We derive two types of sharp Moser-Trudinger inequalities on complete, simply connected, two-dimensional Riemannian manifolds whose sectional curvatures $ K $ satisfy the bounds $ -b^2\le K\le -a^2 < 0 $.
Citation: Carlo Morpurgo, Liuyu Qin. Moser-Trudinger inequalities on 2-dimensional Hadamard manifolds[J]. AIMS Mathematics, 2024, 9(7): 19670-19676. doi: 10.3934/math.2024959
We derive two types of sharp Moser-Trudinger inequalities on complete, simply connected, two-dimensional Riemannian manifolds whose sectional curvatures $ K $ satisfy the bounds $ -b^2\le K\le -a^2 < 0 $.
[1] | J. Bertrand, K. Sandeep, Sharp Green's function estimations on Hadamard manifolds and Adams inequality, Int. Math. Res. Not. IMRN, 6 (2021), 4729–4767. https://doi.org/10.1093/imrn/rnaa216 doi: 10.1093/imrn/rnaa216 |
[2] | E. B. Davies, Pointwise bounds on the space and time derivatives of heat kernels, J. Oper. Theory, 21 (1989), 367–378. |
[3] | E. B. Davies, N. Mandouvalos, Heat kernel bounds on hyperbolic space and Kleinian groups, Proc. London Math. Soc., 57 (1988), 182–208. http://dx.doi.org/10.1112/plms/s3-57.1.182 doi: 10.1112/plms/s3-57.1.182 |
[4] | A. Debiard, B. Gaveau, E. Mazet, Théorèmes de comparaison en géométrie riemannienne, Publ. Res. Inst. Math. Sci., 12 (1976/77), 391–425. |
[5] | L. Fontana, C. Morpurgo, Adams inequalities for Riesz subcritical potentials, Nonlinear Anal., 192 (2020), 111662. http://dx.doi.org/10.1016/j.na.2019.111662 doi: 10.1016/j.na.2019.111662 |
[6] | S. Ibrahim, N. Masmoudi, K. Nakanishi, Trudinger-Moser inequality on the whole plane with the exact growth condition, J. Eur. Math. Soc. (JEMS), 17 (2015), 819–835. http://dx.doi.org/10.4171/jems/519 doi: 10.4171/jems/519 |
[7] | J. Lee, Introduction to Riemannian Manifolds, 2 Eds., Berlin: Springer, 2018. http://dx.doi.org/10.1007/978-3-319-91755-9 |
[8] | G. Lu, H. Tang, M. Zhu, Best constants for Adams' inequalities with the exact growth condition in ${\mathbb{R}}^n$, Adv. Nonlinear Stud., 15 (2015), 763–788. http://dx.doi.org/10.1515/ans-2015-0402 doi: 10.1515/ans-2015-0402 |
[9] | P. Li, Geometric Analysis, Cambridge: Cambridge University Press, 2012. http://dx.doi.org/10.1017/CBO9781139105798 |
[10] | P. Li, J. Wang, Complete manifolds with positive spectrum. Ⅱ, J. Diff. Geom., 62 (2002), 143–162. http://dx.doi.org/10.4310/jdg/1090425532 doi: 10.4310/jdg/1090425532 |
[11] | N. Masmoudi, F. Sani, Adams' inequality with the exact growth condition in ${\mathbb{R}}^4$, Commun. Pure Appl. Math., 67 (2014), 1307–1335. http://dx.doi.org/10.1002/cpa.21473 doi: 10.1002/cpa.21473 |
[12] | N. Masmoudi, F. Sani, Trudinger-Moser inequalities with the exact growth condition in ${\mathbb{R}}^n$ and applications, Commun. Partial Diff. Equ., 40 (2015), 1408–1440. https://doi.org/10.1080/03605302.2015.1026775 doi: 10.1080/03605302.2015.1026775 |
[13] | N. Masmoudi, F. Sani, Higher order Adams' inequality with the exact growth condition, Commun. Contemp. Math., 20 (2018), 1750072. http://dx.doi.org/10.1142/S0219199717500729 doi: 10.1142/S0219199717500729 |
[14] | C. Morpurgo, L. Qin, Sharp Adams inequalities with exact growth conditions on metric measure spaces and applications, Math. Ann., 2023. https://doi.org/10.1007/s00208-023-02771-y |