L(U1), L(U2) | Frequency |
(1, 4) | 4 |
(2, 2) | 4 |
(2, 4) | 4(p+q-6) |
(4, 4) | 2(p-3)(q-3) |
The present research applies an improved version of the modified Extended Direct Algebraic Method (mEDAM) called r+mEDAM to examine soliton phenomena in a notable mathematical model, namely the (2+1)-dimensional Nizhnik-Novikov-Veselov Model (NNVM), which possesses potential applications in exponentially localized structure interactions. The generalized hyperbolic and trigonometric functions are used to disclose a variety of soliton solutions, including kinks, anti-kink, bell-shaped and periodic soliton. Some 3D graphs are plotted for visual representations of these solutions which highlight their adaptability. The results provide a basis for practical usage and expansions to related mathematical models or physical systems. They also expand our understanding of the NNVM's dynamics, providing insights into its behavior and prospective applications.
Citation: Saima Noor, Azzh Saad Alshehry, Asfandyar Khan, Imran Khan. Analysis of soliton phenomena in (2+1)-dimensional Nizhnik-Novikov-Veselov model via a modified analytical technique[J]. AIMS Mathematics, 2023, 8(11): 28120-28142. doi: 10.3934/math.20231439
[1] | Usman Babar, Haidar Ali, Shahid Hussain Arshad, Umber Sheikh . Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Mathematics, 2020, 5(2): 1562-1587. doi: 10.3934/math.2020107 |
[2] | Ali N. A. Koam, Ali Ahmad, Azeem Haider, Moin A. Ansari . Computation of eccentric topological indices of zero-divisor graphs based on their edges. AIMS Mathematics, 2022, 7(7): 11509-11518. doi: 10.3934/math.2022641 |
[3] | R. Abu-Gdairi, A. A. El-Atik, M. K. El-Bably . Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data. AIMS Mathematics, 2023, 8(11): 26945-26967. doi: 10.3934/math.20231379 |
[4] | Sadik Delen, Ismail Naci Cangul . Effect of edge and vertex addition on Albertson and Bell indices. AIMS Mathematics, 2021, 6(1): 925-937. doi: 10.3934/math.2021055 |
[5] | Sumiya Nasir, Nadeem ul Hassan Awan, Fozia Bashir Farooq, Saima Parveen . Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling. AIMS Mathematics, 2022, 7(7): 11829-11850. doi: 10.3934/math.2022660 |
[6] | Wei Gao, Zahid Iqbal, Shehnaz Akhter, Muhammad Ishaq, Adnan Aslam . On irregularity descriptors of derived graphs. AIMS Mathematics, 2020, 5(5): 4085-4107. doi: 10.3934/math.2020262 |
[7] | Chenxu Yang, Meng Ji, Kinkar Chandra Das, Yaping Mao . Extreme graphs on the Sombor indices. AIMS Mathematics, 2022, 7(10): 19126-19146. doi: 10.3934/math.20221050 |
[8] | Edil D. Molina, José M. Rodríguez-García, José M. Sigarreta, Sergio J. Torralbas Fitz . On the Gutman-Milovanović index and chemical applications. AIMS Mathematics, 2025, 10(2): 1998-2020. doi: 10.3934/math.2025094 |
[9] | Fawaz E. Alsaadi, Faisal Ali, Imran Khalid, Masood Ur Rehman, Muhammad Salman, Madini Obad Alassafi, Jinde Cao . Quantifying some distance topological properties of the non-zero component graph. AIMS Mathematics, 2021, 6(4): 3512-3524. doi: 10.3934/math.2021209 |
[10] | Zhenhua Su, Zikai Tang . Extremal unicyclic and bicyclic graphs of the Euler Sombor index. AIMS Mathematics, 2025, 10(3): 6338-6354. doi: 10.3934/math.2025289 |
The present research applies an improved version of the modified Extended Direct Algebraic Method (mEDAM) called r+mEDAM to examine soliton phenomena in a notable mathematical model, namely the (2+1)-dimensional Nizhnik-Novikov-Veselov Model (NNVM), which possesses potential applications in exponentially localized structure interactions. The generalized hyperbolic and trigonometric functions are used to disclose a variety of soliton solutions, including kinks, anti-kink, bell-shaped and periodic soliton. Some 3D graphs are plotted for visual representations of these solutions which highlight their adaptability. The results provide a basis for practical usage and expansions to related mathematical models or physical systems. They also expand our understanding of the NNVM's dynamics, providing insights into its behavior and prospective applications.
Since molecules and molecular compounds are used to generate molecular graphs. Any graph that simulates some molecular structure can use a topological index as a mathematical formula [1]. Topological indices play a significant role in chemistry, pharmacology, etc., [2]. A molecular graph, whose vertices and edges are represented by atoms and chemical bonds, respectively, illustrates the constructional outcome of a chemical compound in graph theory form. Cheminformatics, a field shared by information science, chemistry and mathematics, has recently gained notoriety. This new topic discusses the connection between QSAR and QSPR, which is used to investigate (with a given level of accuracy) the theoretical and biological activities of specific chemical compounds [3]. For quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), in which the physicochemical characteristics of molecules are correlated with their chemical structure, a topological index (TI) is a real number associated with chemical structures via their hydrogen-depleted graph [4,5,6].
Chemical graph theory is a newly developed area of mathematical chemistry that combines graph theory with chemistry. The main objective of chemical graph theory is to acknowledge the structural effects of a molecular graph [7]. The molecules and molecular compounds aid in the construction of a molecular graph. Topological descriptors, which are typically graph invariants, are numerical characteristics of a graph that describe its topology [8]. The certain physiochemical characteristics of some chemical compounds, such as their boiling point, strain energy, and stability are correlated by degree-based topological indices [9].
Chemical graph theory has many applications in many areas of life, including computer science, materials science, drug design, chemistry, biological networks, and electrical networks. For this reason, academics are currently very interested in this theory [10,11]. The numerical values attached to a simple, finite graph that represent its structure are called topological indices [12]. The multiplicative Zagreb indices for mathematical features, connection indices and applications see in [13,14,15,16,17,18,19,20]. In this study, a novel method for computing the topological indices of two different chemical networks is presented. The mathematical properties of molecular structure descriptors, particularly those that depend on graph degrees, have been examined in our research. We derive neighborhood multiplicative topological indices and concise mathematical analysis for product of graphs (L) and tetrahedral diamond lattices (Ω). The fifth multiplicative Zagreb index, the general fifth-multiplicative Zagreb index, the fifth-multiplicative hyper-Zagreb index, the fifth-multiplicative product connectivity index, the fifth-multiplicative sum connectivity index, the fifth-multiplicative geometric-arithmetic index, the fifth-multiplicative harmonic index, and the fifth-multiplicative redefined Zagreb index are the topological indices that are taken into consideration. In this paper, we consider G=(V,E) to be a simple, connected and finite graph contains vertices (atoms) atoms and edges (chemical bonds linking these atoms), for notation referee to [21].
In 2017, the new neighborhood degree-based multiplicative topological indices were introduced by V. R. Kulli in [22]. Let §1 and §2 denote the fifth neighborhood multiplicative M-Zagreb index defined as:
§1(G)=∏U1U2∈E(G)(L(U1)+L(U2))and§2(G)=∏U1U2∈E(G)L(U1)L(U2). | (2.1) |
Let §3 and §5 denote the general fifth multiplicative Zagreb index that are defined as:
§3(G)=∏U1U2∈E(G)[L(U1)+L(U2)]αand§5(G)=∏U1U2∈E(G)[L(U1)L(U2)]α, | (2.2) |
where α is a real number.
The fifth multiplicative hyper-Zagreb index is denoted by §4 and §6 defined as:
§4(G)=∏U1U2∈E(G)[L(U1)+L(U2)]2and§6(G)=∏U1U2∈E(G)[L(U1)L(U2)]2. | (2.3) |
The fifth multiplicative product connectivity index §8 is defined as:
§8(G)=∏U1U2∈E(G)1√L(U1)L(U2). | (2.4) |
The fifth multiplicative sum-connectivity index of a graph G is defined as:
§9(G)=∏U1U2∈E(G)1√L(U1)+L(U2) | (2.5) |
The fifth multiplicative geometric-arithmetic index §10 of a graph G and it is defined as:
§10(G)=∏U1U2∈E(G)2√L(U1)L(U2)√L(U1)+L(U2). | (2.6) |
Inspired by Kulli, Sarkar et al. [23] introduced the fifth multiplicative product connectivity index of first kind §7, the fifth multiplicative harmonic index §11 and the fifth multiplicative redefined Zagreb index §12, respectively defined as:
§7(G)=∏U1U2∈E(G)√L(U1)L(U2), | (2.7) |
§11(G)=∏U1U2∈E(G)2√L(U1)+L(U2), | (2.8) |
§12(G)=∏U1U2∈E(G)L(U1)L(U2)[(L(U1)+L(U2]. | (2.9) |
For any two graphs L and M, the tensor product of the graphs L and M is interpreted as L⊗M. This product is also known as categorical product of graphs defined in [24,25]. The vertex set of L⊗M is denoted by V (L)×V (M). For any integers p and q, the tensor product Lp and Lq is described by Lp⊗Lq. This graph contains a.b number of vertices with vertex set
{(t1,t2):1≤t1≤q, 1≤t2≤p}, |
and edge between (t1, t2) and (t3, t4)exists if and only if:
|t1−t3|−|t2−t4|=1. |
The graph Lp⊗Lq is known as a L with vertex cardinality pq. The metric dimension of the categorial product of graphs is determined in [26] and edge irregular reflexive labeling of categorical product of two paths is determined in [27]. This shows the importance of this product in different areas. Ahmad [28] determined the upper bounds of irregularity measures of categorical product of two connected graphs. The edge partition of graph Lp⊗Lq based on the degree of end vertices is given in Table 1. This edge partition is also given in [29]. For more understanding we depicted L9⊗L10 in Figure 1.
L(U1), L(U2) | Frequency |
(1, 4) | 4 |
(2, 2) | 4 |
(2, 4) | 4(p+q-6) |
(4, 4) | 2(p-3)(q-3) |
Theorem 3.1. Let G be a tensor product of two paths. Then the fifth neighborhood multiplicative M-Zagreb indices for G are:
§1(G)=122880(p2q+pq2−3p2−3q2−12pq+27p+27q−54), |
§2(G)=262144(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Proof. From the definitions of §1(G), §2(G) and Table 1, we have
§1(G)=|P(1,4)|(1+4)×|P(2,2)|(2+2)×|P(2,4)|(2+4)×|P(4,4)|(4+4)=4(5)×4(4)×4(p+q−6)(6)×2(p−3)(q−3)(8)=20×16×24(p+q−6)×16(p−3)(q−3)=122880(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Similarly,
§2(G)=|P(1,4)|(4)×|P(2,2)|(4)×|P(2,4)|(8)×|P(4,4)|(16)=4(4)×4(4)×4(p+q−6)(8)×2(p−3)(q−3)(16)=262144(p+q−6)(pq−3p−3q+9)=262144(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
The graphical representation of the Theorem 3.1 is given in Figure 2(a), (b).
Theorem 3.2. Let G be a tensor product of two paths. Then the general fifth multiplicative Zagreb indices of G are:
§3(G)=128(960)α(p2q+pq2−3p2−3q2−12pq+27p+27q−54), |
§5(G)=128(2048)α(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Proof. From the definitions of §3(G) and Table 1, we get
§3(G)=|P(1,4)|(1+4)α×|P(2,2)|(2+2)α×|P(2,4)|(2+4)α×|P(4,4)|(4+4)α=4(5)α×4(4)α×4(p+q−6)(6)α×2(p−3)(q−3)(8)α=128(960)α(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
From the definitions of §5(G) and Table 1, we obtain
§5(G)=|P(1,4)|(1 × 4)α×|P(2,2)|(2×2)α×|P(2,4)|(2×4)α×|P(4,4)|(4×4)α=4(4)α×4(4)α×4(p+q−6)(8)α×2(p−3)(q−3)(16)α=128(2048)α(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Theorem 3.3. Let G be a tensor product of two paths. Then the fifth multiplicative hyper-Zagreb indices for G are:
§4(G)=117964800(p2q+pq2−3p2−3q2−12pq+27p+27q−54), |
§6(G)=536870912(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Proof. From the definitions of §4(G), §6(G) and Table 1, we obtain
§4(G)=|P(1,4)|(1+4)2×|P(2,2)|(2+2)2×|P(2,4)|(2+4)2×|P(4,4)|(4+4)2=4(5)2×4(4)2×4(p+q−6)(6)2×2(p−3)(q−3)(8)2=117964800(p2q+pq2−3p2−3q2−12pq+27p+27q−54), |
§6(G)=|P(1,4)|(1 × 4)2×|P(2,2)|(22)2×|P(2,4)|(24)2×|P(4,4)|(44)2=4(4)2×4(4)2×4(p+q−6)(8)2×2(p−3)(q−3)(16)2=536870912(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
The graphical representations of Theorems 3.2 and 3.3 are shown in Figure 2(c)–(f) with p and q, respectively.
Theorem 3.4. The fifth multiplicative product connectivity index §8 for tensor product of two path G is:
§8(G)=14096√2(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Proof. From the formulation of §8(G) and Table 1, it is easy to calculate that
§8(G)=1|P(1,4)|√(4)×1|P(2,2)|√(4)×1|P(2,4)|√(8)×1|P(4,4)|√(16)=14√(4)×14√(4)×14(p+q−6)√(8)×12(p−3)(q−3)√(16)=14096√2(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
The graphical representation of fifth multiplicative product connectivity index §8 is shown in Figure 2(g) with p and q.
Theorem 3.5. Let G be a tensor product of two paths. Then the fifth multiplicative sum-connectivity index of a graph G is:
§9(G)=11024√15(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Proof. From the formulation of §9(G) and Table 1, we get
§9=1|P(1,4)|√(5)×1|P(2,2)|√(4)×1|P(2,4)|√6×1|P(4,4)|√8=14√(5)×14√(4)×14(p+q−6)√6×12(p−3)(q−3)√8=11024√15×(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Theorem 3.6. Let G be a tensor product of two paths. Then the fifth multiplicative geometric-arithmetic index §10 of a graph G is:
§10(G)=64√2√15. |
Proof. By the definition of §10(G) and using the values of Table 1, we have
§10=2|P(1,4)|√(4)|P(1,4)|√(5)×2|P(2,2)|√(4)|P(2,2)|√(4)×2|P(2,4)|√(8)|P(2,4)|√6×2|P(4,4)|√(16)|P(4,4)|√(8)=24√44√5×24√44√4×24(p+q−6)√84(p+q−6)√6×22(p−3)(q−3)√162(p−3)(q−3)√8=64√2√15. |
The graphical representations of fifth multiplicative sum-connectivity index §9 and fifth multiplicative geometric-arithmetic index §10 is shown in Figure 3(a), (b), respectively.
Theorem 3.7. Let G be a tensor product of two paths. Then the fifth multiplicative product connectivity index of first kind is
§7(G)=1024√2(p2q−3p2+pq2−12pq+27p−3q2+27q−54), |
the fifth multiplicative harmonic index is
§11(G)=164√15(p2q−3p2+pq2−12pq+27p−3q2+27q−54), |
the fifth multiplicative redefined Zagreb index is
§12(G)=251658240(p+q−6)(p−3)(q−3). |
Proof. By using Table 1, in the formulation of §7(G) §11(G) and §12(G) we get
§7=|P(1,4)|√(1×4)×|P(2,2)|√(2×2)×|P(2,4)|√(2×4)×|P(4,4)|√(4×4)=4√4×4√4×4(p+q−6)√8×2(p−3)(q−3)√16=1024√2(p2q−3p2+pq2−12pq+27p−3q2+27q−54), |
§11(G)=2|P(1,4)|√(5)×2|P(2,2)|√(4)×2|P(2,4)|√6×2|P(4,4)|√(8)=12√(5)×12√(4)×12(p+q−6)√6×1(p−3)(q−3)√8=164√15(p2q−3p2+pq2−12pq+27p−3q2+27q−54), |
§12(G)=|P(1,4)|(1× 4)(1+4)×|P(2,2)|(2×2)(2+2)×|P(2,4)|(2×4)(2+4)×|P(4,4)|(4×4)(4+4)=251658240(p+q−6)(p−3)(q−3). |
The graphical representations of fifth multiplicative product connectivity index of first kind, the fifth multiplicative harmonic index and the fifth multiplicative redefined Zagreb index are shown in Figure 3(c)–(e), respectively.
A tetrahedral diamond lattice Ω is made up of t layers, each of which extends to lt. The initial layer only has one vertex, while the subsequent layer is isomorphic to S4 because it contains four vertices. Each layer l for t ≥3 has ∑l−2k=1k hexagons with 3 pendent vertices. We may set up each additional layer's vertices in accordance with the depth initial marking. To be more specific, we may use layer l to represent labels from ∑l−2k=1k2+1 to ∑l−2k=1k2. The vertex set of a Ω of size t contains vertices that are a and b while the edge set has edges that are 23(t2−t). Ω have no odd cycles, making them bipartite graphs. The graph of tetrahedral diamond lattice Ω is shown in Figure 4 and the edge partition based on the degree of end vertices is given in Table 2.
L(U1), L(U2) | Frequency |
(1, 4) | 4 |
(2, 4) | 12(t-2) |
(3, 4) | 6(t-2)(t-3) |
(4, 4) | 2/3(t3−9t2+26t−24) |
Theorem 4.1. Let Ω tetrahedral diamond lattice then the fifth neighborhood multiplicative M-Zagreb indices for Ω are:
§1(Ω)=40320(t3−7t2+16t−12)(t3−9t2+26t−24), |
§2(Ω)=1179648(t3−7t2+16t−12)(t3−9t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.1), we get
§1(Ω)=|P(1,4)|(1+4)×|P(2,4)|(2+4)×|P(3,4)|(3+4)×|P(4,4)|(4+4)=4(5)×12(t−2)(6)×6(t−2)(t−3)(7)×23(t3−9t2+26t−24)(8)=40320(t3−7t2+16t−12)(t3−9t2+26t−24), |
§2(Ω)=|P(1,4)|(1×4)×|P(2,4)|(2×4)×|P(3,4)|(3×4)×|P(4,4)|(4×4)=4(4)×12(t−2)(8)×6(t−2)(t−3)(12)×23(t3−9t2+26t−24)(16)=1179648(t3−7t2+16t−12)(t3−9t2+26t−24). |
The graphical representations of §1(Ω) and §2(Ω) with t is shown in Figure 5.
Theorem 4.2. Let Ω tetrahedral diamond lattice then the general fifth multiplicative Zagreb indices of Ω are:
§3(Ω)=192(1680)α(t3−7t2+16t−12)(t3−9t2+26t−24), |
§5(Ω)=192(6144)α(t3−7t2+16t−12)(t3−7t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.2), we get
§3(G)=[|P(1,4)|(1+4)α×|P(2,4)|(2+4)α×|P(3,4)|(3+4)α×|P(4,4)|(4+4)α]=4(5)α×12(t−2)(6)α×6(t−2)(t−3)(7)α×23(t3−9t2+26t−24)(8)α=192(1680)α(t3−7t2+16t−12)(t3−9t2+26t−24), |
§5(Ω)=[|P(1,4)|(1×4)α×|P(2,4)|(2×4)α×|P(3,4)|(3×4)α×|P(4,4)|(4×4)a]=[4(4)α×12(t−2)(8)α×6(t−2)(t−3)(12)α×23(t3−9t2+26t−24)(16)a=192(6144)a(t3−7t2+16t−12)(t3−7t2+26t−24). |
Theorem 4.3. Let Ω tetrahedral diamond lattice then the fifth multiplicative hyper-Zagreb indices Ω are:
§4(Ω)=541900800(t3−7t2+16t−12)(t3−9t2+26t−24), |
§6(Ω)=7247757312(t3−7t2+16t−12)(t3−7t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.3), we get
§4(Ω)=|P(1,4)|(1+4)2×|P(2,4)|(2+4)2×|P(3,4)|(3+4)2×|P(4,4)|(4+4)2=4(5)2×12(t−2)(6)2×6(t−2)(t−3)(7)2×23(t3−9t2+26t−24)(8)2=4×12×6×23×(5×6×7×8)2(t−2)2(t−3)(t3−9t2+26t−24)=192(1680)2(t2+4−4t)(t−3)(t3−9t2+26t−24)=541900800(t3−7t2+16t−12)(t3−9t2+26t−24), |
§6(Ω)=|P(1,4)|(1×4)2×|P(2,4)|(2×4)2×|P(3,4)|(3×4)2×|P(4,4)|(4×4)2=4(4)2×12(t−2)(8)2×6(t−2)(t−3)(12)2×23(t3−9t2+26t−24)(16)2=4×12×6×23×(4×8×12×16)2(t3−7t2+16t−12)(t3−7t2+26t−24)=7247757312(t3−7t2+16t−12)(t3−7t2+26t−24). |
The graphical representations of §3(Ω)–§6(Ω), with t is shown in Figure 5.
Theorem 4.4. Let Ω tetrahedral diamond lattice then the fifth multiplicative product connectivity index Ω are:
§8(Ω)=16144√6(t3−7t2+16t−12)(t3−9t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.4), we get
§8=1|P(1,4)|√(1×4)×1|P(2,4)|√(2×4)×1|P(3,4)|√(3×4)×1|P(4,4)|√(4×4)=14√(4)×112(t−2)√(8)×16(t−2)(t−3)√(12)×123(t3−9t2+26t−24)√16=16144√6(t3−7t2+16t−12)(t3−9t2+26t−24). |
The graphical representation of the fifth multiplicative product connectivity index §8(Ω) with t is shown in Figure 5.
Theorem 4.5. Let Ω tetrahedral diamond lattice then the fifth multiplicative sum-connectivity index Ω is:
§9(Ω)=1768√210(t3−7t2+16t−12)(t3−9t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.5), we get
§9(Ω)=1|P(1,4)|√(1+4)×1|P(2,4)|√(2+4)×1|P(3,4)|√(3+4)×1|P(4,4)|√(4+4)=14√(5)×112(t−2)√(6)×16(t−2)(t−3)√(7)×123(t3−9t2+26t−24)√(8)=1768√210(t3−7t2+16t−12)(t3−9t2+26t−24). |
Theorem 4.6. Let Ω tetrahedral diamond lattice then the fifth multiplicative geometric-arithmetic index Ω is
§10(Ω)=128√2√35. |
Proof. Using the values of Table 2 in Eq (2.6), we get
§10=2|P(1,4)|√(1×4)|P(1,4)|√(1+4)×2|P(2,4)|√(2×4)|P(2,4)|√(2+4)×2|P(3,4)|√(3×4)|P(3,4)|√(3+4)×2|P(4,4)|√(4×4)|P(4,4)|√(4+4)=2×4√44√5×2×12(t−2)√812(t−2)√6×2×6(t−2)(t−3)√126(t−2)(t−3)√7×2×23(t3−9t2+26t−24)√1623(t3−9t2+26t−24)√8=128√2√35. |
Theorem 4.7. Let Ω tetrahedral diamond lattice. Then the fifth multiplicative product connectivity index of first kind is
§7(Ω)=6144√6(t3−7t2+16t−12)(t3−9t2+26t−24), |
the fifth multiplicative harmonic index is
§11(Ω)=148√105(t3−7t2+16t−12)(t3−9t2+26t−24), |
the fifth multiplicative redefined Zagreb index is
§12(Ω)=1981808640(t3−7t2+16t−12)(t3−7t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.7), we get
§7(Ω)=|P(1,4)|√(1×4)×|P(2,4)|√(2×4)×|P(3,4)|√(3×4)×|P(4,4)|√(4×4)=4√(4)×12(t−2)√(8)×6(t−2)(t−3)√(12)×23(t3−9t2+26t−24)√16=6144√6(t3−7t2+16t−12)(t3−9t2+26t−24), |
§11(Ω)=2|P(1,4)|√(1+4)×2|P(2,4)|√(2+4)×2|P(3,4)|√(3+4)×2|P(4,4)|√(4+4)=24√(5)×212(t−2)√(6)×26(t−2)(t−3)√(7)×223(t3−9t2+26t−24)√(8)=148√105(t3−7t2+16t−12)(t3−9t2+26t−24), |
§12(Ω)=|P(1,4)|(1×4)(1+4)×|P(2,4)|(2×4)(2+4)×|P(3,4)|(3×4)(3+4)×|P(4,4)|(4×4)(4+4)=4(4)5×12(t−2)(8)6×6(t−2)(t−3)(12)(7)×23(t3−9t2+26t−24)16(8)=1981808640(t3−7t2+16t−12)(t3−7t2+26t−24). |
The graphical representations of the fifth multiplicative product connectivity index of first kind §7(Ω), the fifth multiplicative sum-connectivity index §9(Ω), the fifth multiplicative geometric-arithmetic index §10(Ω), fifth multiplicative harmonic index §11(Ω) and fifth multiplicative redefined Zagreb index §12(Ω) are shown in Figure 6.
This study contains a novel method for computing the topological indices of different chemical networks and namely the networks are product of graphs (L) and tetrahedral diamond lattices (Ω). The mathematical topological properties of molecular structure descriptors, specifically those that depend on graph degrees, are examined in this research work. We derived neighborhood multiplicative topological indices and concise mathematical analysis for product of graphs (L) and tetrahedral diamond lattices (Ω). A few topological descriptors are studied namely, the fifth multiplicative Zagreb index, the general fifth-multiplicative Zagreb index, the fifth-multiplicative hyper-Zagreb index, the fifth-multiplicative product connectivity index, the fifth-multiplicative sum connectivity index, the fifth-multiplicative geometric-arithmetic index, the fifth-multiplicative harmonic index, and the fifth-multiplicative redefined Zagreb index are the topological indices that are taken into consideration. Moreover, a comparative study is also included in this work.
The author is grateful to the Deanship of Scientific Research of Jazan University for supporting financially this work under Waed grant No. (W44-91).
I declare that there is no conflict of interest of this article.
[1] |
K. Xu, Y. Guo, Y. Liu, X. Deng, Q. Chen, Z. Ma, 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology, IEEE Electr. Device L., 42 (2021), 1120–1123. https://doi.org/10.1109/LED.2021.3091277 doi: 10.1109/LED.2021.3091277
![]() |
[2] |
H. Khan, R. Shah, P. Kumam, M. Arif, Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method, Entropy, 21 (2019), 597. https://doi.org/10.3390/e21060597 doi: 10.3390/e21060597
![]() |
[3] |
Z. Li, K. Wang, W. Li, S. Yan, F. Chen, S. Peng, Analysis of surface pressure pulsation characteristics of centrifugal pump magnetic liquid sealing film, Front. Energy, 10 (2022), 937299. https://doi.org/10.3389/fenrg.2022.937299 doi: 10.3389/fenrg.2022.937299
![]() |
[4] |
H. Khan, R. Shah, J. F. G. Aguilar, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Pheno., 16 (2021), 32. https://doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016
![]() |
[5] |
Z. Xiao, H. Fang, H. Jiang, J. Bai, V. Havyarimana, H. Chen, et al., Understanding private car aggregation effect via spatio-temporal analysis of trajectory data, IEEE T. Cybernetics, 53 (2023), 2346–2357. https://doi.org/10.1109/TCYB.2021.3117705 doi: 10.1109/TCYB.2021.3117705
![]() |
[6] | M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, 149 (1991). https://doi.org/10.1017/CBO9780511623998 |
[7] |
G. F. Yu, H. W. Tam, A vector asymmetrical NNV equation: Soliton solutions, bilinear Bäcklund transformation and Lax pair, J. Math. Anal. Appl., 344 (2008), 593–600. https://doi.org/10.1016/j.jmaa.2008.02.057 doi: 10.1016/j.jmaa.2008.02.057
![]() |
[8] | V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Berlin: Springer, 17 (1991). https://doi.org/10.1007/978-3-662-00922-2 |
[9] |
Y. L. Ma, Y. L. Li, Y. Y. Fu, A series of the solutions for the Heisenberg ferromagnetic spin chain equation, Math. Method. Appl. Sci., 41 (2018), 3316–3322. https://doi.org/10.1002/mma.4818 doi: 10.1002/mma.4818
![]() |
[10] |
Y. Ma, B. Li, C. Wang, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211 (2009), 102–107. https://doi.org/10.1016/j.amc.2009.01.036 doi: 10.1016/j.amc.2009.01.036
![]() |
[11] |
B. Q. Li, Y. L. Ma, Periodic solutions and solitons to two complex short pulse (CSP) equations in optical fiber, Optik, 144 (2017), 149–155. https://doi.org/10.1016/j.ijleo.2017.06.114 doi: 10.1016/j.ijleo.2017.06.114
![]() |
[12] |
B. Q. Li, Y. L. Ma, Rich soliton structures for the Kraenkel-Manna-Merle (KMM) system in ferromagnetic materials, J. Supercond. Nov. Magn., 31 (2018), 1773–1778. https://doi.org/10.1007/s10948-017-4406-9 doi: 10.1007/s10948-017-4406-9
![]() |
[13] |
B. Li, Y. Ma, The non-traveling wave solutions and novel fractal soliton for the (2+1)-dimensional Broer-Kaup equations with variable coefficients, Commun. Nonlinear Sci., 16 (2011), 144–149. https://doi.org/10.1016/j.cnsns.2010.02.011 doi: 10.1016/j.cnsns.2010.02.011
![]() |
[14] |
M. Zhang, Y. L. Ma, B. Q. Li, Novel loop-like solitons for the generalized Vakhnenko equation, Chinese Phys. B, 22 (2013), 030511. https://doi.org/10.1088/1674-1056/22/3/030511 doi: 10.1088/1674-1056/22/3/030511
![]() |
[15] |
M. S. Osman, Nonlinear interaction of solitary waves described by multi-rational wave solutions of the (2+1)-dimensional Kadomtsev-Petviashvili equation with variable coefficients, Nonlinear Dynam., 87 (2017), 1209–1216. https://doi.org/10.1007/s11071-016-3110-9 doi: 10.1007/s11071-016-3110-9
![]() |
[16] |
H. I. A. Gawad, Towards a unified method for exact solutions of evolution equations. An application to reaction diffusion equations with finite memory transport, J. Stat. Phys., 147 (2012), 506–518. https://doi.org/10.1007/s10955-012-0467-0 doi: 10.1007/s10955-012-0467-0
![]() |
[17] | R. Hirota, The direct method in soliton theory, Cambridge University Press, 155 (2004). https://doi.org/10.1017/CBO9780511543043 |
[18] |
B. Q. Li, Y. L. Ma, Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204–214. https://doi.org/10.1016/j.camwa.2018.04.015 doi: 10.1016/j.camwa.2018.04.015
![]() |
[19] |
Y. L. Ma, B. Q. Li, Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, AIMS Math., 5 (2020), 1162–1176. https://doi.org/10.3934/math.2020080 doi: 10.3934/math.2020080
![]() |
[20] |
Y. L. Ma, A. M. Wazwaz, B. Q. Li, New extended Kadomtsev-Petviashvili equation: Multiple soliton solutions, breather, lump and interaction solutions, Nonlinear Dynam., 104 (2021), 1581–1594. https://doi.org/10.1007/s11071-021-06357-8 doi: 10.1007/s11071-021-06357-8
![]() |
[21] |
C. F. Wei, New solitary wave aolutions for the fractional Jaulent-Miodek hierarchy model, Fractals, 2023, 2350060. https://doi.org/10.1142/S0218348X23500603 doi: 10.1142/S0218348X23500603
![]() |
[22] |
S. M. M. Alizamini, H. Rezazadeh, K. Srinivasa, A. Bekir, New closed form solutions of the new coupled Konno-Oono equation using the new extended direct algebraic method, Pramana, 94 (2020), 1–12. https://doi.org/10.1007/s12043-020-1921-1 doi: 10.1007/s12043-020-1921-1
![]() |
[23] |
D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, Y. Fan, A general linear free energy relationship for predicting partition coefficients of neutral organic compounds, Chemosphere, 247 (2020), 125869. https://doi.org/10.1016/j.chemosphere.2020.125869 doi: 10.1016/j.chemosphere.2020.125869
![]() |
[24] |
M. B. Hossen, H. O. Roshid, M. Z. Ali, Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2+1)-dimensional Breaking Soliton equation, Phys. Lett. A, 382 (2018), 1268–1274. https://doi.org/10.1016/j.physleta.2018.03.016 doi: 10.1016/j.physleta.2018.03.016
![]() |
[25] |
F. Huang, X. Y. Tang, S. Y. Lou, Exact solutions for a higher-order nonlinear Schrödinger equation in atmospheric dynamics, Commun. Theor. Phys., 45 (2006), 573. https://doi.org/10.1088/0253-6102/45/3/039 doi: 10.1088/0253-6102/45/3/039
![]() |
[26] |
Z. Wu, J. Cao, Y. Wang, Y. Wang, L. Zhang, J. Wu, hPSD: A Hybrid PU-learning-based spammer detection model for product reviews, IEEE T. Cybernetics, 50 (2020), 1595–1606. https://doi.org/10.1109/TCYB.2018.2877161 doi: 10.1109/TCYB.2018.2877161
![]() |
[27] |
W. Q. Peng, S. F. Tian, T. T. Zhang, Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation, Phys. Lett. A, 382 (2018), 2701–2708. https://doi.org/10.1016/j.physleta.2018.08.002 doi: 10.1016/j.physleta.2018.08.002
![]() |
[28] |
H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the (G'/G)-expansion method, Symmetry, 11 (2019), 566. https://doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566
![]() |
[29] |
H. Khan, D. Baleanu, P. Kumam, J. F. Al-Zaidy, Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method, IEEE Access, 7 (2019), 107523–107532. https://doi.org/10.1109/ACCESS.2019.2933188 doi: 10.1109/ACCESS.2019.2933188
![]() |
[30] |
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled Konno-Onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686. https://doi.org/10.3390/math11122686 doi: 10.3390/math11122686
![]() |
[31] |
R. Meng, X. Xiao, J. Wang, Rating the crisis of online public opinion using a multi-level index system, Int. Arab J. Inf. Techn., 19 (2022), 597–608. https://doi.org/10.34028/iajit/19/4/4 doi: 10.34028/iajit/19/4/4
![]() |
[32] |
M. M. Khater, Abundant wave solutions of the perturbed Gerdjikov-Ivanov equation in telecommunication industry, Mod. Phys. Lett. B, 35 (2021), 2150456. https://doi.org/10.1142/S021798492150456X doi: 10.1142/S021798492150456X
![]() |
[33] |
L. Yan, Y. H. Sun, Y. Qian, Z. Y. Sun, C. Z. Wang, Method of reaching consensus on probability of food safety based on the integration of finite credible data on block chain, IEEE Access, 9 (2021), 123764–123776. https://doi.org/10.1109/ACCESS.2021.3108178 doi: 10.1109/ACCESS.2021.3108178
![]() |
[34] |
C. Zong, Z. Wan, Container ship cell guide accuracy check technology based on improved 3D point cloud instance segmentation, Brodogradnja, 73 (2022), 23–35. https://doi.org/10.21278/brod73102 doi: 10.21278/brod73102
![]() |
[35] |
J. Xu, K. Guo, P. Z. H. Sun, Driving performance under violations of traffic rules: Novice vs. experienced drivers, IEEE T. Intell. Vehicl., 2022. https://doi.org/10.1109/TIV.2022.3200592 doi: 10.1109/TIV.2022.3200592
![]() |
[36] |
M. S. Iqbal, A. R. Seadawy, M. Z. Baber, Demonstration of unique problems from soliton solutions to nonlinear Selkov-Schnakenberg system, Chaos Soliton. Fract., 162 (2022), 112485. https://doi.org/10.1016/j.chaos.2022.112485 doi: 10.1016/j.chaos.2022.112485
![]() |
[37] |
C. Guo, J. Hu, Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance, IEEE T. Circuits-II, 2023. https://doi.org/10.1109/TCSII.2023.3242856 doi: 10.1109/TCSII.2023.3242856
![]() |
[38] |
W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Math. Comput. Simulat., 43 (1997), 13–27. https://doi.org/10.1016/S0378-4754(96)00053-5 doi: 10.1016/S0378-4754(96)00053-5
![]() |
[39] |
Z. Zhao, Y. Chen, B. Han, Lump soliton, mixed lump stripe and periodic lump solutions of a (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Mod. Phys. Lett. B, 31 (2017), 1750157. https://doi.org/10.1142/S0217984917501573 doi: 10.1142/S0217984917501573
![]() |
[40] |
Q. Meng, Q. Ma, Y. Shi, Adaptive fixed-time stabilization for a class of uncertain nonlinear systems, IEEE T. Automat. Contr., 2023. https://doi.org/10.1109/TAC.2023.3244151 doi: 10.1109/TAC.2023.3244151
![]() |
[41] |
D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, Y. Fan, A general linear free energy relationship for predicting partition coefficients of neutral organic compounds, Chemosphere, 247 (2020), 125869. https://doi.org/10.1016/j.chemosphere.2020.125869 doi: 10.1016/j.chemosphere.2020.125869
![]() |
[42] |
M. A. Helal, Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos Soliton. Fract., 13 (2002), 1917–1929. https://doi.org/10.1016/S0960-0779(01)00189-8 doi: 10.1016/S0960-0779(01)00189-8
![]() |
[43] |
N. C. Freeman, Soliton solutions of non-linear evolution equations, IMA J. Appl. Math., 32 (1984), 125–145. https://doi.org/10.1093/imamat/32.1-3.125 doi: 10.1093/imamat/32.1-3.125
![]() |
[44] |
S. Javeed, K. S. Alimgeer, S. Nawaz, A. Waheed, M. Suleman, D. Baleanu, et al., Soliton solutions of mathematical physics models using the exponential function technique, Symmetry, 12 (2020), 176. https://doi.org/10.3390/sym12010176 doi: 10.3390/sym12010176
![]() |
[45] |
Z. Y. Wang, S. F. Tian, J. Cheng, The ∂−-dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021). https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806
![]() |
[46] |
S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, P. Roy. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
![]() |
[47] |
Y. Li, S. F. Tian, J. J. Yang, Riemann-Hilbert problem and interactions of solitons in the component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
![]() |
[48] |
Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
![]() |
[49] | T. Akturk, A. Kubal, Analysis of wave solutions of (2+1)-dimensional Nizhnik-Novikov-Veselov equation, Ordu Üniv. Bilim ve Teknoloji Dergisi, 11 (2021), 13–24. |
[50] |
P. G. Estévez, S. Leble, A wave equation in 2+1: Painlevé analysis and solutions, Inverse Probl., 11 (1995), 925. https://doi.org/10.1088/0266-5611/11/4/018 doi: 10.1088/0266-5611/11/4/018
![]() |
[51] |
Y. Ren, H. Zhang, New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the -dimensional NNV equation, Phys. Lett. A, 357 (2006), 438–448. https://doi.org/10.1016/j.physleta.2006.04.082 doi: 10.1016/j.physleta.2006.04.082
![]() |
[52] | L. P. Nizhnik, Integration of multidimensional nonlinear equations by the method of the inverse problem, Dokl. Akademii Nauk, 254 (1980), 332–335. |
[53] |
X. Bai, Y. He, M. Xu, Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form, IEEE T. Aero. Elec. Sys., 57 (2021), 3279–3295. https://doi.org/10.1109/TAES.2021.3074204 doi: 10.1109/TAES.2021.3074204
![]() |
[54] |
Q. Liu, H. Peng, Z. Wang, Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis, J. Differ. Equations, 314 (2022), 251–286. https://doi.org/10.1016/j.jde.2022.01.021 doi: 10.1016/j.jde.2022.01.021
![]() |
[55] |
H. Jin, Z. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equations, 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
![]() |
[56] |
M. B. Hossen, H. O. Roshid, M. Z. Ali, Multi-soliton, breathers, lumps and interaction solution to the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation, Heliyon, 5, (2019). https://doi.org/10.1016/j.heliyon.2019.e02548 doi: 10.1016/j.heliyon.2019.e02548
![]() |
[57] |
A. M. Wazwaz, M. S. Osman, Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium, Comput. Math. Appl., 76 (2018), 276–283. https://doi.org/10.1016/j.camwa.2018.04.018 doi: 10.1016/j.camwa.2018.04.018
![]() |
[58] |
M. S. Osman, H. I. A. Gawad, Multi-wave solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients, Eur. Phys. J. Plus, 130 (2015), 1–11. https://doi.org/10.1140/epjp/i2015-15215-1 doi: 10.1140/epjp/i2015-15215-1
![]() |
[59] |
S. Y. Lou, X. B. Hu, Infinitely many Lax pairs and symmetry constraints of the KP equation, J. Math. Phys., 38 (1997), 6401–6427. https://doi.org/10.1063/1.532219 doi: 10.1063/1.532219
![]() |
[60] |
P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Cont. Dyn.-B, 18 (2013), 2597–2625. https://doi.org/ 10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
![]() |
[61] |
H. Chen, W. Chen, X. Liu, X. Liu, Establishing the first hidden-charm pentaquark with strangeness, Eur. Phys. J. C, 81 (2021), 409. https://doi.org/10.1140/epjc/s10052-021-09196-4 doi: 10.1140/epjc/s10052-021-09196-4
![]() |
[62] |
Y. Zhang, Y. He, H. Wang, L. Sun, Y. Su, Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens, ACS Photonics, 8 (2021), 202–208. https://doi.org/10.1021/acsphotonics.0c01269 doi: 10.1021/acsphotonics.0c01269
![]() |
[63] |
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating families of soliton solutions for the complex structured coupled fractional Biswas-Arshed model in birefringent fibers using a novel analytical technique, Fractal Fract., 7 (2023), 491. https://doi.org/10.3390/fractalfract7070491 doi: 10.3390/fractalfract7070491
![]() |
[64] |
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
![]() |
1. | Ali Ahmad, Ali N. A. Koam, Ibtisam Masmali, Muhammad Azeem, Haleemah Ghazwani, Connection number topological aspect for backbone DNA networks, 2023, 46, 1292-8941, 10.1140/epje/s10189-023-00381-9 | |
2. | Ibtisam Masmali, Muhammad Azeem, Muhammad Kamran Jamil, Ali Ahmad, Ali N. A. Koam, Study of some graph theoretical parameters for the structures of anticancer drugs, 2024, 14, 2045-2322, 10.1038/s41598-024-64086-5 | |
3. | Hani Shaker, Sabeen Javaid, Usman Babar, Muhammad Kamran Siddiqui, Asim Naseem, Characterizing superlattice topologies via fifth M-Zagreb polynomials and structural indices, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-04645-3 | |
4. | Ali N. A. Koam, Ali Ahmad, Ibtisam Masmali, Muhammad Azeem, Mehwish Sarfraz, Naeem Jan, Several intuitionistic fuzzy hamy mean operators with complex interval values and their application in assessing the quality of tourism services, 2024, 19, 1932-6203, e0305319, 10.1371/journal.pone.0305319 | |
5. | Ali N. A. Koam, Ali Ahmad, Maryam Salem Alatawi, Adnan Khalil, Muhammad Azeem, Ammar Alsinai, On the Constant Partition Dimension of Some Generalized Families of Toeplitz Graph, 2024, 2024, 2314-4629, 10.1155/2024/4721104 | |
6. | Ali N. A. Koam, Ali Ahmad, Raed Qahiti, Muhammad Azeem, Waleed Hamali, Shonak Bansal, Enhanced Chemical Insights into Fullerene Structures via Modified Polynomials, 2024, 2024, 1076-2787, 10.1155/2024/9220686 | |
7. | Ali Ahmad, Ali N. A. Koam, Muhammad Azeem, Ibtisam Masmali, Rehab Alharbi, Eyas Mahmoud, Edge based metric dimension of various coffee compounds, 2024, 19, 1932-6203, e0294932, 10.1371/journal.pone.0294932 | |
8. | Muhammad Shoaib Sardar, Khalil Hadi Hakami, Vinod Kumar Tiwari, QSPR Analysis of Some Alzheimer’s Compounds via Topological Indices and Regression Models, 2024, 2024, 2090-9063, 10.1155/2024/5520607 | |
9. | Ali N. A. Koam, Ali Ahmad, Shahid Zaman, Ibtisam Masmali, Haleemah Ghazwani, Fundamental aspects of the molecular topology of fuchsine acid dye with connection numbers, 2024, 47, 1292-8941, 10.1140/epje/s10189-024-00418-7 | |
10. | Haleemah Ghazwani, Muhammad Kamran Jamil, Ali Ahmad, Muhammad Azeem, Ali N. A. Koam, Applications of magnesium iodide structure via modified-polynomials, 2024, 14, 2045-2322, 10.1038/s41598-024-64344-6 | |
11. | Ali N.A. Koam, Muhammad Azeem, Ali Ahmad, Ibtisam Masmali, Connection number-based molecular descriptors of skin cancer drugs, 2024, 15, 20904479, 102750, 10.1016/j.asej.2024.102750 | |
12. | Khawlah Alhulwah, Ali N.A. Koam, Nasreen Almohanna, Muhammad Faisal Nadeem, Ali Ahmad, Topological indices and their correlation with structural properties of carbon nanotube Y-junctions, 2025, 70, 22113797, 108141, 10.1016/j.rinp.2025.108141 |
L(U1), L(U2) | Frequency |
(1, 4) | 4 |
(2, 2) | 4 |
(2, 4) | 4(p+q-6) |
(4, 4) | 2(p-3)(q-3) |
L(U1), L(U2) | Frequency |
(1, 4) | 4 |
(2, 4) | 12(t-2) |
(3, 4) | 6(t-2)(t-3) |
(4, 4) | 2/3(t3−9t2+26t−24) |