This work investigates the dynamic complications of the Ricker type predator-prey model in the presence of the additive type Allee effect in the prey population. In the modeling of discrete-time models, Euler forward approximations and piecewise constant arguments are the most frequently used schemes. In Euler forward approximations, the model may undergo period-doubled orbits and invariant circle orbits, even while varying the step size. In this way, differential equations with piecewise constant arguments (Ricker-type models) are a better choice for the discretization of a continuous-time model because they do not involve any step size. First, the interaction between prey and predator in the form of the Holling-Ⅱ type is considered. The essential mathematical features are discussed in terms of local stability and the bifurcation phenomenon as well. Next, we apply the center manifold theorem and normal form theory to achieve the existence and directions of flip bifurcation and Neimark-Sacker bifurcation. Moreover, this paper demonstrates that the outbreak of chaos can stabilize in the considered model with a higher value of the Allee parameter. The existence of chaotic orbits is verified with the help of a one-parameter bifurcation diagram and the largest Lyapunov exponents, respectively. Furthermore, different control methods are applied to control the bifurcation and fluctuating phenomena, i.e., state feedback, the Ott-Grebogi-Yorke, and hybrid control methods. Finally, to ensure our analytical results, numerical simulations have been carried out using MATLAB software.
Citation: Vinoth Seralan, R. Vadivel, Dimplekumar Chalishajar, Nallappan Gunasekaran. Dynamical complexities and chaos control in a Ricker type predator-prey model with additive Allee effect[J]. AIMS Mathematics, 2023, 8(10): 22896-22923. doi: 10.3934/math.20231165
This work investigates the dynamic complications of the Ricker type predator-prey model in the presence of the additive type Allee effect in the prey population. In the modeling of discrete-time models, Euler forward approximations and piecewise constant arguments are the most frequently used schemes. In Euler forward approximations, the model may undergo period-doubled orbits and invariant circle orbits, even while varying the step size. In this way, differential equations with piecewise constant arguments (Ricker-type models) are a better choice for the discretization of a continuous-time model because they do not involve any step size. First, the interaction between prey and predator in the form of the Holling-Ⅱ type is considered. The essential mathematical features are discussed in terms of local stability and the bifurcation phenomenon as well. Next, we apply the center manifold theorem and normal form theory to achieve the existence and directions of flip bifurcation and Neimark-Sacker bifurcation. Moreover, this paper demonstrates that the outbreak of chaos can stabilize in the considered model with a higher value of the Allee parameter. The existence of chaotic orbits is verified with the help of a one-parameter bifurcation diagram and the largest Lyapunov exponents, respectively. Furthermore, different control methods are applied to control the bifurcation and fluctuating phenomena, i.e., state feedback, the Ott-Grebogi-Yorke, and hybrid control methods. Finally, to ensure our analytical results, numerical simulations have been carried out using MATLAB software.
[1] | P. Turchin, Complex population dynamics, Princeton University Press, 2013. https://doi.org/10.1515/9781400847280 |
[2] | R. Arditi, L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311–326. https://doi.org/10.1016/S0022-5193(89)80211-5 doi: 10.1016/S0022-5193(89)80211-5 |
[3] | P. H. Crowley, E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthol. Soc., 8 (1989), 211–221. https://doi.org/10.2307/1467324 doi: 10.2307/1467324 |
[4] | J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 1975,331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866 |
[5] | D. L. D. Angelis, R. Goldstein, R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298 |
[6] | Y. Zhou, W. Sun, Y. Song, Z. Zheng, J. Lu, S. Chen, Hopf bifurcation analysis of a predator-prey model with Holling-Ⅱ type functional response and a prey refuge, Nonlinear Dynam., 97 (2019), 1439–1450. https://doi.org/10.1007/s11071-019-05063-w doi: 10.1007/s11071-019-05063-w |
[7] | P. Leslie, J. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.2307/2333294 doi: 10.2307/2333294 |
[8] | H. I. Freedman, Deterministic mathematical models in population ecology, Marcel Dekker Incorporated, 1980. |
[9] | R. M. May, Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos, Science, 186 (2007), 645–647. https://doi.org/10.1126/science.186.4164.64 doi: 10.1126/science.186.4164.64 |
[10] | W. C. Allee, The social life of animals, 1938. https://doi.org/10.5962/bhl.title.7226 |
[11] | F. Courchamp, T. C. Brock, B. Grenfell, Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14 (1999), 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 doi: 10.1016/S0169-5347(99)01683-3 |
[12] | F. Courchamp, L. Berec, J. Gascoigne, Allee effects in ecology and conservation, Oxford University Press, 2008. https://doi.org/10.1093/acprof: oso/9780198570301.001.0001 |
[13] | B. Dennis, Allee effects: Population growth, critical density, and the chance of extinction, Nat. Resour. Model., 3 (1989), 481–538. https://doi.org/10.1111/j.1939-7445.1989.tb00119.x doi: 10.1111/j.1939-7445.1989.tb00119.x |
[14] | C. E. Brassil, Mean time to extinction of a metapopulation with an Allee effect, Ecol. Model., 143 (2001), 9–16. https://doi.org/10.1016/S0304-3800(01)00351-9 doi: 10.1016/S0304-3800(01)00351-9 |
[15] | C. Celik, O. Duman, Allee effect in a discrete-time predator-prey system, Chaos Soliton. Fract., 40 (2009), 1956–1962. https://doi.org/10.1016/j.chaos.2007.09.077 doi: 10.1016/j.chaos.2007.09.077 |
[16] | W. X. Wang, Y. B. Zhang, C. Z. Liu, Analysis of a discrete-time predator-prey system with Allee effect, Ecol. Complex., 8 (2011), 81–85. https://doi.org/10.1016/j.ecocom.2010.04.005 doi: 10.1016/j.ecocom.2010.04.005 |
[17] | N. Iqbal, R. Wu, Y. Karaca, R. Shah, W. Weera, Pattern dynamics and turing instability induced by self-super-cross-diffusive predator-prey model via amplitude equations, AIMS Math., 8 (2023), 2940–2960. https://doi.org/10.3934/math.2023153 doi: 10.3934/math.2023153 |
[18] | N. Iqbal, R. Wu, Turing patterns induced by cross-diffusion in a 2D domain with strong Allee effect, CR. Math., 357 (2019), 863–877. https://doi.org/10.1016/j.crma.2019.10.011 doi: 10.1016/j.crma.2019.10.011 |
[19] | N. Iqbal, R. Wu, W. W. Mohammed, Pattern formation induced by fractional cross-diffusion in a 3-species food chain model with harvesting, Math. Comput. Simulat., 188 (2021), 102–119. https://doi.org/10.1016/j.matcom.2021.03.041 doi: 10.1016/j.matcom.2021.03.041 |
[20] | Z. Chen, Q. Din, M. Rafaqat, U. Saeed, M. B. Ajaz, Discrete-time predator-prey interaction with selective harvesting and predator self-limitation, J. Math., 2020 (2020). https://doi.org/10.1155/2020/6737098 doi: 10.1155/2020/6737098 |
[21] | L. G. Yuan, Q. G. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system, Appl. Math. Model., 39 (2015), 2345–2362. https://doi.org/10.1016/j.apm.2014.10.040 doi: 10.1016/j.apm.2014.10.040 |
[22] | K. T. Alligood, T. D. Sauer, J. A. Yorke, Chaos, Springer, 1996. https://doi.org/10.1007/b97589 |
[23] | A. Gomes, E. Manica, M. Varriale, Applications of chaos control techniques to a three-species food chain, Chaos, Solitons & Fractals, 35 (2008), 432–441. https://doi.org/10.1016/j.chaos.2006.05.075 doi: 10.1016/j.chaos.2006.05.075 |
[24] | R. V. Solé, J. G. Gamarra, M. Ginovart, D. López, Controlling chaos in ecology: From deterministic to individual-based models, B. Math. Biol., 61 (1999), 1187–1207. https://doi.org/10.1006/bulm.1999.0141 doi: 10.1006/bulm.1999.0141 |
[25] | X. S. Luo, G. Chen, B. H. Wang, J. Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Soliton. Fract., 18 (2013), 775–783. https://doi.org/10.1016/S0960-0779(03)00028-6 doi: 10.1016/S0960-0779(03)00028-6 |
[26] | E. Ott, C. Grebogi, J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 64 (1990), 1196. https://doi.org/10.1103/PhysRevLett.64.1196 doi: 10.1103/PhysRevLett.64.1196 |
[27] | M. S. Shabbir, Q. Din, K. Ahmad, A. Tassaddiq, A. H. Soori, M. A. Khan, Stability, bifurcation, and chaos control of a novel discrete-time model involving Allee effect and cannibalism, Adv. Differential Equ., 2020 (2020), 1–28. https://doi.org/10.1186/s13662-020-02838-z doi: 10.1186/s13662-020-02838-z |
[28] | Y. Lin, Q. Din, M. Rafaqat, A. A. Elsadany, Y. Zeng, Dynamics and chaos control for a discrete-time Lotka-Volterra model, IEEE Access, 8 (2020), 126760–126775. https://doi.org/10.1109/ACCESS.2020.3008522 doi: 10.1109/ACCESS.2020.3008522 |
[29] | Y. Cai, W. Wang, J. Wang, Dynamics of a diffusive predator-prey model with additive Allee effect, Int. J. Biomath., 5 (2012), 1250023. https://doi.org/10.1142/S1793524511001659 doi: 10.1142/S1793524511001659 |
[30] | P. Aguirre, E. G. Olivares, E. Saez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, SIAM J. Appl. Math., 69 (2009), 1244–1262. https://doi.org/10.1137/070705210 doi: 10.1137/070705210 |
[31] | P. Aguirre, E. G. Olivares, E. Saez, Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect, Nonlinear Anal.-Real, 10 (2009), 1401–1416. https://doi.org/10.1016/j.nonrwa.2008.01.022 doi: 10.1016/j.nonrwa.2008.01.022 |
[32] | S. Vinoth, R. Sivasamy, K. Sathiyanathan, G. Rajchakit, P. Hammachukiattikul, R. Vadivel, et al., Dynamical analysis of a delayed food chain model with additive Allee effect, Adv. Differ. Equ., 2021 (2021), 54. https://doi.org/10.1186/s13662-021-03216-z doi: 10.1186/s13662-021-03216-z |
[33] | M. H. Wang, M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci., 171 (2020), 83–97. https://doi.org/10.1016/S0025-5564(01)00048-7 doi: 10.1016/S0025-5564(01)00048-7 |
[34] | R. E. Mickens, Nonstandard finite difference models of differential equations, World Scientific, 1994. https://doi.org/10.1142/2081 |
[35] | L. Dai, Nonlinear dynamics of piecewise constant systems and implementation of piecewise constant arguments, World Scientific, 2008. https://doi.org/10.1142/6882 |
[36] | S. Vinoth, R. Sivasamy, K. Sathiyanathan, B. Unyong, R. Vadivel, N. Gunasekaran, A novel discrete-time Leslie-Gower model with the impact of Allee effect in predator population, Complexity, 2022 (2022), 6931354. https://doi.org/10.1155/2022/6931354 doi: 10.1155/2022/6931354 |
[37] | W. E. Ricker, Stock and recruitment, J. Fish. Boar. Canada, 11 (1954), 559–623. https://doi.org/10.1139/f54-039 doi: 10.1139/f54-039 |
[38] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer Science & Business Media, 2013. https://doi.org/10.1007/978-1-4612-1140-2 |
[39] | S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer Science & Business Media, 2003. https://doi.org/10.1007/978-1-4757-4067-7 |
[40] | C. Robinson, Dynamical systems: Stability, symbolic dynamics, and chaos, CRC Press, 1998. https://doi.org/10.1201/9781482227871 |
[41] | R. M. May, G. F. Oster, Bifurcations and dynamic complexity in simple ecological models, Am. Nat., 110 (1976), 573–599. https://doi.org/10.1086/283092 doi: 10.1086/283092 |
[42] | W. Krawcewicz, T. Rogers, Perfect harmony: The discrete dynamics of cooperation, J. Math. Biol., 28 (1990), 383–410. https://doi.org/10.1007/BF00178325 doi: 10.1007/BF00178325 |
[43] | G. Chen, X. Dong, From chaos to order: Methodologies, perspectives and applications, World Scientific, 1998. https://doi.org/10.1142/3033 |
[44] | Q. Din, O. A. Gümüş, H. Khalil, Neimark-sacker bifurcation and chaotic behaviour of a modified host-parasitoid model, Z. Naturforsch. A, 72 (2017), 25–37. https://doi.org/10.1515/zna-2016-0335 doi: 10.1515/zna-2016-0335 |
[45] | Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer Science & Business Media, 2013. https://doi.org/10.1007/978-1-4757-3978-7 |
[46] | S. Pal, N. Pal, J. Chattopadhyay, Hunting cooperation in a discrete-time predator-prey system, Int. J. Bifurcat. Chaos, 28 (2018), 1850083. https://doi.org/10.1142/S0218127418500839 doi: 10.1142/S0218127418500839 |
[47] | M. Y. Hamada, T. E. Azab, H. E. Metwally, Bifurcations and dynamics of a discrete predator-prey model of ricker type, J. Appl. Math. Comput., 69 (2023), 113–135. https://doi.org/10.1007/s12190-022-01737-8 doi: 10.1007/s12190-022-01737-8 |
[48] | Y. H. Chou, Y. Chow, X. Hu, S. R. J. Jang, A Ricker-type predator-prey system with hunting cooperation in discrete time, Math. Comput. Simulat., 190 (2021), 570–586. https://doi.org/10.1016/j.matcom.2021.06.003 doi: 10.1016/j.matcom.2021.06.003 |