) we obtain
Γ ≥ 5Γ1 − 4Γ6. (3.3)

Now define

L±(α) =
∑

X
2 <p≤X

(log p)e ([pc]α)
∑

d|(p+2,P(z))

λ±(d)

=
∑
d|P(z)

λ±(d)
∑
µX<p≤X

d|p+2

(log p)e ([pc]α) . (3.4)

Consider Γ1 first. By (3.4) we can derive that

Γ1 =

∫ 1−τ

−τ

L−(α)L+(α)4e(−Nα)dα = Γ11 + Γ12, (3.5)

where

Γ11 =

∫ τ

−τ

L−(α)L+(α)4e(−Nα)dα, (3.6)
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Γ12 =

∫ 1−τ

τ

L−(α)L+(α)4e(−Nα)dα. (3.7)

Similarly, we have

Γ6 =

∫ τ

−τ

L+(α)5e(−Nα)dα +
∫ 1−τ

τ

L+(α)5e(−Nα)dα =: Γ61 + Γ62. (3.8)

Now combining (3.3), (3.5) and (3.8) we get

Γ ≥ 5Γ11 − 4Γ61 + (5Γ12 − 4Γ62) . (3.9)

In the following sections, we shall prove that

5Γ11 − 4Γ61 ≫
X5−c

log5 X
, Γ12,Γ62 ≪ X5−c−ε.

4. The integrals Γ11 and Γ61

In this section, we will give an asymptotic formula for the integrals Γ11 and Γ61 defined by (3.6)
and (3.8), respectively. We consider the sum

L(α) =
∑
d≤D

λ(d)
∑

X
2 <p≤X
d|p+2

(log p)e ([pc]α) , (4.1)

where λ(d) are real numbers satisfying

|λ(d)| ≤ 1, λ(d) = 0 if 2|d or µ(d) = 0. (4.2)

Furthermore, we define

I(α) =
∫ X

X
2

e (tcα) dt. (4.3)

Lemma 4.1. Let L(α) and I(α) be defined by (4.1) and (4.3), respectively. Suppose that ξ and δ satisfy
the following conditions

ξ + 7δ < 2 and 3ξ + 6δ < 2.

Then for |α| ≤ τ, we have

L(α) =
∑
d≤D

λ(d)
φ(d)

I(α) + O
(

X
logA X

)
,

where A > 0 is a sufficiently large constant.

Proof. See Lemma 2.8 in [16]. □

Lemma 4.2. Let L(α) and I(α) be defined by (4.1) and (4.3), respectively. Then we have

(i)
∫
|α|≤τ

|I(α)|4dα ≪ X4−c log4 X,

(ii)
∫
|α|≤τ

|L(α)|4dα ≪ X4−c log10 X,

(iii)
∫ 1

0
|L(α)|4 dα ≪ X2+3ε.
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Proof. By using the trivial estimate |I(α)| ≪ X and L(x) ≪ X log2 X, (i) and (ii) follow from Lemma 2.9
in [16]. For (iii), we have∫ 1

0
|L(α)|4 dα =

∑
di≤D

i=1,2,3,4

λ(d1)λ(d2)λ(d3)λ(d4)
∑

X
2 <p1,p2,p3,p4≤X
di |pi+2,i=1,2,3,4

4∏
i=1

(log pi)

×

∫ 1

0
e
(
(
[
pc

1
]
+

[
pc

2
]
−

[
pc

3
]
−

[
pc

4
]
)α

)
dα

=
∑

X
2 <p1,p2,p3,p4≤X

[pc
1]+[pc

2]=[pc
3]+[pc

4]

4∏
i=1

(log pi)
∑

di≤D,di |pi+2
i=1,2,3,4

λ(d1)λ(d2)λ(d3)λ(d4)

≪ (log4 X)
∑

X
2 <n1,n2,n3,n4≤X

[nc
1]+[nc

2]=[nc
3]+[nc

4]

τ(n1 + 2)τ(n2 + 2)τ(n3 + 2)τ(n4 + 2)

≪ Xε(log4 X)
∑

X
2 <n1,n2,n3,n4≤X

[nc
1]+[nc

2]=[nc
3]+[nc

4]

1 ≪ X2ε
∑

X
2 <n1,n2,n3,n4≤X

|nc
1+nc

2−nc
3−nc

4|<4

1

≪ X3ε
(
4X4−c + X2

)
≪ X2+3ε,

where Lemma 2.8 is applied in the last step. □

Let

M ±(α) =
∑
d≤D

λ±(d)
φ(d)

I(α) = N ±I(α).

Then we can easily get the elementary estimate

M ±(α) ≪ |I(α)| log X. (4.4)

By using Lemma 4.2 and (4.4) we find that

L−(α)L+(α)4 −M −(α)M +(α)4

=
(
L−(α) −M −(α)

)
L+(α)4 +

(
L+(α) −M +(α)

)
M −(α)L+(α)3

+
(
L+(α) −M +(α)

)
M −(α)M +(α)L+(α)2

+
(
L+(α) −M +(α)

)
M −(α)M +(α)2L+(α) +

(
L+(α) −M +(α)

)
M −(α)M +(α)3

≪
X

logA X

( ∣∣∣L+(α)
∣∣∣4 + ∣∣∣L+(α)

∣∣∣3 |I(α)| log X +
∣∣∣L+(α)

∣∣∣2 |I(α)|2 log2 X

+
∣∣∣L+(α)

∣∣∣ |I(α)|3 log3 X + |I(α)|4 log4 X
)
. (4.5)

Let

Jτ =

∫ τ

−τ

M −(α)M +(α)4e(−Nα)dα. (4.6)
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Then we can derive from Lemma 4.2, (3.6), (4.5) and (4.6) that

Γ11 − Jτ ≪

∫
|α|≤τ

∣∣∣L−(α)L+(α)4 −M −(α)M +(α)4
∣∣∣ dα

≪
X

logA−4 X

(∫
|α|≤τ

∣∣∣L+(α)
∣∣∣4 dα +

∫
|α|≤τ

|I(α)|4 dα
)

≪
X5−c

logA−14 X
. (4.7)

Define

J =

∫ +∞

−∞

I(α)5e(−Nα)dα. (4.8)

Then by the argument used in Lemma 2.13 of [16], we have

J ≫ X5−c. (4.9)

With the help of Lemma 2.7 we can get that I(α) ≪ |α|−1X1−c. Hence, from (4.6) and (4.8) we find that∣∣∣N − (N +)4
J −Jτ

∣∣∣ ≪ (
log5 X

) ∫
|α|>τ

|I(α)|5dα

≪
(
log5 X

) ∫
|α|>τ

|α|−5X5−5cdα

≪ X5−c−4ξ log5 X ≪ X5−c−ε. (4.10)

Now combining (4.7) and (4.10) we obtain

Γ11 = N − (N +)4
J + O

(
X5−c

logA−14 X

)
. (4.11)

Similarly, we can prove that

Γ61 =
(
N +)5

J + O

(
X5−c

logA−14 X

)
. (4.12)

5. The upper bound for the integrals Γ12 and Γ62

In this section we shall consider the upper bound for the integrals Γ12 and Γ62 defined by (3.7)
and (3.8), respectively. Define

T (α, X) =
∑
d≤D

∑
X
2 <n≤X
d|n+2

e ([nc]α) .

Lemma 5.1. For α ∈ (0, 1), we have

T (α, X) ≪ X
2c+13

20 +εD
7

20 +
log X
αXc−1 .
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Proof. The proof is exactly the same as that of Lemma 2.7 in [16], where the exponential pair (κ, λ) =
( 1

9 ,
13
18 ) is used. One can see [16] for details. □

Lemma 5.2. Let f (n) be a complex valued function defined on n ∈ ( X
2 , X]. Then we have∑

X
2 <n≤X

Λ(n) f (n) = S 1 − S 2 − S 3,

where

S 1 =
∑

k≤X
1
3

µ(k)
∑

X
2k<ℓ≤

X
k

(log ℓ) f (kℓ),

S 2 =
∑

k≤X
2
3

c(k)
∑

X
2k<ℓ≤

X
k

f (kℓ),

S 3 =
∑

X
1
3 <k≤X

2
3

a(k)
∑

X
2k<ℓ≤

X
k

Λ(ℓ) f (kℓ),

and where a(k), c(k) are real numbers satisfying

|a(k)| ≤ τ(k), |c(k)| ≤ log k.

Proof. The proof can be found on page 112 of [26]. □

Lemma 5.3. Suppose that 2 < c < 990
479 . Let λ(d) be real numbers that satisfy (4.2) and L(α) be defined

by (4.1). Then we have
sup
α∈(τ,1−τ)

|L(α)| ≪ X
3
2−

c
4−ε.

Proof. From (4.1), it is easy to see that

L(α) = L1(α) + O
(
X

1
2+ε

)
, (5.1)

where
L1(α) =

∑
d≤D

λ(d)
∑

X
2 <n≤X
d|n+2

Λ(n)e ([nc]α) .

Hence by (5.1) we need only to show that the estimation

sup
α∈(τ,1−τ)

|L1(α)| ≪ X
3
2−

c
4−ε (5.2)

holds for 2 < c < 990
479 . Let H = X

8
479 . Then, by using Lemma 2.5, we get

L1(α) =
∑
|h|≤H

ch(α)
∑

X
2 <n≤X

Λ(n)
∑
d≤D
d|n+2

λ(d)e ((h + α)nc)

+ O

(log X)
∑

X
2 <n≤X

min
(
1,

1
H∥nc∥

) . (5.3)
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By Lemmas 2.3 and 2.6 with the exponential pair (κ, λ) = (1
6 ,

2
3 ), we obtain

(log X)
∑

X
2 <n≤X

min
(
1,

1
H∥nc∥

)

= (log X)
∑

X
2 <n≤X

+∞∑
k=−∞

ake(knc) ≤ (log X)
+∞∑

k=−∞

|ak|

∣∣∣∣∣∣∣∣
∑

X
2 <n≤X

e(knc)

∣∣∣∣∣∣∣∣
≪ (log X)

X log 2H
H

+
∑

1≤k≤H

1
k

(
(kXc)

1
6 X

1
2 +

X
kXc

)
+

∑
k>H

H
k2

(
(kXc)

1
6 X

1
2 +

X
kXc

)
≪ (log X)

(
XH−1 + H

1
6 X

c
6+

1
2 + X1−c

)
≪ X

3
2−

c
4−ε. (5.4)

Next we consider the first term on the right-hand side of (5.3). We write it in the following form

S (α) =
∑
|h|≤H

ch(α)
∑

X
2 <n≤X

Λ(n) f (n), (5.5)

where
f (n) =

∑
d≤D
d|n+2

λ(d)e ((h + α)nc) .

By applying Lemma 5.2 we find that

S (α) = S 1 − S 2 − S 3, (5.6)

where

S 1 =
∑
|h|≤H

ch(α)
∑

k≤X
1
3

µ(k)
∑

X
2k<ℓ≤

X
k

(log ℓ) f (kℓ), (5.7)

S 2 =
∑
|h|≤H

ch(α)
∑

k≤X
2
3

c(k)
∑

X
2k<ℓ≤

X
k

f (kℓ), (5.8)

S 3 =
∑
|h|≤H

ch(α)
∑

X
1
3 <k≤X

2
3

a(k)
∑

X
2k<ℓ≤

X
k

Λ(ℓ) f (kℓ), (5.9)

and |a(k)| ≤ τ(k), |c(k)| ≤ log k. Clearly, by (5.8) we can write S 2 as

S 2 = S 21 + S 22, (5.10)

where

S 21 =
∑
|h|≤H

ch(α)
∑

k≤X
1
3

c(k)
∑

X
2k<ℓ≤

X
k

f (kℓ), (5.11)
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S 22 =
∑
|h|≤H

ch(α)
∑

X
1
3 <k≤X

2
3

c(k)
∑

X
2k<ℓ≤

X
k

f (kℓ).

Therefore, by (5.6) and (5.10) we have

S (α) ≪ |S 1| + |S 21| + |S 22| + |S 3|. (5.12)

We consider the sum S 21 defined by (5.11) first. We change the order of the summation to write it
in the following form

S 21 =
∑
d≤D

λ(d)
∑
|h|≤H

ch(α)
∑

k≤X
1
3

c(k)
∑

X
2k<ℓ≤

X
k

d|kℓ+2

e ((h + α)(kℓ)c) .

Since λ(d) = 0 for 2|d, from the condition d|kℓ+2 we have that (k, d) = 1. Hence there exists an integer
ℓ0 such that kℓ+ 2 ≡ 0 (mod d) is equivalent to ℓ ≡ ℓ0 (mod d), which means that ℓ = ℓ0 +md for some
integer m. Therefore, we get

S 21 =
∑
d≤D

λ(d)
∑
|h|≤H

ch(α)
∑

k≤X
1
3

(k,d)=1

c(k)
∑

X
2kd−

ℓ0
d <m≤ X

kd−
ℓ0
d

e ((h + α)kc (ℓ0 + md)c) . (5.13)

By using Lemma 2.3 with the exponential pair (κ, λ) = A2BA2B(0, 1) = ( 1
20 ,

33
40 ) we find that the sum

over m in (5.13) is given by

≪
(
|h + α|kdXc−1

) 1
20

( X
kd

) 33
40

+
(
|h + α|kdXc−1

)−1

≪ |h + α|
1
20 X

c
20+

31
40 k−

31
40 d−

31
40 + |h + α|−1k−1d−1X1−c. (5.14)

Then from (4.2), (5.13) and (5.14) we can obtain

S 21 ≪ Xε
(
X

c
20+

17
20 D

9
40 H

1
20 + X1−c

)
. (5.15)

For the sum S 1 given by (5.7), we can apply partial summation to get rid of the log factor and then
proceed as in the same process for S 21 to get

S 1 ≪ Xε
(
X

c
20+

17
20 D

9
40 H

1
20 + X1−c

)
. (5.16)

Now we consider the sum S 3. By a splitting argument, we can decompose S 3 into O(log X) sums
of the following form

W(K) =
∑
|h|≤H

ch(α)
∑

K<k<K1

a(k)
∑

X
2k<ℓ≤

X
k

Λ(ℓ)
∑
d≤D

d|kℓ+2

λ(d)e ((h + α)(kℓ)c) , (5.17)

where
K1 ≤ 2K, X

1
3 ≤ K < K1 ≤ X

2
3 . (5.18)
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We assume that K ≥ X
1
2 first. It follows from (5.17), (5.18) and Cauchy’s inequality that

|W(K)|2 ≪ XεK max
γ∈(τ,H+1)

∑
K<k<K1

∣∣∣∣∣∣ ∑
X
2k<ℓ≤

X
k

Λ(ℓ)
∑
d≤D

d|kℓ+2

λ(d)e (γ(kℓ)c)

∣∣∣∣∣∣2. (5.19)

Suppose that Q is an integer which satisfies

1 ≤ Q ≪
X
K
. (5.20)

For the inner sum over ℓ in (5.19), by applying Lemma 2.4 we can derive that

|W(K)|2 ≪
X1+ε

Q
max
γ∈(τ,H+1)

∑
K<k<K1

∑
|q|≤Q

(
1 −
|q|
Q

) ∑
X
2k<ℓ,ℓ+q≤ X

k

Λ(ℓ)

×
∑
d1≤D

d1 |kℓ+2

λ(d1)e (−γ(kℓ)c)Λ(ℓ + q)
∑
d2≤D

d2 |k(ℓ+q)+2

λ(d2)e (γ(k(ℓ + q))c)

≪
X1+ε

Q
max
γ∈(τ,H+1)

∑
d1≤D

∑
d2≤D

λ(d1)λ(d2)
∑
|q|≤Q

(
1 −
|q|
Q

)
×

∑
X

2K1
<ℓ,ℓ+q≤ X

K

Λ(ℓ)Λ(ℓ + q)S , (5.21)

where
S =

∑
K̃<k≤K̃1
d1 |kℓ+2

d2 |k(ℓ+q)+2

e (γkc ((ℓ + q)c − ℓc))

and

K̃ = max
(
K,

X
2ℓ
,

X
2(ℓ + q)

)
, K̃1 = min

(
K1,

X
ℓ
,

X
ℓ + q

)
.

Since λ(d) = 0 for 2|d, we can assume that (d1d2, 2) = 1. Then it follows from d1|kℓ+2 and d2|k(ℓ+q)+2
that (d1, ℓ) = (d2, ℓ + q) = 1. Hence there exists an integer k0 that is dependent on ℓ, h, d1, d2 such that
the pair of conditions kℓ+2 ≡ 0 (mod d1) and k(ℓ+q)+2 ≡ 0 (mod d2) is equivalent to the congruence
k ≡ k0 (mod [d1, d2]). Thus, we have

S =
∑

K̃−k0
[d1 ,d2]<m≤ K̃1−k0

[d1 ,d2]

e(F(m)), (5.22)

where
F(m) = γ (k0 + m[d1, d2])c ((ℓ + q)c − ℓc) . (5.23)

For q = 0, by the trivial estimate we have

S ≪
K

[d1, d2]
. (5.24)
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For the case q , 0, by (5.23) we get

∣∣∣F( j)(m)
∣∣∣ ≍ |γ||q|ℓc−1[d1, d2]Kc−1

(
K

[d1, d2]

)1− j

, j ≥ 1.

We apply Lemma 2.3 with the following exponential pair

(κ, λ) = A
(
13
84
+ ε,

55
84
+ ε

)
=

(
13

194
+ ε,

76
97
+ ε

)
to derive that

S ≪
(
|γ||q|ℓc−1[d1, d2]Kc−1

) 13
194+ε

(
K

[d1, d2]

) 76
97+ε

+
(
|γ||q|ℓc−1[d1, d2]Kc−1

)−1

≪ Xε
(
|γ|

13
194 |q|

13
194 ℓ

13
194 (c−1)[d1, d2]−

139
194 K

13
194 c+ 139

194 + |γ|−1|q|−1ℓ1−c[d1, d2]−1K1−c
)
. (5.25)

Note that

∑
d1≤D

∑
d2≤D

1

[d1, d2]
139
194

=
∑
r≤D

∑
d1≤D

∑
d2≤D

r=(d1,d2)

(
r

d1d2

) 139
194

≪
∑
r≤D

∑
k1≤

D
r

∑
k2≤

D
r

(
1

rk1k2

) 139
194

≪
∑
r≤D

r−
139
194

(D
r

) 55
97

≪ D
55
97 ,

and ∑
d1≤D

∑
d2≤D

1
[d1, d2]

≪ (log D)3.

Then we use the above two estimates, (5.21), (5.24) and (5.25) to get

|W(K)|2 ≪
X1+ε

Q
max
γ∈(τ,H+1)

∑
X

2K1
<ℓ≤ X

K

Λ(ℓ)2
∑
d1≤D

∑
d2≤D

K
[d1, d2]

+
X1+2ε

Q
max
γ∈(τ,H+1)

∑
d1≤D

∑
d2≤D

∑
0<|q|<Q

∑
X

2K1
<ℓ,ℓ+q≤ X

K

Λ(ℓ)Λ(ℓ + q)

×
(
|γ|

13
194 |q|

13
194 ℓ

13
194 (c−1)[d1, d2]−

139
194 K

13
194 c+ 139

194 + |γ|−1|q|−1ℓ1−c[d1, d2]−1K1−c
)

≪ X2+εQ−1 +
X1+2ε

Q
|γ0|

13
194 K

13
194 c+ 139

194

∑
d1≤D

∑
d2≤D

1

[d1, d2]
139
194

 ( ∑
0<|q|<Q

|q|
13

194

)

×

( ∑
X

2K1
<ℓ≤ X

K

ℓ
13
194 (c−1)

)
+

X1+2ε

Q
|γ0|
−1K1−c

∑
d1≤D

∑
d2≤D

1
[d1, d2]
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×

( ∑
0<|q|<Q

|q|−1
)( ∑

X
2K1
<ℓ≤ X

K

ℓ1−c

)
≪ Xε

(
X2Q−1 + X

13c+375
194 Q

13
194 D

55
97 |γ0|

13
194 K−

21
97 + X|γ0|

−1Q−1K1−c
)

(5.26)

for some γ0 ∈ [τ,H + 1]. We choose

Q0 = X
13

207 (1−c)D−
110
207 |γ0|

− 13
207 K

14
69 , Q =

[
min(Q0, XK−1)

]
.

Then, it is easy to check that
Q−1 ≍ Q−1

0 + KX−1. (5.27)

Substituting (5.27) into (5.26), we obtain

|W(K)|2 ≪ Xε
(
X2

(
Q−1

0 + KX−1
)
+ X

13c+375
194 Q

13
194 D

55
97 |γ0|

13
194 K−

21
97

+X|γ0|
−1

(
Q−1

0 + KX−1
)

K1−c
)

≪ Xε
(
X

13c+380
207 D

110
207 |γ0|

13
207 + X

5
3 + X

553−181c
414 D

110
207 |γ0|

− 194
207 + X1− c

2 |γ0|
−1

)
,

which implies that

|W(K)| ≪ Xε
(
X

13c+380
414 D

55
207 |γ0|

13
414 + X

5
6 + X

553−181c
828 D

55
207 |γ0|

− 97
207 + X

1
2−

c
4 |γ0|

− 1
2
)
. (5.28)

When K < X
1
2 , we can represent W(K) as follows:

W(K) =
∑
|h|≤H

ch(α)
∑

X
2K1
<ℓ≤ X

K

Λ(ℓ)
∑

max(K, X
2ℓ )<k≤min(K1,

X
ℓ )

a(k)

×
∑
d≤D

d|kℓ+2

λ(d)e ((h + α)(kℓ)c) .

Now we have that X
K ≫ X

1
2 , then, we may proceed as in (5.19)–(5.28) but with roles of k and ℓ reversed.

Thus we can again derive the estimate (5.28). Consequently, we obtain

S 3 ≪ Xε
(
X

13c+380
414 D

55
207 |γ0|

13
414 + X

5
6 + X

553−181c
828 D

55
207 |γ0|

− 97
207 + X

1
2−

c
4 |γ0|

− 1
2
)
. (5.29)

To bound S 22, we use the same methodology as for S 3 to derive that

S 22 ≪ Xε
(
X

13c+380
414 D

55
207 |γ0|

13
414 + X

5
6 + X

553−181c
828 D

55
207 |γ0|

− 97
207 + X

1
2−

c
4 |γ0|

− 1
2
)
. (5.30)

Now combining (5.12), (5.15), (5.16), (5.29) and (5.30) and from the fact that γ0 ∈ [τ,H + 1], we
find that

S (α) ≪ Xε
(
X

c
20+

17
20 D

9
40 H

1
20 + X1−c + X

13c+380
414 D

55
207 |γ0|

13
414 + X

5
6

+X
553−181c

828 D
55
207 |γ0|

− 97
207 + X

1
2−

c
4 |γ0|

− 1
2
)

≪ Xε
(
X

c
20+

8151
9580+

9δ
40 + X1−c + X

13c
414+

10118
11017+

55δ
207 + X

5
6 +X

553
828+

c
4+

55δ
207−

97ξ
207 + X

1
2+

c
4−
ξ
2
)
.

AIMS Mathematics Volume 9, Issue 6, 16486–16505.



16501

Therefore, from condition (2.1) we conclude that if 2 < c < 990
479 then

sup
α∈(τ,1−τ)

|S (α)| ≪ X
3
2−

c
4−ε. (5.31)

With the help of (5.3)–(5.5) and (5.31), we finally obtain that

sup
α∈(τ,1−τ)

|L1(α)| ≪ X
3
2−

c
4−ε

holds for 2 < c < 990
479 , and the proof of Lemma 5.3 is completed. □

Lemma 5.4. Suppose that 2 < c < 990
479 . Then we have∫ 1−τ

τ

|L(α)|5 dα ≪ X5−c−ε.

Proof. Let G(α) = L(α)|L(α)|3. We have∣∣∣∣∣∣
∫ 1−τ

τ

|L(α)|5 dα

∣∣∣∣∣∣ =
∣∣∣∣∣∣∑

d≤D

λ(d)
∑

X
2 <p≤X
d|p+2

(log p)
∫ 1−τ

τ

e([pc]α)G(α)dα

∣∣∣∣∣∣
≤ (log X)

∑
d≤D

∑
X
2 <p≤X
d|p+2

∣∣∣∣∣∣
∫ 1−τ

τ

e([pc]α)G(α)dα

∣∣∣∣∣∣
≤ (log X)

∑
d≤D

∑
X
2 <n≤X
d|n+2

∣∣∣∣∣∣
∫ 1−τ

τ

e([nc]α)G(α)dα

∣∣∣∣∣∣ . (5.32)

From (5.32) and Cauchy’s inequality, we get∣∣∣∣∣∣
∫ 1−τ

τ

|L(α)|5 dα

∣∣∣∣∣∣2 ≪ X(log X)3
∑
d≤D

∑
X
2 <n≤X
d|n+2

∣∣∣∣∣∣
∫ 1−τ

τ

e([nc]α)G(α)dα

∣∣∣∣∣∣2

= X(log X)3
∫ 1−τ

τ

G(β)dβ
∫ 1−τ

τ

T (α − β, X)G(α)dα

≪ X(log X)3
∫ 1−τ

τ

|G(β)|dβ
∫ 1−τ

τ

|T (α − β, X)G(α)| dα. (5.33)

Now ∫ 1−τ

τ

|T (α − β, X)G(α)| dα ≪
∫

τ<α<1−τ
|α−β|≤X−c

|T (α − β, X)G(α)| dα

+

∫
τ<α<1−τ
|α−β|>X−c

|T (α − β, X)G(α)| dα. (5.34)
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By the trivial bound T (α, X) ≪ X log X and Lemma 5.3, we have∫
τ<α<1−τ
|α−β|≤X−c

|T (α − β, X)G(α)| dα ≪ X(log X) sup
α∈(τ,1−τ)

|G(α)|
∫

|α−β|≤X−c

dα

≪ X1−c(log X) sup
α∈(τ,1−τ)

|L(α)|4 ≪ X7−2c−ε. (5.35)

From Lemmas 5.1 and 5.3, we obtain∫
τ<α<1−τ
|α−β|>X−c

|T (α − β, X)G(α)| dα

≪

∫
τ<α<1−τ
|α−β|>X−c

|L(α)|4
(
X

2c+13
20 +εD

7
20 +

X1−c log X
|α − β|

)
dα

≪ X
2c+13

20 +εD
7
20

∫ 1

0
|L(α)|4dα + X1−c(log X) sup

α∈(τ,1−τ)
|L(α)|4

∫
|α−β|>X−c

1
|α − β|

dα

≪ X
2c+53

20 +
7δ
20+ε + X7−2c−ε ≪ X7−2c−ε, (5.36)

where (iii) of Lemma 4.2 is used. It follows from (5.34)–(5.36) that∫ 1−τ

τ

|T (α − β, X)G(α)| dα ≪ X7−2c−ε. (5.37)

Combining (5.33), (5.37) and (iii) of Lemma 4.3, we get∣∣∣∣∣∣
∫ 1−τ

τ

|L(α)|5 dα

∣∣∣∣∣∣2 ≪ X(log X)3X7−2c−ε
∫ 1

0
|L(α)|4dα ≪ X10−2c− ε2 . (5.38)

Now Lemma 5.4 follows from (5.38). □

We are now in a position to estimate Γ12 and Γ62. By Hölder’s inequality and Lemma 5.4 we find
that

|Γ12| ≪

∫ 1−τ

τ

∣∣∣L−(α)
∣∣∣ ∣∣∣L+(α)

∣∣∣4 dα

≪

(∫ 1−τ

τ

∣∣∣L−(α)
∣∣∣5 dα

) 1
5
(∫ 1−τ

τ

∣∣∣L+(α)
∣∣∣5 dα

) 4
5

≪ X5−c−ε. (5.39)

Similarly, for Γ62 we have

|Γ62| ≪

∫ 1−τ

τ

∣∣∣L+(α)
∣∣∣5 dα ≪ X5−c−ε. (5.40)
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6. Proof of Theorem 1.1

Proposition 6.1. We have

5Γ11 − 4Γ61 ≫
X5−c

log5 X
.

Proof. It follows from (4.11), (4.12) and Lemma 2.1(3) that

5Γ11 − 4Γ61 =
(
5N − − 4N +) (N +)4

J + O

(
X5−c

logA−14 X

)
≥

(
5 f

(
log D
log z

)
− 4F

(
log D
log z

)) (
1 + O(log−1/3 D)

)
B5J + O

(
X5−c

logA−14 X

)
=

(
5 f

(
13
4

)
− 4F

(
13
4

))
B5J + O

(
X5−c−ε

)
=

40eγ

13

log
9
4
−

4
5
−

4
5

∫ 9
4

2

log(t − 1)
t

dt

B5J + O
(
X5−c−ε

)
≥ 0.001B5J + O

(
X5−c−ε

)
≫

X5−c

log5 X
,

where the following trivial estimate is used:

B ≍
1

log X
.

□

Now according to (3.9), (5.39), (5.40) and Proposition 6.1, we obtain

Γ ≥ (5Γ11 − 4Γ61) + O (|Γ12| + |Γ62|) ≫
X5−c

log5 X
,

which implies that Γ > 0 for a sufficiently large natural number N. Then, (1.3) would have a solution
in primes p1, p2, p3, p4, p5 satisfying

(p1 + 2, P(z)) = (p2 + 2, P(z)) = (p3 + 2, P(z)) = (p4 + 2, P(z)) = (p5 + 2, P(z)) = 1. (6.1)

Suppose that pi + 2 has l prime factors, counted with multiplicity. From (6.1) and the condition X
2 <

pi ≤ X we see that
X + 2 ≥ pi + 2 ≥ zl = Xηl.

Then, l ≤ η−1. This means that p j + 2 has at most
[

6227
3960−1916c

]
prime factors counted with multiplicity.

Now Theorem 1.1 is proved.
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