Research article Special Issues

On the sixth power mean values of a generalized two-term exponential sums

  • Received: 15 August 2023 Revised: 02 September 2023 Accepted: 12 September 2023 Published: 12 October 2023
  • MSC : 11L03, 11L05

  • This paper examines the evaluations of sixth power mean values of a generalized two-term exponential sums. In the case $ p\equiv 3\bmod 4 $, we try to establish two precise formulas by applying the properties of character sums and the number of the solutions of relevant congruence equations modulo an odd prime $ p $.

    Citation: Shujie Zhou, Li Chen. On the sixth power mean values of a generalized two-term exponential sums[J]. AIMS Mathematics, 2023, 8(11): 28105-28119. doi: 10.3934/math.20231438

    Related Papers:

  • This paper examines the evaluations of sixth power mean values of a generalized two-term exponential sums. In the case $ p\equiv 3\bmod 4 $, we try to establish two precise formulas by applying the properties of character sums and the number of the solutions of relevant congruence equations modulo an odd prime $ p $.



    加载中


    [1] H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81.
    [2] R. Duan, W. P. Zhang, On the fourth power mean of the generalized two-term exponential sums, Math. Rep., 22 (2020), 205–212.
    [3] W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta Math. Sin. English Ser., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8
    [4] L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034
    [5] X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. https://doi.org/10.3390/math7100907 doi: 10.3390/math7100907
    [6] W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [7] H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46 (2017), 529–547.
    [8] Y. H. Yu, W. P. Zhang, On the sixth power mean value of the generalized three-term exponential sums, Abstract Appl. Anal., 2014 (2014), 474726. https://doi.org/10.1155/2014/474726 doi: 10.1155/2014/474726
    [9] X. C. Du, X. X. Li, On the fourth power mean of generalized three-term exponential sums, J. Math. Res. Appl., 35 (2015), 92–96.
    [10] X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math., 15 (2017), 705–710. https://doi.org/10.1515/math-2017-0060 doi: 10.1515/math-2017-0060
    [11] H. S. Kim, T. Kim, On certain values of $p$-adic $q$-$L$-functions, Rep. Fac. Sci. Engrg. Saga Univ. Math., 23 (1995), 1–7.
    [12] T. Kim, On explicit formulas of $p$-adic $q$-$L$-functions, Kyushu J. Math., 48 (1994), 73–86.
    [13] T. M. Apostol, Introduction to Analytic Number Theory, New York: Springer, 1976.
    [14] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, New York: Springer, 1982.
    [15] W. P. Zhang, H. L. Li, Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2013.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(882) PDF downloads(50) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog