We show ideal convergence (I-convergence), ideal Cauchy (I-Cauchy) sequences, I∗-convergence and I∗-Cauchy sequences for double sequences in fuzzy metric spaces. We define the I-limit and I-cluster points of a double sequence in these spaces. Afterward, we provide certain fundamental properties of the aspects. Lastly, we discuss whether the phenomena should be further investigated.
Citation: Aykut Or. Double sequences with ideal convergence in fuzzy metric spaces[J]. AIMS Mathematics, 2023, 8(11): 28090-28104. doi: 10.3934/math.20231437
[1] | Zhenshu Wen, Lijuan Shi . Exact explicit nonlinear wave solutions to a modified cKdV equation. AIMS Mathematics, 2020, 5(5): 4917-4930. doi: 10.3934/math.2020314 |
[2] | Abdulghani R. Alharbi . Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods. AIMS Mathematics, 2023, 8(1): 1230-1250. doi: 10.3934/math.2023062 |
[3] | Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661 |
[4] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[5] | Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif . New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method. AIMS Mathematics, 2022, 7(2): 2044-2060. doi: 10.3934/math.2022117 |
[6] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[7] | Naveed Iqbal, Muhammad Bilal Riaz, Meshari Alesemi, Taher S. Hassan, Ali M. Mahnashi, Ahmad Shafee . Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation. AIMS Mathematics, 2024, 9(6): 16666-16686. doi: 10.3934/math.2024808 |
[8] | Hammad Alotaibi . Solitary waves of the generalized Zakharov equations via integration algorithms. AIMS Mathematics, 2024, 9(5): 12650-12677. doi: 10.3934/math.2024619 |
[9] | M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and M−W-shape soliton solutions to (2+1) complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780 |
[10] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
We show ideal convergence (I-convergence), ideal Cauchy (I-Cauchy) sequences, I∗-convergence and I∗-Cauchy sequences for double sequences in fuzzy metric spaces. We define the I-limit and I-cluster points of a double sequence in these spaces. Afterward, we provide certain fundamental properties of the aspects. Lastly, we discuss whether the phenomena should be further investigated.
The convexity of function is a classical concept, since it plays a fundamental role in mathematical programming theory, game theory, mathematical economics, variational science, optimal control theory and other fields, a new branch of mathematics, convex analysis, appeared in the 1960s. However, it has been noticed that the functions encountered in a large number of theoretical and practical problems in economics are not classical convex functions, therefore, in the past decades, the generalization of function convexity has attracted the attention of many scholars and aroused great interest, such as h-convex functions [1,2,3,4,5], log-convex functions [6,7,8,9,10], log-h-convex functions [11], and especially for coordinated convex [12]. Since 2001, various extensions and generalizations of integral inequalities for coordinated convex functions have been established in [12,13,14,15,16,17].
On the other hand, calculation error has always been a troublesome problem in numerical analysis. In many problems, it is often to speculate the accuracy of calculation results or use high-precision operation as far as possible to ensure the accuracy of the results, because the accumulation of calculation errors may make the calculation results meaningless, interval analysis as a new important tool to solve uncertainty problems has attracted much attention and also has yielded fruitful results, we refer the reader to the papers [18,19]. It is worth notion that in recent decades, many authors have combined integral inequalities with interval-valued functions(IVFs) and obtained many excellent conclusions. In [20], Costa gave Opial-type inequalities for IVFs. In [21,22], Chalco-Cano investigated Ostrowski type inequalities for IVFs by using generalized Hukuhara derivative. In [23], Román-Flores derived the Minkowski type inequalities and Beckenbach's type inequalities for IVFs. Very recently, Zhao [5,24] established the Hermite-Hadamard type inequalities for interval-valued coordinated functions.
Motivated by these results, in the present paper, we introduce the concept of coordinated log-h-convex for IVFs, and then present some new Jensen type inequalities and Hermite-Hadamard type inequalities for interval-valued coordinated functions. Also, we give some examples to illustrate our main results.
Let RI the collection of all closed and bounded intervals of R. We useR+IandR+ to represent the set of all positive intervals and the family of all positive real numbers respectively. The collection of all Riemann integrable real-valued functions on [a,b], IVFs on [a,b] and IVFs on △=[a,b]×[c,d] are denoted by R([a,b]), IR([a,b]) and ID(△). For more conceptions on IVFs, see [4,25]. Moreover, we have
Theorem 1. [4] Let f:[a,b]→RI such that f=[f_,¯f]. Then f∈IR([a,b]) iff f_, ¯f∈R([a,b]) and
(IR)∫baf(x)dx=[(R)∫baf_(x)dx,(R)∫ba¯f(x)dx]. |
Theorem 2. [25] Let F:△→RI. If F∈ID(△), then
(ID)∬△F(x,y)dxdy=(IR)∫badx(IR)∫dcF(x,y)dy. |
Definition 1. [26] Let h:[0,1]→R+. We say that f:[a,b]→R+I is interval log-h-convex function or that f∈SX(log-h,[a,b],R+I), if for all x,y∈[a,b] and ϑ∈[0,1], we have
f(ϑx+(1−ϑ)y)⊇[f(x)]h(ϑ)[f(y)]h(1−ϑ). |
h is called supermultiplicative if
h(ϑτ)≥h(ϑ)h(τ) | (2.1) |
for all ϑ,τ∈[0,1]. If "≥" in (2.1) is replaced with "≤", then h is called submultiplicative.
Theorem 3. [26] Let F:[a,b]→R+I,h(12)≠0. If F∈SX(log-h,[a,b],R+I) and F∈IR([a,b]), then
F(a+b2)12h(12)⊇exp[1b−a∫balnF(x)dx]⊇[F(a)F(b)]∫10h(ϑ)dϑ. | (2.2) |
Theorem 4. [27] Let F:[a,b]→R+I,h(12)≠0. If F∈SX(log-h,[a,b],R+I) and F∈IR([a,b]), then
[F(a+b2)]14h2(12)⊇[F(3a+b4)F(a+3b4)]14h(12)⊇(∫baF(x)dx)1b−a⊇[F(a)F(b)F2(a+b2)]12∫10h(ϑ)dϑ⊇[F(a)F(b)][12+h(12)]∫10h(ϑ)dϑ. | (2.3) |
In this section, we define the coordinated log-h-convex for IVFs and prove some new Jensen type inequalities and Hermite-Hadamard type inequalities by using this new definition.
Definition 2. Let h:[0,1]→R+. Then F:△→R+I is called a coordinated log-h-convex IVFs on △ if the partial mappings
Fy:[a,b]→R+I,Fy(x)=F(x,y),Fx:[c,d]→R+I,Fx(y)=F(x,y) |
are log-h-convex for all y∈[c,d] and x∈[a,b]. Then the set of all coordinated log-h-convex IVFs on △ is denoted by SX(log-ch,△,R+I).
Definition 3. Let h:[0,1]→R+. Then F:△→R+ is called a coordinated log-h-convex function in △ if for any (x1,y1),(x2,y2)∈△ and ϑ∈[0,1] we have
F(ϑx1+(1−ϑ)x2,ϑy1+(1−ϑ)y2)≤[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1−ϑ). | (3.1) |
The set of all log-h-convex functions in △ is denoted by SX(log-h,△,R+). If inequality (3.1) is reversed, then F is said to be a coordinated log-h-concave function, the set of all log-h-concave functions in △ is denoted by SV(log-h,△,R+).
Definition 4. Let h:[0,1]→R+. Then F:△→R+I is called a coordinated log-h-convex IVF in △ if for any (x1,y1),(x2,y2)∈△ and ϑ∈[0,1] we have
F(ϑx1+(1−ϑ)x2,ϑy1+(1−ϑ)y2)⊇[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1−ϑ). |
The set of all log-h-convex IVFs in △ is denoted by SX(log-h,△,R+I).
Theorem 5. Let F:△→R+I such that F=[F_,¯F]. If F∈SX(log-h,△,R+I) iff F_∈SX(log-h,△,R+) and ¯F∈SV(log-h,△,R+).
Proof. The proof is completed by combining the Definitions 3 and 4 above and the Theorem 3.7 of [4].
Theorem 6. If F∈SX(log-h,△,R+I), then F∈SX(log-ch,△,R+I).
Proof. Assume that F∈SX(log-h,△,R+I). Let Fx:[c,d]→R+I,Fx(y)=F(x,y). Then for all ϑ∈[0,1] and y1,y2∈[c,d], we have
Fx(ϑy1+(1−ϑ)y2)=F(x,ϑy1+(1−ϑ)y2)⊇F(ϑx+(1−ϑ)x,ϑy1+(1−ϑ)y2)⊇[F(x,y1)]h(ϑ)[F(x,y2)]h(1−ϑ)=[Fx(y1)]h(ϑ)[Fx(y2)]h(1−ϑ). |
Hence Fx(y)=F(x,y) is log-h-convex on [c,d]. The fact that Fy(x)=F(x,y) is log-h-convex on [a,b] goes likewise.
Remark 1. The converse of Theorem 6 is not generally true. Let h(ϑ)=ϑ and ϑ∈[0,1], △1=[π4,π2]×[π4,π2], and F:△1→R+I be defined:
F(x,y)=[e−sinx−siny,64xy]. |
Obviously, we have that F∈SX(log-ch,△1,R+I) and F∉SX(log-h,△1,R+I). Indeed, if (π4,π2),(π2,π4)∈△1, we have
F(ϑπ4+(1−ϑ)π2,ϑπ2+(1−ϑ)π4)=[e−sinϑπ4−sin(1−ϑ)π2,8π2ϑ(1−ϑ)],(F(π4,π2))h(ϑ)(F(π2,π4))h(1−ϑ)=[e(1−√22)ϑ−1,2ϑ+1π]. |
If ϑ=0, then
[0,1e]⊉[1e,2π]. |
Thus, F∉SX(log-h,△1,R+I).
In the following, Jensen type inequalities for coordinated log-h-convex functions in △ is considered.
Theorem 7. Let pi∈R+,xi∈[a,b],yi∈[c,d],(i=1,2,...,n),F:△→R+. If h is a nonnegative supermultiplicative function and F∈SX(log-h,△,R+), then
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≤n∏i=1[F(xi,yi)]h(piPn), | (3.2) |
where Pn=n∑i=1pi. If h is a nonnegative submultiplicative function and F∈SV(log-h,△,R+), then (3.2) is reversed.
Proof. If n=2, then from Definition 3, we have
F(p1P2x1+p2P2x2,p1P2y1+p2P2y2)≤[F(x1,y1)]h(p1P2)[F(x2,y2)]h(p2P2). |
Suppose (3.2) holds for n=k, then
F(1Pkk∑i=1pixi,1Pkk∑i=1piyi)≤k∏i=1[F(xi,yi)]h(piPk). |
Now, let us prove that (3.2) is valid when n=k+1,
F(1Pk+1k+1∑i=1pixi,1Pk+1k+1∑i=1piyi)=F(1Pk+1k−1∑i=1pixi+pk+pk+1Pk+1(pkxkpk+pk+1+pk+1xk+1pk+pk+1),1Pk+1k−1∑i=1piyi+pk+pk+1Pk+1(pkykpk+pk+1+pk+1yk+1pk+pk+1))≤[F(pkxkpk+pk+1+pk+1xk+1pk+pk+1,pkykpk+pk+1+pk+1yk+1pk+pk+1)]h(pk+pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)≤([F(xk,yk)]h(pkpk+pk+1)[F(xk+1,yk+1)]h(pk+1pk+pk+1))h(pk+pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)≤[F(xk,yk)]h(pkPk+1)[F(xk+1,yk+1)]h(pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)=k+1∏i=1[F(xi,yi)]h(piPk+1). |
This completes the proof.
Remark 2. If h(ϑ)=ϑ, then the inequality (3.2) is the Jensen inequality for log-convex functions.
Now, we prove the Jensen inequality for log-h-convex IVFs in △.
Theorem 8. Let pi∈R+,xi∈[a,b],yi∈[c,d],i=1,2,...,n,F:△→R+I such that F=[F_,¯F]. If h is a nonnegative supermultiplicative function and F∈SX(log-h,△,R+I), then
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)⊇n∏i=1[F(xi,yi)]h(piPn), | (3.3) |
where Pn=n∑i=1pi. If F∈SV(log-h,△,R+I), then (3.3) is reversed.
Proof. By Theorem 5 and Theorem 7, we have
F_(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≤n∏i=1[F_(xi,yi)]h(piPn) |
and
¯F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≥n∏i=1[¯F(xi,yi)]h(piPn). |
Thus,
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)=[F_(1Pnn∑i=1pixi,1Pnn∑i=1piyi),¯F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)]⊇[n∏i=1[F_(xi,yi)]h(piPn),n∏i=1[¯F(xi,yi)]h(piPn)]=n∏i=1[F(xi,yi)]h(piPn). |
This completes the proof.
Next, we prove the Hermite-Hadamard type inequalities for coordinated log-h-convex IVFs.
Theorem 9. Let F:△→R+I and h:[0,1]→R+ be continuous. If F∈SX(log-ch,△,R+I), then
[F(a+b2,c+d2)]14h2(12)⊇exp[14h(12)(12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy)]⊇exp[1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy]⊇exp[12∫10h(ϑ)dϑ(1b−a∫balnF(x,c)dx+1−−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy)]⊇[F(a,c)F(a,d)F(b,c)F(b,d)](∫10h(ϑ)dϑ)2. | (3.4) |
Proof. Since F∈SX(log-ch,△,R+I), we have
Fx(c+d2)=Fx(ϑc+(1−ϑ)d+(1−ϑ)c+ϑd2)⊇[Fx(ϑc+(1−ϑ)d)]h(12)[Fx((1−ϑ)c+ϑd)]h(12). |
That is,
lnFx(c+d2)⊇h(12)ln[Fx(ϑc+(1−ϑ)d)Fx((1−ϑ)c+ϑd)]. |
Moreover, we have
1h(12)lnFx(c+d2)⊇[∫10lnFx(ϑc+(1−ϑ)d)dϑ+∫10lnFx((1−ϑ)c+ϑd)dϑ]=[∫10lnF_x(ϑc+(1−ϑ)d)dϑ,∫10ln¯Fx(ϑc+(1−ϑ)d)dϑ]+[∫10lnF_x((1−ϑ)c+ϑd)dϑ,∫10ln¯Fx((1−ϑ)c+ϑd)dϑ]=2[1d−c∫dclnF_x(y)dy,1d−c∫dcln¯Fx(y)dy]=2d−c∫dclnFx(y)dy. |
Similarly, we get
1d−c∫dclnFx(y)dy⊇ln[Fx(c)Fx(d)]∫10h(ϑ)dϑ. |
Then
12h(12)lnFx(c+d2)⊇1d−c∫dclnFx(y)dy⊇ln[Fx(c)Fx(d)]∫10h(ϑ)dϑ. |
That is,
12h(12)lnF(x,c+d2)⊇1d−c∫dclnF(x,y)dy⊇ln[F(x,c)F(x,d)]∫10h(ϑ)dϑ. |
Integrating over [a,b], we have
12h(12)(b−a)∫balnF(x,c+d2)dx⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇[1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx]∫10h(ϑ)dϑ. |
Similarly, we have
12h(12)(d−c)∫dclnF(a+b2,y)dy⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇[1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy]∫10h(ϑ)dϑ. |
Finally, we obtain
14h2(12)lnF(a+b2,c+d2)=14h(12)[12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy]⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇12∫10h(ϑ)dϑ[1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy]⊇12(∫10h(ϑ)dϑ)2[lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)+lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)]⊇(∫10h(ϑ)dϑ)2[lnF(a,c)F(a,d)F(b,c)F(b,d)]. |
This concludes the proof.
Remark 3. If F_=¯F and h(ϑ)=ϑ, then Theorem 9 reduces to Corollary 3.1 of [13].
Example 1. Let [a,b]=[c,d]=[2,3],h(ϑ)=ϑ. We define F:[2,3]×[2,3]→R+I by
F(x,y)=[1xy,e√x+√y]. |
From Definition 2, F(x,y)∈SX(log-ch,△,R+I).
Since
[F(a+b2,c+d2)]14h2(12)=[425,e√10],exp[14h(12)(12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy)]=[8e135,e√102+2√3−4√23],exp[1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy]=[16e2729,e43(3√3−2√2)],exp[12∫10h(ϑ)dϑ(1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy)]=[2√6e81,e15√3−5√26], |
and
[F(a,c)F(a,d)F(b,c)F(b,d)](∫10h(ϑ)dϑ)2=[16,e√2+√3]. |
It follows that
[425,e√10]⊇[8e135,e√102+2√3−4√23]⊇[16e2729,e43(3√3−2√2)]⊇[2√6e81,e15√3−5√26]⊇[16,e√2+√3] |
and Theorem 9 is verified.
Theorem 10. Let F:△→R+I and h:[0,1]→R+ be continuous. If F∈SX(log-ch,△,R+I), then
[F(a+b2,c+d2)]14h3(12)⊇exp[14h2(12)(b−a)∫baln(F(x,c+d2))dx+14h2(12)(d−c)∫dcln(F(a+b2,y))dy]⊇exp[14h(12)(b−a)∫baln(F(x,3c+d4)F(x,c+3d4))dx+14h(12)(d−c)∫dcln(F(3a+b4,y)F(a+3b4,y))dy]⊇exp[2(b−a)(d−c)∫ba∫dclnF(x,y)dxdy] | (3.5) |
⊇exp[12(b−a)∫baln(F(x,c)F(x,d)F2(x,fracc+d2))dx∫10h(ϑ)dϑ+12(d−c)∫dcln(F(a,y)F(b,y)F2(a+b2,y))dy∫10h(ϑ)dϑ]⊇exp[(12+h(12))1b−a∫baln[F(x,c)F(x,d)]dx∫10h(ϑ)dϑ+(12+h(12))1d−c∫dcln[F(a,y)F(b,y)]dy∫10h(ϑ)dϑ]⊇[F(a,c)F(a,d)F(b,c)F(b,d)F(a+b2,c)F(a+b2,d)×F(a,c+d2)F(b,c+d2)][12+h(12)](∫10h(ϑ)dϑ)2⊇[F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(∫10h(ϑ)dϑ)2. |
Proof. Since F∈SX(log-ch,△,R+I), by using Theorem 6 and (2.3), we have
14h2(12)ln[Fy(a+b2)]⊇14h(12)ln[Fy(3a+b4)Fy(a+3b4)]⊇1b−a∫balnFy(x)dx⊇12ln[Fy(a)Fy(b)F2y(a+b2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[Fy(a)Fy(b)]∫10h(ϑ)dϑ. |
That is,
14h2(12)ln[F(a+b2,y)]⊇14h(12)ln[F(3a+b4,y)F(a+3b4,y)]⊇1b−a∫balnF(x,y)dx⊇12ln[F(a,y)F(b,y)F2(a+b2,y)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,y)F(b,y)]∫10h(ϑ)dϑ. |
Moreover, we have
14h2(12)(d−c)∫dcln[F(a+b2,y)]dy⊇14h(12)(d−c)∫dcln[F(3a+b4,y)F(a+3b4,y)]dy⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇12(d−c)∫dcln[F(a,y)F(b,y)F2(a+b2,y)]dy∫10h(ϑ)dϑ⊇[12+h(12)]1d−c∫dcln[F(a,y)F(b,y)]dy∫10h(ϑ)dϑ. |
Similarly, we have
![]() |
We also from (2.2),
12h(12)lnF(a+b2,c+d2)⊇1b−a∫balnF(x,c+d2)dx,12h(12)lnF(a+b2,c+d2)⊇1d−c∫dclnF(a+b2,y)dy. |
Again from (2.3),
1b−a∫balnF(x,c)dx⊇12ln[F(a,c)F(b,c)F2(a+b2,c)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,c)F(b,c)]∫10h(ϑ)dϑ,1b−a∫balnF(x,d)ds⊇12ln[F(a,d)F(b,d)F2(a+b2,d)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,d)F(b,d)]∫10h(ϑ)dϑ,1d−c∫dclnF(a,y)dy⊇12ln[F(a,c)F(a,d)F2(a,c+d2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,c)F(a,d)]∫10h(ϑ)dϑ,1d−c∫dclnF(b,y)dy⊇12ln[F(b,c)F(b,d)F2(b,c+d2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(b,c)F(b,d)]∫10h(ϑ)dϑ |
and proof is completed.
Example 2. Furthermore, by Example 1, we have
![]() |
and
[F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(∫10h(θ)dθ)2=[136,e2√3+2√2]. |
It follows that
[16625,e2√10]⊇[64e218225,e4(3√3−2√2)+3√103]⊇[256e272171,e4(3√3−2√2)3+3+√112]⊇[256e4531441,e8(3√3−2√2)3]⊇[16√6e210935,e12√3−8√2+3√106]⊇[8e22187,e15√3−5√23]⊇[√690,e3√3+3√2+√102]⊇[136,e2√3+2√2] |
and Theorem 10 is verified.
We introduced the coordinated log-h-convexity for interval-valued functions, some Jensen type inequalities and Hermite-Hadamard type inequalities are proved. Our results generalize some known inequalities and will be useful in developing the theory of interval integral inequalities and interval convex analysis. The next step in the research direction investigated inequalities for fuzzy-interval-valued functions, and some applications in interval nonlinear programming.
The first author was supported in part by the Key Projects of Educational Commission of Hubei Province of China (D20192501), the Natural Science Foundation of Jiangsu Province (BK20180500) and the National Key Research and Development Program of China (2018YFC1508100).
The authors declare no conflict of interest.
[1] | H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74. |
[2] | H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244. |
[3] |
I. J. Schoenberg, The integrability of certain functions and related summability methods, Am. Math. Mon., 66 (1959), 361–375. https://doi.org/10.1080/00029890.1959.11989303 doi: 10.1080/00029890.1959.11989303
![]() |
[4] |
A. R. Freedman, J. J. Sember, Densities and summability, Pac. J. Math., 95 (1981), 293–305. https://doi.org/10.2140/pjm.1981.95.293 doi: 10.2140/pjm.1981.95.293
![]() |
[5] | I. J. Maddox, Elements of functional analysis, Cambrige: Cambrige University Press, 1970. |
[6] | A. Zygmund, Trigonometrical series (Trigonometricheskii ryady), Warsaw: Academic Press, 1935. |
[7] |
P. Erdos, G. Tenenbaum, Sur les densities de certaines suites dentiers, Proc. London Math. Soc., 59 (1989), 417–438. https://doi.org/10.1112/plms/s3-59.3.417 doi: 10.1112/plms/s3-59.3.417
![]() |
[8] | H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Am. Math. Soc., 347 (1995), 1811–1819. |
[9] | P. Kostyrko, T. Salat, W. Wilczynski, I -Convergence, Real Anal. Exch., 26 (2000), 669–686. |
[10] | K. Dems, On I-Cauchy sequences, Real Anal. Exch., 30 (2005), 123–128. |
[11] |
J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313. https://doi.org/10.1524/anly.1985.5.4.301 doi: 10.1524/anly.1985.5.4.301
![]() |
[12] |
A. Nabiev, S. Pehlivan, M. Gürdal, On I-Cauchy sequences, Taiwanese J. Math., 11 (2007), 569–576. https://doi.org/10.11650/twjm/1500404709 doi: 10.11650/twjm/1500404709
![]() |
[13] |
M. Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223–231. https://doi.org/10.1016/j.jmaa.2003.08.004 doi: 10.1016/j.jmaa.2003.08.004
![]() |
[14] | B. K. Tripathy, B. C. Tripathy, On I-convergent double sequences, Soochow J. Math., 31 (2005), 549–560. |
[15] | V. Kumar, On I and I∗-Convergence of double sequences, Math. Commun., 12 (2007), 171–181. |
[16] |
P. Das, P. Kostyrko, W. Wilczynski, P. Malik, I and I∗-Convergence of double sequences, Math. Slovaca, 58 (2008), 605–620. https://doi.org/10.2478/s12175-008-0096-x doi: 10.2478/s12175-008-0096-x
![]() |
[17] | E. Dündar, B. Altay, On some properties of I2-convergence and I2-Cauchy of double sequences, Gen. Math. Notes, 7 (2011), 1–12. |
[18] | P. Das, P. Malik, On extremal I-limit points of double sequences, Tatra. Mt. Math. Publ., 40 (2008), 91–102. |
[19] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[20] | I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[21] |
O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1 doi: 10.1016/0165-0114(84)90069-1
![]() |
[22] |
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
![]() |
[23] |
D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Syst., 158 (2007), 915–921. https://doi.org/10.1016/j.fss.2006.11.012 doi: 10.1016/j.fss.2006.11.012
![]() |
[24] |
V. Gregori, J. J. Miˇnana, S. Morillas, A note on convergence in fuzzy metric spaces, Iran. J. Fuzzy Syst., 11 (2014), 75–85. https://doi.org/10.22111/IJFS.2014.1625 doi: 10.22111/IJFS.2014.1625
![]() |
[25] | S. Morillas, A. Sapena, On standard Cauchy sequences in fuzzy metric spaces, In: Proceedings of the conference in applied topology, 2013. |
[26] |
V. Gregori, J. J. Miˇnana, Strong convergence in fuzzy metric spaces, Filomat, 31 (2017), 1619–1625. https://doi.org/10.2298/FIL1706619G doi: 10.2298/FIL1706619G
![]() |
[27] |
C. Li, Y. Zhang, J. Zhang, On statistical convergence in fuzzy metric spaces, J. Intell. Fuzzy Syst., 39 (2020), 3987–3993. https://doi.org/10.3233/JIFS-200148 doi: 10.3233/JIFS-200148
![]() |
[28] | R. Savaş, On double statistical convergence in fuzzy metric spaces, In: 8th international conference on recent Aadvances in pureand applied mathematics, 2021. |
1. | Hajar F. Ismael, Haci Mehmet Baskonus, Hasan Bulut, Wei Gao, Instability modulation and novel optical soliton solutions to the Gerdjikov–Ivanov equation with M-fractional, 2023, 55, 0306-8919, 10.1007/s11082-023-04581-7 | |
2. | Nauman Raza, Abdel-Haleem Abdel-Aty, Traveling wave structures and analysis of bifurcation and chaos theory for Biswas–Milovic Model in conjunction with Kudryshov’s law of refractive index, 2023, 287, 00304026, 171085, 10.1016/j.ijleo.2023.171085 | |
3. | Hakima Khudher Ahmed, Hajar Farhan Ismael, Optical soliton solutions for the nonlinear Schrödinger equation with higher-order dispersion arise in nonlinear optics, 2024, 99, 0031-8949, 105276, 10.1088/1402-4896/ad78c3 | |
4. | Nirman Bhowmike, Zia Ur Rehman, Zarmeena Naz, Muhammad Zahid, Sultan Shoaib, Yasar Amin, Non-linear electromagnetic wave dynamics: Investigating periodic and quasi-periodic behavior in complex engineering systems, 2024, 184, 09600779, 114984, 10.1016/j.chaos.2024.114984 | |
5. | Saumya Ranjan Jena, Itishree Sahu, A novel approach for numerical treatment of traveling wave solution of ion acoustic waves as a fractional nonlinear evolution equation on Shehu transform environment, 2023, 98, 0031-8949, 085231, 10.1088/1402-4896/ace6de | |
6. | Ri Zhang, Muhammad Shakeel, Nasser Bin Turki, Nehad Ali Shah, Sayed M Tag, Novel analytical technique for mathematical model representing communication signals: A new travelling wave solutions, 2023, 51, 22113797, 106576, 10.1016/j.rinp.2023.106576 | |
7. | Exact Solutions of Beta-Fractional Fokas-Lenells Equation via Sine-Cosine Method, 2023, 16, 20710216, 10.14529/mmp230201 |