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1. Introduction

A pinched Hadamard manifold is a complete, simply connected Riemannian manifold (M, g) whose
Gaussian curvature K satisfies −b2 ≤ K ≤ −a2 for some a, b > 0. Let µ denote the Riemannian measure
of M, induced by the metric g. Below, W1,2(M) denotes the usual Sobolev space on M.

In this note, we establish the following theorem:

Theorem 1. If (M, g) is a two-dimensional pinched Hadamard manifold, then there exists a constant
C such that for all u ∈ W1,2(M) with ∥∇u∥2 ≤ 1, we have∫

M

(
e4πu2

− 1
)
dµ ≤ C, (1.1)

and ∫
M

e4πu2
− 1

1 + |u|2
dµ ≤ C∥u∥22. (1.2)

The exponential constant 4π is sharp in both inequalities.

On pinched Hadamard manifolds of dimension n ≥ 3, a sharp version of estimate (1.1) was derived
by Bertrand-Sandeep [1] for the operators Dα = (−∆)

α
2 if α is even, and Dα = ∇(−∆)

α−1
2 if α is odd
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(1 ≤ α < n). A sharp version of (1.2) on the same manifolds and for the same operators was obtained by
Morpurgo-Qin [14], also for n ≥ 3. Estimate (1.2) is known as “Moser-Trudinger inequality with exact
growth condition”, and was obtained first on R2 by Ibrahim-Masmoudi-Nakanishi [6], later extended
in higher dimensions and for higher order operators in Masmoudi-Sani [11–13], and also in Lu-Tang-
Zhu [8].

The first step of the strategy used in [1] was to write u = T (Dαu), where T is an integral operator
with a kernel Kα, given in terms of the Green function G(x, y) of the Laplace-Beltrami operator on
M; in particular, K2 = G and K1 = ∇yG. The second step was to derive sharp asymptotic estimates
and critical integrability estimates on Kα, which allowed the authors to apply general results in [5]
regarding sharp Adams type inequalities on measure spaces.

The same ideas were then used in [14] where further estimates on Kα were obtained, allowing the
authors to apply general results in [14] on Adams inequalities with exact growth conditions on metric
measure spaces.

The case n = 2 was somehow left out in the above works, due to small technical reasons. The
purpose of this note is to fill in the gap and to establish the required estimates on K1 = ∇yG even when
n = 2.

2. Proof of Theorem 1

It is enough to prove the inequalities of the theorem for u ∈ C∞c (M). Let G(x, y) be the minimal
positive Green function on M. Then, for each x ∈ M we can write

u(x) =
∫

M
⟨∇yG(x, y), ∇yu(y)⟩dµ(y), (2.1)

where ⟨Z,W⟩ = g(Z,W) for Z,W ∈ TyM, and ∇yG is the gradient of G(x, y) with respect to the y
variable. Also, below we will denote the open ball centered at x and with radius r as B(x, r) = {y ∈ M :
d(x, y) < r} and its volume as Vx(r) = µ(B(x, r)).

For a measurable function f on M, we define its nonincreasing rearrangement as

f ∗(t) = inf
{
s > 0 : µ{x : | f (x)| > s}) ≤ t

}
, t > 0. (2.2)

In view of (2.1) and Theorem 1 in [5] (see also (10.8), (10.10), and related remarks in [14]), to
prove (1.1) it is enough to show that

|∇yG(x, ·)|∗(t) ≤
1

2
√
π

t−1/2 +C, 0 < t ≤ 1, x ∈ M (2.3)

|∇yG(·, y)|∗(t) ≤ Ct−1/2, t > 0, y ∈ M (2.4)

and ∫ ∞

1

(
|∇yG(x, ·)|∗(t)

)2dt ≤ C, x ∈ M. (2.5)

On the other hand, to prove (1.2), it is enough to verify the following additional conditions:∫
r1≤d(x,y)≤r2

|∇yG(x, y)|2dµ(y) ≤
1

4π
log

Vx(r2)
Vx(r1)

+C, 0 < Vx(r1) < Vx(r2) ≤ 1, (2.6)
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d(x,y)≥r

|∇yG(x, y)|2dµ(y) ≤ C, Vx(r) ≥ 1, (2.7)

|∇yG(x, ·)|∗(t) ≤ Ct−1/2, t > 0, (2.8)

|∇yG(x, y)| ≤ CVx(d(x, y))−1/2, Vx(d(x, y)) ≤ 1, (2.9)

and for each δ > 0, there is Bδ > 0 such that∫
d(x,y)>R

|∇yG(x′, y) − ∇yG(x, y)|2dµ(y) ≤ Bδ, Vx(R) ≥ (1 + δ)Vx(r), Vx(r) ≤ 1, x′ ∈ B(x, r). (2.10)

We first show that for any given R > 0, there exists C such that

|∇yG(x, y)| ≤ C

d(x, y)−1 if d(x, y) ≤ R

1 if d(x, y) ≥ R
(2.11)

with C independent of x, y (but depending on R). First, let us recall this consequence of the well-known
Li-Yau gradient estimate ((3.14) in [1], Thm. 6.1 in [9], Lemma 2.1 in [10]):

|∇yG(x, y)| ≤ G(b +Cd(x, y)−1), x, y ∈ M. (2.12)

Observe that such an estimate is valid in any dimension n, and that it was used in [1] when n ≥ 3
to derive the bound |∇yG(x, y)| ≤ Cd(x, y)1−n, given the bound G(x, y) ≤ Cd(x, y)2−n. However, in
dimension 2 this does not work for small distances, since G(x, y) behaves like − log d(x, y).

Instead, we use the fact that

G(x, y) =
∫ ∞

0
H(t, x, y)dt (2.13)

where H(t, x, y) is the heat kernel for the Laplace-Beltrami operator on M, and give some good (even if
rough) estimates on |∇yH|. First, we recall that on any n−dimensional Hadamard manifold satisfying
K ≤ −a2, (a ≥ 0), we have the comparison theorem

H(t, x, y) ≤ Ha
(
t, d(x, y)

)
, t > 0, x, y ∈ M, (2.14)

where Ha(t, da(x̃, ỹ)
)

is the heat kernel on the space form of constant curvature −a2, and where da(x̃, ỹ)
denotes the distance of two points x̃, ỹ in such space (see Théorème 1 in [4]). When a > 0, the heat
kernel Ha is well-known and somewhat explicit. In particular, we have that Ha(t, r) = anH1(a2t, ar), for
all t, r > 0, where H1(t, r) yields the heat kernel on the hyperbolic space Hn, and satisfies the estimate

H1(t, r) ≤ Cnt−n/2(1 + r)(1 + r + t)
n−3

2 e−
(n−1)2

4 t− n−1
2 r− r2

4t

≤ Cn

(1 + r)
n−1

2 e−
n−1

2 r t−n/2e−
r2
4t if 0 < t ≤ 1

(1 + r)
n
2 e−

n−1
2 r t−3/2e−

(n−1)2
4 t− r2

4t if t ≥ 1

(2.15)

for some Cn depending on n (see [3], Thm. 3.1]). Hence, there are some c1, c2, c3 > 0 depending on
n, a such that

H(t, x, y) ≤ c1e−c2d(x,y)

t
−n/2e−

d(x,y)2
4t if 0 < t ≤ 1

e−c3t− d(x,y)2
4t if t ≥ 1.

(2.16)
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Now, we can appeal to a result by E. B. Davies [2], Theorem 6, which, under the additional condition
Ric ≥ −(n − 1)b2, gives

|∇yH(t, x, y)| ≤ c4

t−n/2−1e−
d(x,y)2

8t if 0 < t ≤ 1
e−c3t if t ≥ 1,

(2.17)

for some c4 depending on a, b, n. From (2.13) we then easily get

|∇yG(x, y)| ≤ C

d(x, y)1−n if d(x, y) ≤ R

1 if d(x, y) ≥ R
(2.18)

in any dimension n ≥ 2 (and, hence, (2.11)).
We remark that (2.17) can be refined somewhat by replacing c4 with c4e−c2d(x,y), which also gives

|∇yG(x, y)| ≤ Ce−c5d(x,y) for d(x, y) ≥ R, some c5 > 0. This can be done using the same method as in [2],
using the the gradient estimate for the heat kernel (see, e.g., [9], Thm. 12.2)

|∇yH|2 ≤ αH∂tH + H2
(nα2

2t
+Cn

α2

α − 1
b2
)
, (2.19)

for any α > 1 , combined with (2.16) and the time derivative estimate∣∣∣∣∣∂H
∂t

(t, x, y)
∣∣∣∣∣ ≤ c6e−c2d(x,y)

t
−n/2−1e−

d(x,y)2
8t if 0 < t ≤ 1

e−c3t− d(x,y)2
8t if t ≥ 1.

(2.20)

The latter estimate can be obtained using the method in [2], Theorem 4.
Using (2.11) and following the same argument in [1], Theorem 3.2, with some minor changes, we

can now obtain
|∇yG(x, y)| ≤

1
2π

d(x, y)−1 +C, d(x, y) ≤ 1, (2.21)

which implies (2.3), (2.9), and (2.6) by the volume comparison theorem.
For the convenience of the reader, we outline the proof of (2.21), keeping a part of the notation used

in [1], Thm. 3.2, so the changes are slightly more evident. For any fixed x ∈ M, an n-dimensional
Hadamard manifold, we have a unique chart given by the exponential map expx(rξ). The volume
element in geodesic polar coordinate is given by dµ = rn−1

√
|g|drdξ, where g = (gi j) is the metric

tensor, evaluated at expx(rξ), |g| = det(gi j), and where dξ is the measure on the unit sphere S n−1.
Letting Φ(r) = − 1

2π log r and r = d(x, y), viewed as a function of y for fixed x, we have, for all r > 0,

∆Φ(r) = Φ′′(r)|∇r|2 + Φ′(r)∆r = −
1

2πr
∂r log

√
|g| (2.22)

where we used |∇r| = 1 and ∆r = ∂r log(rn−1
√
|g|) in any dimensions ( [7], Lemma 11.13). Letting

Hx(y) =
1

2πr
∂r log

√
|g|, y = expx(rξ) (2.23)

it is then easy to check that, in the sense of distributions,

∆Φ(d(x, ·)) = −δx − Hx. (2.24)
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From the Laplacian comparison ( [7], Thm. 11.5), we have, in any dimension n,

(n − 1)a coth(ar) ≤ ∆r =
n − 1

r
+ ∂r log

√
|g| ≤ (n − 1)b coth(br) (2.25)

from which we deduce, when n = 2, ∣∣∣∂r log
√
|g|
∣∣∣ ≤ Cr, r ≤ 4 (2.26)

where C is independent of x. Hence, we get

|Hx(y)| ≤ C, d(x, y) ≤ 4. (2.27)

Define now
Ux(y) =

∫
M

G(y, z)ψ(d(x, z))Hx(z)dµ(z) (2.28)

where ψ : [0,∞) → R, is smooth and such that ψ = 1 on [0, 2] and ψ = 0 on [4,∞). One then has that
the function hx(y) := G(x, y)−Φ(d(x, y))−Ux(y) is harmonic in the ball B(x, 2), as a function of y, and
also uniformly bounded on ∂B(0, 2). This last fact follows from a uniform estimate on Ux, which can
be verified as in [1] with some small modifications. First, we have the Green function comparison

G(x, y) ≤ Ga(d(x, y)) = −
1

2π
log tanh

(ad(x, y)
2

)
, x, y ∈ M (2.29)

where Ga(da(x̃, ỹ))) gives the Green function on the two-dimensional space form of constant curvature
−a2 < 0. Since for r > 0 we have |Ga(r)| ≤ max

{
log 2

r , 1
}
+Ca for some Ca > 0, then using the volume

and the Rauch comparison theorems, we get for y = expx(y), z = expx(z), with y, z ∈ R2,

|Ux(y)| ≤ C
∫

B(x,4)
G(y, z)dµ(z) ≤ C

∫
|y−z|≤2

log
2
|y − z|

dz +C
∫
|z|≤4

(1 +Ca)dz ≤ C. (2.30)

(We note that in [1], the authors used the bound G(x, y) ≤ G0(d(x, y)) = cnd(x, y)2−n, but this cannot be
done when n = 2.)

Using the gradient bound for harmonic functions, we can conclude that |∇hx| is bounded on B(x, 1),
uniformly w.r. to x. Moreover, using (2.11), the fact that G is symmetric, and arguing as in (2.30), if
d(x, y) ≤ 1, we obtain

|∇yUx(y)| ≤ C
∫

B(x,4)
|∇yG(y, z)|dµ(z) ≤ C

∫
d(x,z)≤4

d(y, z)−1dµ(z) ≤ C. (2.31)

Finally, we have

|∇yG(x, y) − ∇yΦ
(
d(x, y)

)
| ≤ |∇yUx(y) + ∇yhx(y)| ≤ C, d(x, y) ≤ 1, (2.32)

which gives (2.21).
Next, note that estimate (3.25) in [1] still holds when n = 2, i.e.,

µ({y : G(x, y) > s}) ≤
4

a2s
, s > 0. (2.33)
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Using (2.33) and the gradient estimate (2.12), for s < 1 we get

µ({y : |∇yG| > s}) ≤ µ({y : G(b +Cd−1) > s})
≤ µ({y : d ≤ 1}) + µ({y : d > 1, G(b +Cd−1) > s}) ≤ C + µ({y : (C + b)G > s})
≤ C +Cs−1 ≤ Cs−1.

(2.34)

Hence,
|∇yG(x, ·)|∗(t) ≤ Ct−1, t > 1 (2.35)

and (2.5) holds. Note also that |∇yG| ≤ C for large distances therefore, by Remark 17 in [14], (2.7)
follows. Furthermore, (2.35) and (2.3) imply (2.8).

By (2.33), (2.12), and the symmetry of G(x, y) in x, y, we have

|∇yG(·, y)|∗(t) ≤ Ct−1, t > 1, (2.36)

which combined with (2.21) gives (2.4). To prove (2.10), we follow the same argument as in [14],
which still works when n = 2, given (2.11).

The sharpness of the exponential constant 4π in (1.1) and (1.2) is proved in the usual way, by
considering the “Moser family” of functions vϵ ∈ W1,n

0 (B(x0, 1)), and some fixed x0 ∈ M, defined as

vϵ(y) =


log

1
ϵ

if d(x0, y) ≤ ϵ

log
1

d(x0, y)
if ϵ < d(x0, y) ≤ 1

0 if d(x0, y) > 1.

(2.37)

3. Conclusions

We derived two types of sharp Moser-Trudinger inequalities on complete, simply connected,
two-dimensional Riemannian manifolds whose sectional curvatures K satisfy the bounds
−b2 ≤ K ≤ −a2 < 0. The results fill gaps that were left in [1] and [14], where such inequalities were
proved in dimensions n ≥ 3.
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Res. Inst. Math. Sci., 12 (1976/77), 391–425.

5. L. Fontana, C. Morpurgo, Adams inequalities for Riesz subcritical potentials, Nonlinear Anal., 192
(2020), 111662. http://dx.doi.org/10.1016/j.na.2019.111662

6. S. Ibrahim, N. Masmoudi, K. Nakanishi, Trudinger-Moser inequality on the whole plane
with the exact growth condition, J. Eur. Math. Soc. (JEMS), 17 (2015), 819–835.
http://dx.doi.org/10.4171/jems/519

7. J. Lee, Introduction to Riemannian Manifolds, 2 Eds., Berlin: Springer, 2018.
http://dx.doi.org/10.1007/978-3-319-91755-9

8. G. Lu, H. Tang, M. Zhu, Best constants for Adams’ inequalities with the exact growth condition in
Rn, Adv. Nonlinear Stud., 15 (2015), 763–788. http://dx.doi.org/10.1515/ans-2015-0402

9. P. Li, Geometric Analysis, Cambridge: Cambridge University Press, 2012.
http://dx.doi.org/10.1017/CBO9781139105798

10. P. Li, J. Wang, Complete manifolds with positive spectrum. II, J. Diff. Geom., 62 (2002), 143–162.
http://dx.doi.org/10.4310/jdg/1090425532

11. N. Masmoudi, F. Sani, Adams’ inequality with the exact growth condition in R4, Commun. Pure
Appl. Math., 67 (2014), 1307–1335. http://dx.doi.org/10.1002/cpa.21473

12. N. Masmoudi, F. Sani, Trudinger-Moser inequalities with the exact growth condition
in Rn and applications, Commun. Partial Diff. Equ., 40 (2015), 1408–1440.
https://doi.org/10.1080/03605302.2015.1026775

13. N. Masmoudi, F. Sani, Higher order Adams’ inequality with the exact growth condition, Commun.
Contemp. Math., 20 (2018), 1750072. http://dx.doi.org/10.1142/S0219199717500729

14. C. Morpurgo, L. Qin, Sharp Adams inequalities with exact growth conditions on metric measure
spaces and applications, Math. Ann., 2023. https://doi.org/10.1007/s00208-023-02771-y

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 7, 19670–19676.

https://dx.doi.org/https://doi.org/10.1093/imrn/rnaa216
https://dx.doi.org/http://dx.doi.org/10.1112/plms/s3-57.1.182
https://dx.doi.org/http://dx.doi.org/10.1016/j.na.2019.111662
https://dx.doi.org/http://dx.doi.org/10.4171/jems/519
https://dx.doi.org/http://dx.doi.org/10.1007/978-3-319-91755-9
https://dx.doi.org/http://dx.doi.org/10.1515/ans-2015-0402
https://dx.doi.org/http://dx.doi.org/10.1017/CBO9781139105798
https://dx.doi.org/http://dx.doi.org/10.4310/jdg/1090425532
https://dx.doi.org/http://dx.doi.org/10.1002/cpa.21473
https://dx.doi.org/https://doi.org/10.1080/03605302.2015.1026775
https://dx.doi.org/http://dx.doi.org/10.1142/S0219199717500729
https://dx.doi.org/https://doi.org/10.1007/s00208-023-02771-y
https://creativecommons.org/licenses/by/4.0

	Introduction
	Proof of Theorem 1
	Conclusions

