The present research applies an improved version of the modified Extended Direct Algebraic Method (mEDAM) called $ r $+mEDAM to examine soliton phenomena in a notable mathematical model, namely the (2+1)-dimensional Nizhnik-Novikov-Veselov Model (NNVM), which possesses potential applications in exponentially localized structure interactions. The generalized hyperbolic and trigonometric functions are used to disclose a variety of soliton solutions, including kinks, anti-kink, bell-shaped and periodic soliton. Some 3D graphs are plotted for visual representations of these solutions which highlight their adaptability. The results provide a basis for practical usage and expansions to related mathematical models or physical systems. They also expand our understanding of the NNVM's dynamics, providing insights into its behavior and prospective applications.
Citation: Saima Noor, Azzh Saad Alshehry, Asfandyar Khan, Imran Khan. Analysis of soliton phenomena in (2+1)-dimensional Nizhnik-Novikov-Veselov model via a modified analytical technique[J]. AIMS Mathematics, 2023, 8(11): 28120-28142. doi: 10.3934/math.20231439
The present research applies an improved version of the modified Extended Direct Algebraic Method (mEDAM) called $ r $+mEDAM to examine soliton phenomena in a notable mathematical model, namely the (2+1)-dimensional Nizhnik-Novikov-Veselov Model (NNVM), which possesses potential applications in exponentially localized structure interactions. The generalized hyperbolic and trigonometric functions are used to disclose a variety of soliton solutions, including kinks, anti-kink, bell-shaped and periodic soliton. Some 3D graphs are plotted for visual representations of these solutions which highlight their adaptability. The results provide a basis for practical usage and expansions to related mathematical models or physical systems. They also expand our understanding of the NNVM's dynamics, providing insights into its behavior and prospective applications.
[1] | K. Xu, Y. Guo, Y. Liu, X. Deng, Q. Chen, Z. Ma, 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology, IEEE Electr. Device L., 42 (2021), 1120–1123. https://doi.org/10.1109/LED.2021.3091277 doi: 10.1109/LED.2021.3091277 |
[2] | H. Khan, R. Shah, P. Kumam, M. Arif, Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method, Entropy, 21 (2019), 597. https://doi.org/10.3390/e21060597 doi: 10.3390/e21060597 |
[3] | Z. Li, K. Wang, W. Li, S. Yan, F. Chen, S. Peng, Analysis of surface pressure pulsation characteristics of centrifugal pump magnetic liquid sealing film, Front. Energy, 10 (2022), 937299. https://doi.org/10.3389/fenrg.2022.937299 doi: 10.3389/fenrg.2022.937299 |
[4] | H. Khan, R. Shah, J. F. G. Aguilar, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Pheno., 16 (2021), 32. https://doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016 |
[5] | Z. Xiao, H. Fang, H. Jiang, J. Bai, V. Havyarimana, H. Chen, et al., Understanding private car aggregation effect via spatio-temporal analysis of trajectory data, IEEE T. Cybernetics, 53 (2023), 2346–2357. https://doi.org/10.1109/TCYB.2021.3117705 doi: 10.1109/TCYB.2021.3117705 |
[6] | M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, 149 (1991). https://doi.org/10.1017/CBO9780511623998 |
[7] | G. F. Yu, H. W. Tam, A vector asymmetrical NNV equation: Soliton solutions, bilinear Bäcklund transformation and Lax pair, J. Math. Anal. Appl., 344 (2008), 593–600. https://doi.org/10.1016/j.jmaa.2008.02.057 doi: 10.1016/j.jmaa.2008.02.057 |
[8] | V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Berlin: Springer, 17 (1991). https://doi.org/10.1007/978-3-662-00922-2 |
[9] | Y. L. Ma, Y. L. Li, Y. Y. Fu, A series of the solutions for the Heisenberg ferromagnetic spin chain equation, Math. Method. Appl. Sci., 41 (2018), 3316–3322. https://doi.org/10.1002/mma.4818 doi: 10.1002/mma.4818 |
[10] | Y. Ma, B. Li, C. Wang, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211 (2009), 102–107. https://doi.org/10.1016/j.amc.2009.01.036 doi: 10.1016/j.amc.2009.01.036 |
[11] | B. Q. Li, Y. L. Ma, Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber, Optik, 144 (2017), 149–155. https://doi.org/10.1016/j.ijleo.2017.06.114 doi: 10.1016/j.ijleo.2017.06.114 |
[12] | B. Q. Li, Y. L. Ma, Rich soliton structures for the Kraenkel-Manna-Merle (KMM) system in ferromagnetic materials, J. Supercond. Nov. Magn., 31 (2018), 1773–1778. https://doi.org/10.1007/s10948-017-4406-9 doi: 10.1007/s10948-017-4406-9 |
[13] | B. Li, Y. Ma, The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer-Kaup equations with variable coefficients, Commun. Nonlinear Sci., 16 (2011), 144–149. https://doi.org/10.1016/j.cnsns.2010.02.011 doi: 10.1016/j.cnsns.2010.02.011 |
[14] | M. Zhang, Y. L. Ma, B. Q. Li, Novel loop-like solitons for the generalized Vakhnenko equation, Chinese Phys. B, 22 (2013), 030511. https://doi.org/10.1088/1674-1056/22/3/030511 doi: 10.1088/1674-1056/22/3/030511 |
[15] | M. S. Osman, Nonlinear interaction of solitary waves described by multi-rational wave solutions of the (2+1)-dimensional Kadomtsev-Petviashvili equation with variable coefficients, Nonlinear Dynam., 87 (2017), 1209–1216. https://doi.org/10.1007/s11071-016-3110-9 doi: 10.1007/s11071-016-3110-9 |
[16] | H. I. A. Gawad, Towards a unified method for exact solutions of evolution equations. An application to reaction diffusion equations with finite memory transport, J. Stat. Phys., 147 (2012), 506–518. https://doi.org/10.1007/s10955-012-0467-0 doi: 10.1007/s10955-012-0467-0 |
[17] | R. Hirota, The direct method in soliton theory, Cambridge University Press, 155 (2004). https://doi.org/10.1017/CBO9780511543043 |
[18] | B. Q. Li, Y. L. Ma, Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204–214. https://doi.org/10.1016/j.camwa.2018.04.015 doi: 10.1016/j.camwa.2018.04.015 |
[19] | Y. L. Ma, B. Q. Li, Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, AIMS Math., 5 (2020), 1162–1176. https://doi.org/10.3934/math.2020080 doi: 10.3934/math.2020080 |
[20] | Y. L. Ma, A. M. Wazwaz, B. Q. Li, New extended Kadomtsev-Petviashvili equation: Multiple soliton solutions, breather, lump and interaction solutions, Nonlinear Dynam., 104 (2021), 1581–1594. https://doi.org/10.1007/s11071-021-06357-8 doi: 10.1007/s11071-021-06357-8 |
[21] | C. F. Wei, New solitary wave aolutions for the fractional Jaulent-Miodek hierarchy model, Fractals, 2023, 2350060. https://doi.org/10.1142/S0218348X23500603 doi: 10.1142/S0218348X23500603 |
[22] | S. M. M. Alizamini, H. Rezazadeh, K. Srinivasa, A. Bekir, New closed form solutions of the new coupled Konno-Oono equation using the new extended direct algebraic method, Pramana, 94 (2020), 1–12. https://doi.org/10.1007/s12043-020-1921-1 doi: 10.1007/s12043-020-1921-1 |
[23] | D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, Y. Fan, A general linear free energy relationship for predicting partition coefficients of neutral organic compounds, Chemosphere, 247 (2020), 125869. https://doi.org/10.1016/j.chemosphere.2020.125869 doi: 10.1016/j.chemosphere.2020.125869 |
[24] | M. B. Hossen, H. O. Roshid, M. Z. Ali, Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2+1)-dimensional Breaking Soliton equation, Phys. Lett. A, 382 (2018), 1268–1274. https://doi.org/10.1016/j.physleta.2018.03.016 doi: 10.1016/j.physleta.2018.03.016 |
[25] | F. Huang, X. Y. Tang, S. Y. Lou, Exact solutions for a higher-order nonlinear Schrödinger equation in atmospheric dynamics, Commun. Theor. Phys., 45 (2006), 573. https://doi.org/10.1088/0253-6102/45/3/039 doi: 10.1088/0253-6102/45/3/039 |
[26] | Z. Wu, J. Cao, Y. Wang, Y. Wang, L. Zhang, J. Wu, hPSD: A Hybrid PU-learning-based spammer detection model for product reviews, IEEE T. Cybernetics, 50 (2020), 1595–1606. https://doi.org/10.1109/TCYB.2018.2877161 doi: 10.1109/TCYB.2018.2877161 |
[27] | W. Q. Peng, S. F. Tian, T. T. Zhang, Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation, Phys. Lett. A, 382 (2018), 2701–2708. https://doi.org/10.1016/j.physleta.2018.08.002 doi: 10.1016/j.physleta.2018.08.002 |
[28] | H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the (G'/G)-expansion method, Symmetry, 11 (2019), 566. https://doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566 |
[29] | H. Khan, D. Baleanu, P. Kumam, J. F. Al-Zaidy, Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method, IEEE Access, 7 (2019), 107523–107532. https://doi.org/10.1109/ACCESS.2019.2933188 doi: 10.1109/ACCESS.2019.2933188 |
[30] | H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled Konno-Onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686. https://doi.org/10.3390/math11122686 doi: 10.3390/math11122686 |
[31] | R. Meng, X. Xiao, J. Wang, Rating the crisis of online public opinion using a multi-level index system, Int. Arab J. Inf. Techn., 19 (2022), 597–608. https://doi.org/10.34028/iajit/19/4/4 doi: 10.34028/iajit/19/4/4 |
[32] | M. M. Khater, Abundant wave solutions of the perturbed Gerdjikov-Ivanov equation in telecommunication industry, Mod. Phys. Lett. B, 35 (2021), 2150456. https://doi.org/10.1142/S021798492150456X doi: 10.1142/S021798492150456X |
[33] | L. Yan, Y. H. Sun, Y. Qian, Z. Y. Sun, C. Z. Wang, Method of reaching consensus on probability of food safety based on the integration of finite credible data on block chain, IEEE Access, 9 (2021), 123764–123776. https://doi.org/10.1109/ACCESS.2021.3108178 doi: 10.1109/ACCESS.2021.3108178 |
[34] | C. Zong, Z. Wan, Container ship cell guide accuracy check technology based on improved 3D point cloud instance segmentation, Brodogradnja, 73 (2022), 23–35. https://doi.org/10.21278/brod73102 doi: 10.21278/brod73102 |
[35] | J. Xu, K. Guo, P. Z. H. Sun, Driving performance under violations of traffic rules: Novice vs. experienced drivers, IEEE T. Intell. Vehicl., 2022. https://doi.org/10.1109/TIV.2022.3200592 doi: 10.1109/TIV.2022.3200592 |
[36] | M. S. Iqbal, A. R. Seadawy, M. Z. Baber, Demonstration of unique problems from soliton solutions to nonlinear Selkov-Schnakenberg system, Chaos Soliton. Fract., 162 (2022), 112485. https://doi.org/10.1016/j.chaos.2022.112485 doi: 10.1016/j.chaos.2022.112485 |
[37] | C. Guo, J. Hu, Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance, IEEE T. Circuits-II, 2023. https://doi.org/10.1109/TCSII.2023.3242856 doi: 10.1109/TCSII.2023.3242856 |
[38] | W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simulat., 43 (1997), 13–27. https://doi.org/10.1016/S0378-4754(96)00053-5 doi: 10.1016/S0378-4754(96)00053-5 |
[39] | Z. Zhao, Y. Chen, B. Han, Lump soliton, mixed lump stripe and periodic lump solutions of a (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Mod. Phys. Lett. B, 31 (2017), 1750157. https://doi.org/10.1142/S0217984917501573 doi: 10.1142/S0217984917501573 |
[40] | Q. Meng, Q. Ma, Y. Shi, Adaptive fixed-time stabilization for a class of uncertain nonlinear systems, IEEE T. Automat. Contr., 2023. https://doi.org/10.1109/TAC.2023.3244151 doi: 10.1109/TAC.2023.3244151 |
[41] | D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, Y. Fan, A general linear free energy relationship for predicting partition coefficients of neutral organic compounds, Chemosphere, 247 (2020), 125869. https://doi.org/10.1016/j.chemosphere.2020.125869 doi: 10.1016/j.chemosphere.2020.125869 |
[42] | M. A. Helal, Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos Soliton. Fract., 13 (2002), 1917–1929. https://doi.org/10.1016/S0960-0779(01)00189-8 doi: 10.1016/S0960-0779(01)00189-8 |
[43] | N. C. Freeman, Soliton solutions of non-linear evolution equations, IMA J. Appl. Math., 32 (1984), 125–145. https://doi.org/10.1093/imamat/32.1-3.125 doi: 10.1093/imamat/32.1-3.125 |
[44] | S. Javeed, K. S. Alimgeer, S. Nawaz, A. Waheed, M. Suleman, D. Baleanu, et al., Soliton solutions of mathematical physics models using the exponential function technique, Symmetry, 12 (2020), 176. https://doi.org/10.3390/sym12010176 doi: 10.3390/sym12010176 |
[45] | Z. Y. Wang, S. F. Tian, J. Cheng, The $\partial^{-}$-dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021). https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806 |
[46] | S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, P. Roy. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455 |
[47] | Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450 |
[48] | Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639 |
[49] | T. Akturk, A. Kubal, Analysis of wave solutions of (2+1)-dimensional Nizhnik-Novikov-Veselov equation, Ordu Üniv. Bilim ve Teknoloji Dergisi, 11 (2021), 13–24. |
[50] | P. G. Estévez, S. Leble, A wave equation in 2+1: Painlevé analysis and solutions, Inverse Probl., 11 (1995), 925. https://doi.org/10.1088/0266-5611/11/4/018 doi: 10.1088/0266-5611/11/4/018 |
[51] | Y. Ren, H. Zhang, New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the -dimensional NNV equation, Phys. Lett. A, 357 (2006), 438–448. https://doi.org/10.1016/j.physleta.2006.04.082 doi: 10.1016/j.physleta.2006.04.082 |
[52] | L. P. Nizhnik, Integration of multidimensional nonlinear equations by the method of the inverse problem, Dokl. Akademii Nauk, 254 (1980), 332–335. |
[53] | X. Bai, Y. He, M. Xu, Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form, IEEE T. Aero. Elec. Sys., 57 (2021), 3279–3295. https://doi.org/10.1109/TAES.2021.3074204 doi: 10.1109/TAES.2021.3074204 |
[54] | Q. Liu, H. Peng, Z. Wang, Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis, J. Differ. Equations, 314 (2022), 251–286. https://doi.org/10.1016/j.jde.2022.01.021 doi: 10.1016/j.jde.2022.01.021 |
[55] | H. Jin, Z. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equations, 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007 |
[56] | M. B. Hossen, H. O. Roshid, M. Z. Ali, Multi-soliton, breathers, lumps and interaction solution to the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation, Heliyon, 5, (2019). https://doi.org/10.1016/j.heliyon.2019.e02548 doi: 10.1016/j.heliyon.2019.e02548 |
[57] | A. M. Wazwaz, M. S. Osman, Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium, Comput. Math. Appl., 76 (2018), 276–283. https://doi.org/10.1016/j.camwa.2018.04.018 doi: 10.1016/j.camwa.2018.04.018 |
[58] | M. S. Osman, H. I. A. Gawad, Multi-wave solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients, Eur. Phys. J. Plus, 130 (2015), 1–11. https://doi.org/10.1140/epjp/i2015-15215-1 doi: 10.1140/epjp/i2015-15215-1 |
[59] | S. Y. Lou, X. B. Hu, Infinitely many Lax pairs and symmetry constraints of the KP equation, J. Math. Phys., 38 (1997), 6401–6427. https://doi.org/10.1063/1.532219 doi: 10.1063/1.532219 |
[60] | P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Cont. Dyn.-B, 18 (2013), 2597–2625. https://doi.org/ 10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597 |
[61] | H. Chen, W. Chen, X. Liu, X. Liu, Establishing the first hidden-charm pentaquark with strangeness, Eur. Phys. J. C, 81 (2021), 409. https://doi.org/10.1140/epjc/s10052-021-09196-4 doi: 10.1140/epjc/s10052-021-09196-4 |
[62] | Y. Zhang, Y. He, H. Wang, L. Sun, Y. Su, Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens, ACS Photonics, 8 (2021), 202–208. https://doi.org/10.1021/acsphotonics.0c01269 doi: 10.1021/acsphotonics.0c01269 |
[63] | H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating families of soliton solutions for the complex structured coupled fractional Biswas-Arshed model in birefringent fibers using a novel analytical technique, Fractal Fract., 7 (2023), 491. https://doi.org/10.3390/fractalfract7070491 doi: 10.3390/fractalfract7070491 |
[64] | H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512 |