Research article Special Issues

Moser-Trudinger inequalities on 2-dimensional Hadamard manifolds

  • Received: 17 April 2024 Revised: 05 June 2024 Accepted: 07 June 2024 Published: 14 June 2024
  • MSC : 46E36, 26D10

  • We derive two types of sharp Moser-Trudinger inequalities on complete, simply connected, two-dimensional Riemannian manifolds whose sectional curvatures $ K $ satisfy the bounds $ -b^2\le K\le -a^2 < 0 $.

    Citation: Carlo Morpurgo, Liuyu Qin. Moser-Trudinger inequalities on 2-dimensional Hadamard manifolds[J]. AIMS Mathematics, 2024, 9(7): 19670-19676. doi: 10.3934/math.2024959

    Related Papers:

  • We derive two types of sharp Moser-Trudinger inequalities on complete, simply connected, two-dimensional Riemannian manifolds whose sectional curvatures $ K $ satisfy the bounds $ -b^2\le K\le -a^2 < 0 $.



    加载中


    [1] J. Bertrand, K. Sandeep, Sharp Green's function estimations on Hadamard manifolds and Adams inequality, Int. Math. Res. Not. IMRN, 6 (2021), 4729–4767. https://doi.org/10.1093/imrn/rnaa216 doi: 10.1093/imrn/rnaa216
    [2] E. B. Davies, Pointwise bounds on the space and time derivatives of heat kernels, J. Oper. Theory, 21 (1989), 367–378.
    [3] E. B. Davies, N. Mandouvalos, Heat kernel bounds on hyperbolic space and Kleinian groups, Proc. London Math. Soc., 57 (1988), 182–208. http://dx.doi.org/10.1112/plms/s3-57.1.182 doi: 10.1112/plms/s3-57.1.182
    [4] A. Debiard, B. Gaveau, E. Mazet, Théorèmes de comparaison en géométrie riemannienne, Publ. Res. Inst. Math. Sci., 12 (1976/77), 391–425.
    [5] L. Fontana, C. Morpurgo, Adams inequalities for Riesz subcritical potentials, Nonlinear Anal., 192 (2020), 111662. http://dx.doi.org/10.1016/j.na.2019.111662 doi: 10.1016/j.na.2019.111662
    [6] S. Ibrahim, N. Masmoudi, K. Nakanishi, Trudinger-Moser inequality on the whole plane with the exact growth condition, J. Eur. Math. Soc. (JEMS), 17 (2015), 819–835. http://dx.doi.org/10.4171/jems/519 doi: 10.4171/jems/519
    [7] J. Lee, Introduction to Riemannian Manifolds, 2 Eds., Berlin: Springer, 2018. http://dx.doi.org/10.1007/978-3-319-91755-9
    [8] G. Lu, H. Tang, M. Zhu, Best constants for Adams' inequalities with the exact growth condition in ${\mathbb{R}}^n$, Adv. Nonlinear Stud., 15 (2015), 763–788. http://dx.doi.org/10.1515/ans-2015-0402 doi: 10.1515/ans-2015-0402
    [9] P. Li, Geometric Analysis, Cambridge: Cambridge University Press, 2012. http://dx.doi.org/10.1017/CBO9781139105798
    [10] P. Li, J. Wang, Complete manifolds with positive spectrum. Ⅱ, J. Diff. Geom., 62 (2002), 143–162. http://dx.doi.org/10.4310/jdg/1090425532 doi: 10.4310/jdg/1090425532
    [11] N. Masmoudi, F. Sani, Adams' inequality with the exact growth condition in ${\mathbb{R}}^4$, Commun. Pure Appl. Math., 67 (2014), 1307–1335. http://dx.doi.org/10.1002/cpa.21473 doi: 10.1002/cpa.21473
    [12] N. Masmoudi, F. Sani, Trudinger-Moser inequalities with the exact growth condition in ${\mathbb{R}}^n$ and applications, Commun. Partial Diff. Equ., 40 (2015), 1408–1440. https://doi.org/10.1080/03605302.2015.1026775 doi: 10.1080/03605302.2015.1026775
    [13] N. Masmoudi, F. Sani, Higher order Adams' inequality with the exact growth condition, Commun. Contemp. Math., 20 (2018), 1750072. http://dx.doi.org/10.1142/S0219199717500729 doi: 10.1142/S0219199717500729
    [14] C. Morpurgo, L. Qin, Sharp Adams inequalities with exact growth conditions on metric measure spaces and applications, Math. Ann., 2023. https://doi.org/10.1007/s00208-023-02771-y
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(583) PDF downloads(25) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog