Research article

Double sequences with ideal convergence in fuzzy metric spaces

  • Received: 01 June 2023 Revised: 06 September 2023 Accepted: 06 September 2023 Published: 12 October 2023
  • MSC : 40A05, 40A35

  • We show ideal convergence ($ I $-convergence), ideal Cauchy ($ I $-Cauchy) sequences, $ I^* $-convergence and $ I^* $-Cauchy sequences for double sequences in fuzzy metric spaces. We define the $ I $-limit and $ I $-cluster points of a double sequence in these spaces. Afterward, we provide certain fundamental properties of the aspects. Lastly, we discuss whether the phenomena should be further investigated.

    Citation: Aykut Or. Double sequences with ideal convergence in fuzzy metric spaces[J]. AIMS Mathematics, 2023, 8(11): 28090-28104. doi: 10.3934/math.20231437

    Related Papers:

  • We show ideal convergence ($ I $-convergence), ideal Cauchy ($ I $-Cauchy) sequences, $ I^* $-convergence and $ I^* $-Cauchy sequences for double sequences in fuzzy metric spaces. We define the $ I $-limit and $ I $-cluster points of a double sequence in these spaces. Afterward, we provide certain fundamental properties of the aspects. Lastly, we discuss whether the phenomena should be further investigated.



    加载中


    [1] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74.
    [2] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
    [3] I. J. Schoenberg, The integrability of certain functions and related summability methods, Am. Math. Mon., 66 (1959), 361–375. https://doi.org/10.1080/00029890.1959.11989303 doi: 10.1080/00029890.1959.11989303
    [4] A. R. Freedman, J. J. Sember, Densities and summability, Pac. J. Math., 95 (1981), 293–305. https://doi.org/10.2140/pjm.1981.95.293 doi: 10.2140/pjm.1981.95.293
    [5] I. J. Maddox, Elements of functional analysis, Cambrige: Cambrige University Press, 1970.
    [6] A. Zygmund, Trigonometrical series (Trigonometricheskii ryady), Warsaw: Academic Press, 1935.
    [7] P. Erdos, G. Tenenbaum, Sur les densities de certaines suites dentiers, Proc. London Math. Soc., 59 (1989), 417–438. https://doi.org/10.1112/plms/s3-59.3.417 doi: 10.1112/plms/s3-59.3.417
    [8] H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Am. Math. Soc., 347 (1995), 1811–1819.
    [9] P. Kostyrko, T. Salat, W. Wilczynski, $I$ -Convergence, Real Anal. Exch., 26 (2000), 669–686.
    [10] K. Dems, On $I$-Cauchy sequences, Real Anal. Exch., 30 (2005), 123–128.
    [11] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313. https://doi.org/10.1524/anly.1985.5.4.301 doi: 10.1524/anly.1985.5.4.301
    [12] A. Nabiev, S. Pehlivan, M. Gürdal, On ${I} $-Cauchy sequences, Taiwanese J. Math., 11 (2007), 569–576. https://doi.org/10.11650/twjm/1500404709 doi: 10.11650/twjm/1500404709
    [13] M. Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223–231. https://doi.org/10.1016/j.jmaa.2003.08.004 doi: 10.1016/j.jmaa.2003.08.004
    [14] B. K. Tripathy, B. C. Tripathy, On $I$-convergent double sequences, Soochow J. Math., 31 (2005), 549–560.
    [15] V. Kumar, On ${I}$ and $I^*$-Convergence of double sequences, Math. Commun., 12 (2007), 171–181.
    [16] P. Das, P. Kostyrko, W. Wilczynski, P. Malik, $I$ and $I^*$-Convergence of double sequences, Math. Slovaca, 58 (2008), 605–620. https://doi.org/10.2478/s12175-008-0096-x doi: 10.2478/s12175-008-0096-x
    [17] E. Dündar, B. Altay, On some properties of $I_2$-convergence and $I_2$-Cauchy of double sequences, Gen. Math. Notes, 7 (2011), 1–12.
    [18] P. Das, P. Malik, On extremal $I$-limit points of double sequences, Tatra. Mt. Math. Publ., 40 (2008), 91–102.
    [19] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [20] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [21] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1 doi: 10.1016/0165-0114(84)90069-1
    [22] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [23] D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Syst., 158 (2007), 915–921. https://doi.org/10.1016/j.fss.2006.11.012 doi: 10.1016/j.fss.2006.11.012
    [24] V. Gregori, J. J. Mi$\check{\text{n}}$ana, S. Morillas, A note on convergence in fuzzy metric spaces, Iran. J. Fuzzy Syst., 11 (2014), 75–85. https://doi.org/10.22111/IJFS.2014.1625 doi: 10.22111/IJFS.2014.1625
    [25] S. Morillas, A. Sapena, On standard Cauchy sequences in fuzzy metric spaces, In: Proceedings of the conference in applied topology, 2013.
    [26] V. Gregori, J. J. Mi$\check{\text{n}}$ana, Strong convergence in fuzzy metric spaces, Filomat, 31 (2017), 1619–1625. https://doi.org/10.2298/FIL1706619G doi: 10.2298/FIL1706619G
    [27] C. Li, Y. Zhang, J. Zhang, On statistical convergence in fuzzy metric spaces, J. Intell. Fuzzy Syst., 39 (2020), 3987–3993. https://doi.org/10.3233/JIFS-200148 doi: 10.3233/JIFS-200148
    [28] R. Savaş, On double statistical convergence in fuzzy metric spaces, In: 8th international conference on recent Aadvances in pureand applied mathematics, 2021.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(723) PDF downloads(41) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog