This paper deals with the well-known Becker-Stark inequality. By using variable replacement from the viewpoint of hypergeometric functions, we provide a new and general refinement of Becker-Stark inequality. As a particular case, the double inequality
$ \begin{equation*} \frac{\pi^2-(\pi^2-8)\sin^2x}{\pi^2-4x^2}<\frac{\tan x}{x}<\frac{\pi^2-(4-\pi^2/3)\sin^2x}{\pi^2-4x^2} \end{equation*} $
for $ x\in(0, \pi/2) $ will be established. The importance of our result is not only to provide some refinements preserving the structure of Becker-Stark inequality but also that the method can be extended to the case of generalized trigonometric functions.
Citation: Suxia Wang, Tiehong Zhao. New refinements of Becker-Stark inequality[J]. AIMS Mathematics, 2024, 9(7): 19677-19691. doi: 10.3934/math.2024960
This paper deals with the well-known Becker-Stark inequality. By using variable replacement from the viewpoint of hypergeometric functions, we provide a new and general refinement of Becker-Stark inequality. As a particular case, the double inequality
$ \begin{equation*} \frac{\pi^2-(\pi^2-8)\sin^2x}{\pi^2-4x^2}<\frac{\tan x}{x}<\frac{\pi^2-(4-\pi^2/3)\sin^2x}{\pi^2-4x^2} \end{equation*} $
for $ x\in(0, \pi/2) $ will be established. The importance of our result is not only to provide some refinements preserving the structure of Becker-Stark inequality but also that the method can be extended to the case of generalized trigonometric functions.
[1] | M. Abramowitz, I. S. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Government Printing Office, Washington, 1964. http://dx.doi.org/10.1119/1.15378 |
[2] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, John Wiley & Sons, New York, 1997. http://dx.doi.org/10.1016/S0898-1221(97)90243-1 |
[3] | Á. Baricz, B. A. Bhayo, T. K. Pogány, Functional inequalities for generalized inverse trigonometric and hyperbolic functions, J. Math. Anal. Appl., 417 (2014), 244–259. http://dx.doi.org/10.1016/j.jmaa.2014.03.039 doi: 10.1016/j.jmaa.2014.03.039 |
[4] | Y. J. Bagul, C. Chesneau, New sharp bounds for tangent function, Bull. Allahabad Math. Soc., 34 (2019), 277–282. |
[5] | B. Banjac, B. Malesevic, M. Micovic, B. Mihailovic, M. Savatovic, The best possible constants approach for Wilker-Cusa-Huygens inequalities via stratification, Appl. Anal. Discrete Math., 18 (2024), 244–288. https://doi.org/10.2298/AADM240308012B doi: 10.2298/AADM240308012B |
[6] | M. Becker, E. L. Stark, On a hierarchy of quolynomial inequalities for $\tan x$, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 602 (1978), 133–138. |
[7] | C. P. Chen, W. S. Cheung, Sharp Cusa and Becker-Stark inequalities, J. Inequal. Appl., 2011 (2011), 136. https://doi.org/10.1186/1029-242X-2011-136 doi: 10.1186/1029-242X-2011-136 |
[8] | C. P. Chen, N. Elezović, Sharp Redheffer-type and Becker-Stark-type inequalities with an application, Math. Inequal. Appl., 21 (2018), 1059–1078. https://doi.org/10.7153/mia-2018-21-72 doi: 10.7153/mia-2018-21-72 |
[9] | T. Clausen, Demonstratio duarum celeberrimi Gaussii propositionum, J. Reine Angew. Math., 3 (1828), 311. |
[10] | C. P. Chen, R. B. Paris, Series representations of the remainders in the expansions for certain trigonometric functions and some related inequalities, I, Math. Inequal. Appl., 20 (2017), 1003–1016. https://doi.org/10.7153/mia-2017-20-64 doi: 10.7153/mia-2017-20-64 |
[11] | Y. J. Chen, T. H. Zhao, On the convexity and concavity of generalized complete elliptic integral of the first kind, Results Math., 77 (2022), 215. https://doi.org/10.1007/s00025-022-01755-9 doi: 10.1007/s00025-022-01755-9 |
[12] | P. Drábek, R. Manásevich, On the closed solution to some p-Laplacian nonhomogeneous eigenvalue problems, Differ. Integral Equ., 12 (1999), 723–740. https://doi.org/10.57262/die/1367241475 doi: 10.57262/die/1367241475 |
[13] | L. Debnath, C. Mortici, L. Zhu, Refinements of Jordan-Ste$\mathrm{\check{c}}$kin and Becker-Stark inequalities, Results Math., 67 (2015), 207–215. https://doi.org/10.1007/s00025-014-0405-3 doi: 10.1007/s00025-014-0405-3 |
[14] | B. Malesevic, M. Makragic, A method for proving some inequalities on mixed trigonometric polynomial functions, J. Math. Inequal., 10 (2016), 849–876. https://doi.org/10.7153/jmi-10-69 doi: 10.7153/jmi-10-69 |
[15] | S. Ponnusamy, M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44 (1997), 278–301. https://doi.org/10.1112/S0025579300012602 doi: 10.1112/S0025579300012602 |
[16] | E. D. Rainville, Special functions, Chelsea Publishing Company, New York, 1960. https://doi.org/10.1002/3527600434.eap458 |
[17] | Z. J. Sun, L. Zhu, Simple proofs of the Cusa-Huygens-type and Becker-Stark-type inequalities, J. Math. Inequal., 7 (2013), 563–567. https://doi.org/10.7153/jmi-07-52 doi: 10.7153/jmi-07-52 |
[18] | Y. Wu, G. Bercu, New refinements of Becker-Stark and Cusa-Huygens inequalities via trigonometric polynomials method, RACSAM Rev. R. Acad. A, 115 (2021), 87. https://doi.org/10.1007/s13398-021-01030-6 doi: 10.1007/s13398-021-01030-6 |
[19] | E. T. Whittaker, G. N. Watson, A course of modern analysis, 4 Eds., Cambridge Univ. Press, Cambridge, 1996. |
[20] | Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587–604. https://doi.org/10.1016/j.jmaa.2015.03.043 doi: 10.1016/j.jmaa.2015.03.043 |
[21] | Z. H. Yang, W. M. Qian, Y. M. Chu, W. Zhang, On rational bounds for the gamma function, J. Inequal. Appl., 2017 (2017), 210. https://doi.org/10.1186/s13660-017-1484-y doi: 10.1186/s13660-017-1484-y |
[22] | Z. H. Yang, W. M. Qian, Y. M. Chu, W. Zhang, On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., 462 (2018), 1714–1726. https://doi.org/10.1016/j.jmaa.2018.03.005 doi: 10.1016/j.jmaa.2018.03.005 |
[23] | Z. H. Yang, J. F. Tian, Monotonicity and sharp inequalities related to gamma function, J. Math. Inequal., 12 (2018), 1–22. https://doi.org/10.7153/jmi-2018-12-01 doi: 10.7153/jmi-2018-12-01 |
[24] | Z. H. Yang, J. F. Tian, Convexity and monotonicity for elliptic integrals of the first kind and applications, Appl. Anal. Discr. Math., 13 (2019), 240–260. https://doi.org/10.2298/AADM171015001Y doi: 10.2298/AADM171015001Y |
[25] | Z. H. Yang, J. F. Tian, Y. R. Zhu, A sharp lower bound for the complete elliptic integrals of the first kind, RACSAM Rev. R. Acad. A, 115 (2021), 8. https://doi.org/10.1007/s13398-020-00949-6 doi: 10.1007/s13398-020-00949-6 |
[26] | L. Zhu, Sharp Becker-Stark-type inequalities for Bessel functions, J. Inequal. Appl., 2010, 838740. https://doi.org/10.1155/2010/838740 |
[27] | L. Zhu, J. K. Hua, Sharpening the Becker-Stark inequalities, J. Inequal. Appl., 2010, 931275. https://doi.org/10.1155/2010/931275 |
[28] | L. Zhu, A refinement of the Becker-Stark inequalities, Math. Notes, 93 (2013), 421–425. https://doi.org/10.1134/S0001434613030085 doi: 10.1134/S0001434613030085 |
[29] | L. Zhu, New sharp double inequality of Becker-Stark type, Mathematics, 10 (2022), 558. https://doi.org/10.3390/math10040558 doi: 10.3390/math10040558 |
[30] | T. H. Zhao, W. M. Qian, Y. M. Chu, Sharp power mean bounds for the tangent and hyperbolic sine means, J. Math. Inequal., 15 (2021), 1459–1472. https://doi.org/10.7153/jmi-2021-15-100 doi: 10.7153/jmi-2021-15-100 |
[31] | T. H. Zhao, M. K. Wang, Sharp bounds for the lemniscatic mean by the weighted Hölder mean, RACSAM Rev. R. Acad. A, 117 (2023), 96. https://doi.org/10.1007/s13398-023-01429-3 doi: 10.1007/s13398-023-01429-3 |