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Abstract: This paper deals with the well-known Becker-Stark inequality. By using variable
replacement from the viewpoint of hypergeometric functions, we provide a new and general refinement
of Becker-Stark inequality. As a particular case, the double inequality

π2 − (π2 − 8) sin2 x
π2 − 4x2 <

tan x
x

<
π2 − (4 − π2/3) sin2 x

π2 − 4x2

for x ∈ (0, π/2) will be established. The importance of our result is not only to provide some
refinements preserving the structure of Becker-Stark inequality but also that the method can be
extended to the case of generalized trigonometric functions.
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1. Introduction

It is known in the literature that, for x ∈ (0, π/2), the inequality

8
π2 − 4x2 <

tan x
x

<
π2

π2 − 4x2 (1.1)

was first established by Becker and Stark [6]. This is always known as Becker-Stark inequality, which
has attracted much interest many researchers and has been generalized in many different ways; see [7,
8, 10, 13, 17, 26–28] and the references therein. The importance of Becker-Stark inequality is to find
the bounds for tan x/x, which are the rational functions with the same order of infinity near π/2. In
particular, the first of the notable refinements is given by Zhu [27, Theorem 1.3], who proved that, for
x ∈ (0, π/2),

π2 −
4(π2−8)
π2 x2

π2 − 4x2 <
tan x

x
<
π2 −

(
π2

3 − 4
)

x2

π2 − 4x2 . (1.2)
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As a matter of fact, Zhu [27, Theorem 1.4] gives a general refinement of the Becker-Stark inequality.
In view of

lim
x→ π

2
−

(
tan x

x
−

8
π2 − 4x2

)
=

2
π2 ,

the left-hand side of (1.1) becomes a good approximate of tan x/x near π/2. Motivated by this remark,
Zhu [28, Theorem 3] gives a refinement of (1.1), for x ∈ (0, π/2),

8
π2 − 4x2 +

2
π2 −

π2 − 9
6π4 (π2 − 4x2) <

tan x
x

<
8

π2 − 4x2 +
2
π2 −

10 − π2

π4 (π2 − 4x2),

where −(π2 − 9)/(6π4) and −(10 − π2)/π4 are the best constants. Further, Debnath et al. [13] present
two estimates of tan x/x near π/2 but not in the whole interval (0, π/2); more precisely, the following
inequalities hold true

8 + 8
π

(
π
2 − x

)
+

(
16
π2 −

8
3

) (
π
2 − x

)2

π2 − 4x2 <
tan x

x
for x ∈ (0.373, π/2) and

tan x
x

<
8 + 8

π

(
π
2 − x

)
+

(
16
π2 −

8
3

) (
π
2 − x

)2
+

(
32
π3 −

8
3π

) (
π
2 − x

)3

π2 − 4x2

for x ∈ (0, 301, π/2). Recently, alternative good improvements can be found in [10, Equation (2.11)]
and [4, Theorem 2.1], where they establish the inequalities

π2 + π2−12
3 x2 + 384−4π4

3π4 x4

π2 − 4x2 <
tan x

x
<
π2 + 72−8π2

π2 x2 + 16π2−160
π4 x4

π2 − 4x2

and √
1 +

128
π4

x2(5π2 − 12x2)
(π2 − 4x2)2 <

tan x
x

<

√
1 +

2π2

15
x2(5π2 − 12x2)

(π2 − 4x2)2

for x ∈ (0, π/2), where the second inequality had been improved by Zhu [29] to the following inequality√
1 +

(240 − 17π2)π2

45

x2
(

30π2

240−17π2 − x2
)

(π2 − 4x2)
<

tan x
x

<

√
1 +

(240 − 17π2)1024
π4(17π2 − 120)

x2
(

30π2

240−17π2 − x2
)

(π2 − 4x2)

for x ∈ (0, π/2) with the best constants (240−17π2)π2

45 and (240−17π2)1024
π4(17π2−120) . It is observed that all the above

improvements keep the structure of the Becker-Stark inequality, that is to say, the denominator of their
approximate functions is π2 − 4x2.

Very recently, Wu and Bercu [18] approximated tan x/x by utilizing the cosine polynomials due to
the property of even function, and established the inequalities

1 +
(1 − cos x)(604 cos2 x − 1817 cos x + 1843)

945
<

tan x
x

< 1 +
(1 − cos x)(31 cos x − 5 cos2 x + 604)

945 cos x
(1.3)

for x ∈ (0, π/2). Clearly, inequality (1.3) has broken the structure of the Becker-Stark inequality, which
leads to the left-hand side of (1.3) being just a bounded function.
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The main objective of this paper is to provide new lower and upper bounds for tan x/x whose
forms preserve the structure of the Becker-Stark inequality and numerator is a polynomial of sin2 x.
More precisely, we transform the function (π2 − 4x2) tan x/x into the ratio of two hypergeometric
functions by changing a variable t = sin2 x and use the first few terms of the series expansion to
approximate the objective function. This method, as a practice toy, can be used to reprove the Becker-
Stark inequality. The importance of our findings is not only illustrated by giving some new refinements
of inequality (1.1), but also by the fact that the method can be extended to generalized trigonometric
functions.

The rest of this paper is organized as follows: In this section, we give an introduction and highlight
the relevant previous results. Section 2 consists of some basic knowledge and two lemmas, and is
devoted to the proof of the main result. Diverse complements are offered in Section 3, including a
comparison of the obtained bounds by graphical analysis, a conjecture raised from the main result, and
a p-analogue of Becker-Stark inequality.

2. Main results and proofs

2.1. Preliminaries and lemmas

In this section, we first introduce some basic knowledge and present two lemmas that are used to
prove the main result.

Definition 2.1. For real numbers a, b, and c with −c < N ∪ {0}, the Gaussian hypergeometric function
is defined as

F(a, b; c; x) := 2F1(a, b; c; x) =

∞∑
n=0

(a)n(b)n

(c)n

xn

n!

for x ∈ (−1, 1), where (a)n = a(a + 1) · · · (a + n − 1) = Γ(a + n)/Γ(a) denotes the Pochhammer symbol
or the shifted factorial function for n ∈ N. In particular, (a)0 = 1 for a , 0. Here Γ(x) =

∫ ∞
0

tx−1e−tdt is
the classical Euler gamma function [21, 23].

Recall that the hypergeometric function F(a, b; c; x) has the following properties:

Property 2.1. A simple derivative formula

d
dx

F(a, b; c; x) =
ab
c

F(a + 1, b + 1; c + 1; x).

Property 2.2. The behavior of hypergeometric function F(a, b; c; x) near x = 1 satisfies the following
situations:

� c > a + b (cf. [16, p. 49])

F(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

. (2.1)

� c = a + b (cf. [1, 15.3.10]), the Ramanujan’s asymptotic formula

B(a, b)F(a, b; c; x) + log(1 − x) = R(a, b) + O
[
(1 − x) log(1 − x)

]
, (x→ 1). (2.2)
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� c < a + b (cf. [15, (1.2)]), as x→ 1,

F(a, b; c; x) = (1 − x)c−a−bF(c − a, c − b; c; x) =
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
(1 − x)c−a−b [1 + o(1)] , (2.3)

where B(a, b) = [Γ(a)Γ(b)]/Γ(a + b), R(a, b) = −2γ − ψ(a) − ψ(b), ψ(x) = Γ′(x)/Γ(x) and γ is the beta
function, the Ramanujan constant, the psi function, and the Euler-Mascheroni constant.

In a particular case of a, b, c, the inverse trigonometric tangent function can be represented by
hypergeometric function.

Property 2.3. (see [1, 15.1.5])

arctan(x) = xF
(
1
2
, 1;

3
2

;−x2
)

=
x

√
1 + x2

F
(
1
2
,

1
2

;
3
2

;
x2

1 + x2

)
. (2.4)

Remark 2.1. The second equality of (2.4) can be obtained from the transformation formula
F(a, b; c; z) = (1 − z)−aF(a, c − b; c; z/(z − 1)) (c.f. [1, 15.3.4]), and also coincides with the case of
p = 2 in [3, Lemma 1].

Property 2.4. (see [31, (3.6)]) An identity

(1 − x)F(a, 1; c; x) = 1 −
(c − a)x

c
F(a, 1; c + 1; x). (2.5)

As is known, a real function ϕ is said to be absolutely monotonic on the interval I if the kth derivative
of ϕ, denoted by ϕ(k)(x), exists and is non-negative for each k ≥ 0 and x ∈ I. In other words, if ϕ can be
expressed as a power series on I, then all coefficients are non-negative. In particular, a special power
series, roughly speaking, whose coefficients are first negative and then positive is said to be a negative-
positive type series, of which the name was first proposed formally in [25] although this type of special
series has been studied extensively in the literature [11, 22, 30].

Definition 2.2. A power series S (x) given by

S (x) = −

m∑
k=0

akxk +

∞∑
k=m+1

akxk

is called a “Negative-Positive type” (or “NP type” for short) power series, if its coefficients ak for k ≥ 0
satisfy

(i) ak ≥ 0 for all k ≥ 0;

(ii) There exist at least two integers 0 ≤ k1 ≤ m and k2 ≥ m + 1 such that ak1 , ak2 , 0.

Correspondingly, S (x) is called a “Positive-Negative type” (or “PN type” for short) power series if
−S (x) is a Negative-Positive type power series.

The following lemma is a simple and efficient tool to determine the sign of an NP (or PN) type
power series, which has been proved in [22, 24].

Lemma 2.1. Let S (x) be a Negative-Positive type power series converging on the interval (0,R). Then

AIMS Mathematics Volume 9, Issue 7, 19677–19691.
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(i) if S (R−) ≤ 0, then S (x) < 0 for all x ∈ (0,R);

(ii) if S (R−) > 0, then there is a unique x̃ ∈ (0,R) such that S (x) < 0 for x ∈ (0, x̃) and S (x) > 0 for
x ∈ (x̃,R).

As a consequence, for a PN-type power series, the inequalities of (i) and (ii) are reversed.

We provide a power series expansion of [F(a, b; a + b + 1/2)]2 in the following lemma, which has
been demonstrated in [19, Example 14.11] (see also [9]).

Lemma 2.2. For c = a + b + 1/2, it holds that[
F(a, b; c; x)

]2
=

Γ(c)Γ(2c − 1)
Γ(2a)Γ(2b)Γ(a + b)

∞∑
n=0

Γ(2a + n)Γ(a + b + n)Γ(2b + n)
n!Γ(c + n)Γ(2c − 1 + n)

xn.

In particular, we have [
F

(
1
2
,

1
2

;
3
2

; x
)]2

=

∞∑
n=0

n!
(n + 1)(3/2)n

xn. (2.6)

2.2. Statement of Theorem 2.1

Let t = sin2 x for x ∈ (0, π/2), and then t ∈ (0, 1). This gives tan2 x = t/(1 − t), which by (2.4) is
equivalent to

x = arctan

√
t

1 − t
=
√

tF
(
1
2
,

1
2

;
3
2

; t
)
. (2.7)

By (2.7), it can be rewritten as

(π2 − 4x2) tan x
x

=

π2 − 4tF
(
1
2
,

1
2

;
3
2

; t
)2 ( t

1 − t

)1/2

[
t(1 − t)

]1/2F
(
1, 1;

3
2

; t
) ,

f (t)
g(t)

, (2.8)

where

f (t) = π2 − 4tF
(
1
2
,

1
2

;
3
2

; t
)2

= π2 − 4
∞∑

n=0

untn+1, (2.9)

g(t) = (1 − t)F
(
1, 1;

3
2

; t
)

= 1 −
t
3

F
(
1, 1;

5
2

; t
)

= 1 −
1
3

∞∑
n=0

vntn+1 (2.10)

by (2.5) and (2.6). Here, un and vn are given by

un =
n!

(n + 1)(3/2)n
and vn =

n!
(5/2)n

.

Moreover, by (2.1), we have

lim
t→1−

f (t)
g(t)

= lim
t→1−

f ′(t)
g′(t)

= lim
t→1−

4F
(
1
2
,

1
2

;
3
2

; t
)

F
(
1, 1;

5
2

; t
)

3F
(
1
2
,

1
2

;
3
2
, t
)
− 2F

(
1
2
,

1
2

;
5
2

; t
) = 8. (2.11)
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Suppose that αn is the Maclaurin’s coefficients of π2 − f (t)/g(t), that is,

π2 −
f (t)
g(t)

=

∞∑
n=1

αntn,

then it follows from (2.9) and (2.10) that

π2 − 4
∞∑

n=1

un−1tn =

π2 −

∞∑
n=1

αntn

 1 − 1
3

∞∑
n=1

vn−1tn

 ,
which deduces α1 = 4 − π2/3 and the recurrence relation

3αn = −

(
π2 − 8 −

4
n

)
vn−1 +

n−1∑
k=1

αkvn−k−1, (n ≥ 2). (2.12)

Before stating Theorem 2.1, we can compute a finite number of αn by (2.12), which are listed
numerically in Table 1. Table 1 illustrates that αn > 0 for 1 ≤ n ≤ 30. Although we only know a
finite αn > 0, it still encourages us to prove the following theorem. These evidence demonstrate that
Theorem 2.1 is valid in the case of 2 ≤ N ≤ 28.

Table 1. The values of αn with 2-digit precision.

n 1 2 3 4 5 6 7 8 9 10

αn 0.71 0.25 0.14 0.090 0.064 0.049 0.039 0.032 0.027 0.023

n 11 12 13 14 15 16 17 18 19 20

αn 0.020 0.017 0.015 0.014 0.012 0.011 0.010 0.0094 0.0087 0.0080

n 21 22 23 24 25 26 27 28 29 30

αn 0.0075 0.0070 0.0065 0.0061 0.0058 0.0054 0.0051 0.0049 0.0046 0.0044

Theorem 2.1. Let αn be defined as in (2.12). If there exists an integer N ≥ 2 such that αn > 0 for
1 ≤ n ≤ N + 2, then the double inequality

π2 −
N−1∑
n=1

αn sin2n x − α̃N sin2N x

π2 − 4x2 <
tan x

x
<

π2 −
N∑

n=1
αn sin2n x

π2 − 4x2 (2.13)

holds for all x ∈ (0, π/2) with the best constants αN and α̃N , where

α̃N = π2 − 8 −
N−1∑
n=1

αn.

2.3. Proofs

Proof of Theorem 2.1. In order to obtain inequality (2.13), it suffices to show thatπ2 −

N∑
n=1

αn sin2n x

 − (π2 − 4x) tan x
x

> 0,
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19683π2 −

N−1∑
n=1

αn sin2n x − α̃N sin2N x

 − (π2 − 4x) tan x
x

< 0

for x ∈ (0, π/2), which by (2.7) and (2.8) is equivalent to

φ1(t) :=

π2 −

N∑
n=1

αntn

 g(t) − f (t) > 0, (2.14)

φ2(t) :=

π2 −

N−1∑
n=1

αntn − α̃NtN

 g(t) − f (t) < 0 (2.15)

for t ∈ (0, 1).
In terms of power series, by (2.9) and (2.10), we can rewrite φ1(t) and φ2(t) as

φ1(t) =

π2 −

N∑
n=1

αntn

 1 − 1
3

∞∑
n=0

vntn+1

 − π2 − 4
∞∑

n=0

untn+1

 =

∞∑
n=N+1

τntn, (2.16)

φ2(t) =

π2 −

N−1∑
n=1

αntn − α̃NtN

 1 − 1
3

∞∑
n=0

vntn+1

 − π2 − 4
∞∑

n=0

untn+1


= (̃τN − α̃N)tN +

∞∑
n=N+1

(̃
τn +

1
3
α̃Nvn−N−1

)
tn, (2.17)

where

τn = 4un−1 −
1
3

π2vn−1 −

N∑
k=1

αkvn−k−1

 ,
τ̃n = 4un−1 −

1
3

π2vn−1 −

N−1∑
k=1

αkvn−k−1

 .
(i) To prove φ1(t) > 0 for t ∈ (0, 1).

We first assert that if τn ≤ 0 for n ≥ N + 1, then τn+1 < 0. To confirm this, if τn ≤ 0 for n ≥ N + 1,
that is,

un−1 ≤
1
12

π2vn−1 −

N∑
k=1

αkvn−k−1

 , (2.18)

then we deduce by (2.18) that

τn+1 = 4un −
1
3

π2vn −

N∑
k=1

αkvn−k


= 4

un

un−1
un−1 −

1
3

π2 vn

vn−1
vn−1 −

N∑
k=1

αk
vn−k

vn−k−1
vn−k−1


<

1
3

π2
(

un

un−1
−

vn

vn−1

)
vn−1 +

N∑
k=1

αk

(
vn−k

vn−k−1
−

un

un−1

)
vn−k−1

 < 0
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for n ≥ N + 1, where the last inequality follows from

un

un−1
−

vn

vn−1
= −

2n
3 + 11n + 12n2 + 4n3 < 0,

vn−k

vn−k−1
−

un

un−1
=

1 + 3n
(1 + n)(1 + 2n)

−
3

3 − 2k + 2n

≤
1 + 3n

(1 + n)(1 + 2n)
−

3
3 − 2 + 2n

= −
2

(1 + n)(1 + 2n)
< 0

for 1 ≤ k ≤ N. This confirms the truth of the assertion.
We now complete the proof in the following two steps:

Step 1: We prove τN+1 > 0. Otherwise, we see from the above assertion that τn < 0 for n ≥ N + 2.
This, together with (2.16) implies that φ1(t) < 0 for t ∈ (0, 1). On the other hand, it follows
from (2.14) and αN+1 > 0 that

φ1(t)
g(t)

= π2 −

N∑
n=1

αntn −
f (t)
g(t)

=

∞∑
n=N+1

αntn > 0

for t ∈ (0, ε1) with a sufficiently small ε1 > 0, which is a contradiction.

Step 2: There are only two situations:

(a) If all τn > 0 for n ≥ N + 1, then φ1(t) > 0 for t ∈ (0, 1) by (2.16).

(b) If there exists an integer m ≥ N + 2 such that τm ≤ 0, we may assume that τm is the first
non-positive term. Then the above assertion tells us that τn > 0 for N + 1 ≤ n ≤ m − 1 and
τn ≤ 0 for n ≥ m. That is to say, φ1(t) is a PN-type power series on (0, 1). Combining this
with Lemma 2.1 and φ1(1−) = 0, it follows that φ1(t) > 0 for t ∈ (0, 1).

(ii) To prove φ2(t) < 0 for t ∈ (0, 1).

Due to αN+2 > 0, by repeating the above steps, it can also be shown that

π2 −

N+1∑
n=1

αntn >
f (t)
g(t)

=⇒ π2 −

N+1∑
n=1

αn ≥ lim
t→1−

f (t)
g(t)

= 8

by (2.11), which gives α̃N ≥ αN + αN+1 > αN . Observe that vn/vn−1 = 1 − 3/(3 + 2n) < 1, that is to
say, vn is strictly decreasing for n ≥ 0. According to this, with α̃N > 0 and αk > 0 (1 ≤ k ≤ N + 1), it
follows that

τ̃n +
1
3
α̃Nvn−N−1 = 4un−1 −

π2

3
vn−1 +

1
3

N−1∑
k=1

αkvn−k−1 +
1
3
α̃Nvn−N−1

>
1
3

(8 − π2 +
4
n

)
vn−1 +

N−1∑
k=1

αk + α̃N

 vn−2


=

1
3

[
4
n

vn−1 + (π2 − 8)(vn−2 − vn−1)
]
> 0
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for n ≥ N + 1. If τ̃N − α̃N ≥ 0, then φ2(t) > 0 for t ∈ (0, 1) by (2.17). This, together with (2.15), implies
that

φ2(t)
g(t)

= π2 −

N−1∑
n=1

αntn − α̃NtN −
f (t)
g(t)

= (αN − α̃N)tN +

∞∑
n=N+1

αntn < 0

for t ∈ (0, ε2) with a sufficiently small ε2 > 0. This contradicts φ2(t) > 0 for t ∈ (0, 1) and thereby
τ̃N − α̃N < 0. According to (2.17), we conclude that φ2(t) is an NP-type power series on (0, 1) and so
φ2(t) < 0 for t ∈ (0, 1) by Lemma 2.1 and φ2(1−) = 0.

In this end, the optimality of constants follows from

1
sin2N x

π2 −

N−1∑
n=1

αn sin2n x −
(π2 − 4x2) tan x

x

 =
1
tN

π2 −

N−1∑
n=1

αntn −
f (t)
g(t)


and

lim
t→0+

1
tN

π2 −

N−1∑
n=1

αntn −
f (t)
g(t)

 = αN , lim
t→1−

1
tN

π2 −

N−1∑
n=1

αntn −
f (t)
g(t)

 = α̃N .

This completes the proof of Theorem 2.1. �

Remark 2.2. It is worth pointing out that the numerator of (2.13) is just a N-order polynomial of
sin2 x, but the condition of Theorem 2.1 still requires αN+1 > 0 and αN+2 > 0. This is mainly used to
determine the sign of the first terms of the power series in (2.16) and (2.17). As a fact to remember, if
a specific integer N ≥ 2 is given, then it can be directly verified the sign of τN+1 and τ̃N − α̃N without
the conditions that αN+1 > 0 and αN+2 > 0.

Remark 2.3. Inequality (2.13) can provide better bounds for larger N. First, our remark is obvious on
the right side of (2.13). To see the left side, it suffices to verify from α̃N+1 > 0 that

N−1∑
n=1

αn sin2n x + α̃N sin2N x −

 N∑
n=1

αn sin2n x + α̃N sin2N+2 x


= −αN sin2N x + α̃N sin2N x − α̃N+1 sin2N+2 x

= (−αN + α̃N − α̃N+1) sin2N x = 0.

Remark 2.4. It is worth noting that it can be seen from the left side of (2.13) that N must be greater
than or equal to 2. Now we can extend the range of N to N ≥ 1. Indeed, due to α̃N+1 = α̃N − αN , we
can rewrite as

π2 −

N−1∑
n=1

αn sin2n x − α̃N sin2N x = π2 −

N−1∑
n=1

αn sin2n x − (α̃N+1 + αN) sin2N x

= π2 −

N∑
n=1

αn sin2n x − α̃N+1 sin2N x.

This, together with (2.13), gives

π2 −
N∑

n=1
αn sin2n x − α̃N+1 sin2N x

π2 − 4x2 <
tan x

x
<

π2 −
N∑

n=1
αn sin2n x

π2 − 4x2 (2.19)

holds for all x ∈ (0, π/2).
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Taking N = 1 into (2.19), we obtain

Corollary 2.1. For all x ∈ (0, π/2), it holds

π2 − (π2 − 8) sin2 x
π2 − 4x2 <

tan x
x

<
π2 − (4 − π2/3) sin2 x

π2 − 4x2 (2.20)

with the sharp constants π2 − 8 and 4 − π2/3.

Proof. The sharp constants follow from

lim
x→0+

1
sin2 x

[
π2 −

(π2 − 4x2) tan x
x

]
= lim

t→0+

1
t

[
π2 −

f (t)
g(t)

]
= α1 = 4 −

π2

3

and

lim
x→ π

2−

1
sin2 x

[
π2 −

(π2 − 4x2) tan x
x

]
= lim

t→1−

1
t

[
π2 −

f (t)
g(t)

]
= π2 − 8

by (2.11). �

Taking N = 2 into Theorem 2.1, we obtain

Corollary 2.2. For all x ∈ (0, π/2), it holds

π2 − (4 − π2

3 ) sin2 x − 4(π2−9)
3 sin4 x

π2 − 4x2 <
tan x

x
<
π2 − (4 − π2

3 ) sin2 x − 120−11π2

45 sin4 x

π2 − 4x2 , (2.21)

where the constants 4(π2−9)
3 and 120−11π2

45 are sharp.

Remark 2.5. Remark 2.3 enables us to know that the inequality (2.21) is better than inequality (2.20).
Further, it is easy to see that inequality (2.20) is better than (1.1). In conclusion, inequality (2.13)
completely improves the Becker-Stark inequality. As a matter of fact, Corollaries 2.1 and 2.2 can also
be obtained through the method used in [5, 14].

3. Complements

In this section, we provide a graphical analysis of the obtained bounds, give a conjecture and
propose a p-analogue of Becker-Stark inequality.

3.1. Graphical analysis

We now provide a graphical analysis of the lower bounds of Theorem 2.1 (N = 5) and (1.3) by
distinguishing lower bounds.

By (2.12), we can compute the first few αn as follows:

α1 = 4 −
π2

3
, α2 =

8
3
−

11π2

45
, α3 =

32
15
−

191π2

945
, α4 =

64
35
−

2497π2

14175
,

α5 =
512
315
−

14797π2

93555
, α̃5 =

3961π2

2025
−

652
35

.
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We denote by L j(x) and U j(x) ( j = 1, 2) the lower and upper bounds of Theorem 2.1 (N = 5) and (1.3),
respectively, as follows:

L1(x) =

π2 −
4∑

n=1
αn sin2n x − α̃5 sin10 x

π2 − 4x2 ,

L2(x) = 1 +
(1 − cos x)(604 cos2 x − 1817 cos x + 1843)

945
,

U1(x) =

π2 −
5∑

n=1
αn sin2n x

π2 − 4x2 ,

U2(x) = 1 +
(1 − cos x)(31 cos x − 5 cos2 x + 604)

945 cos x
.

Figure 1 presents the graph of the functions L1(x) and L2(x) for x ∈ (0, π/2). An immediate remark
arising from Figure 1(a) is that the lower bound of Theorem 2.1 (N = 5) is better than (1.3). Figure 1(b)
illustrates that the upper bound of Theorem 2.1 (N = 5) is better than the one of (1.3) near at x = 0.

L1(x)-L2(x)

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

x

Illustration of the lower bounds

(a) x ∈ (0, π/2)

U1 (x)-U2 (x)

0.0 0.1 0.2 0.3 0.4 0.5
-1.×10-8

0

1.×10-8

2.×10-8

3.×10-8

4.×10-8

x

Illustration of the upperbounds

(b) x ∈ (0, 1/2)

Figure 1. Plots of “the bounds of Theorem 2.1 (N = 5) and (1.3)”.

3.2. A conjecture

From Table 1, it can be seen that αn > 0 for 1 ≤ n ≤ 30. This allows us to pose the following
conjecture:

Conjecture 3.1. Let f (t) and g(t) be defined as in (2.9) and (2.10) respectively. Then π2 − f (t)/g(t) is
absolute monotonic on (0, 1).

Remark 3.1. If Conjecture 3.1 can be confirmed, then inequality (2.13) can be directly derived from
Conjecture 3.1. However, the advantage of Theorem 2.1 is that we only need to know a finite number
of αn > 0 to prove inequality (2.13) .
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3.3. p-analogue of Becker-Stark inequality

For p > 1, the generalized sine function sinp is the eigenfunction of the one-dimensional p-
Laplacian problem [12]

−∆pu = −(|u′|p−2u′)′ = λ|u|p−2, u(0) = u(1) = 0,

which is also the inverse function of arcsinp : (0, 1) 7→ (0, πp/2) defined as

arcsinp x =

x∫
0

(1 − tp)−1/pdt,

where

πp =

1∫
0

(1 − tp)−1/pdt =
2π

p sin(π/p)
.

In this case, sinp x is defined on the interval [0, πp/2] and can be extended to the whole R by symmetry
and periodicity. Define cosp : R 7→ R by

cosp x :=
d
dx

sinp x, x ∈ R.

In particular, it holds
sinp

p x + cosp
p x = 1, x ∈ [0, πp/2],

which leads to
d
dx

cosp x = − sinp−1
p x cos2−p

p x.

Similar to the classical trigonometric function, one can define the generalized tangent function

tanp x =
sinp x
cosp x

, for x ∈ R \ {(Z + 1/2)πp}.

It is natural to ask whether the p-analogue of the Becker–Stark inequality holds for x ∈ (0, πp/2).
Observed that

lim
x→

πp
2
−

(π2
p − 4x2) tanp x

x
= lim

x→
πp
2
−

8

sinp−1
p x cos2−p

p x
=


∞ 1 < p < 2,
8, p = 2,
0, p > 2,

which allows us to pose the following problem:

Problem 3.1. To determine the range of p in [2,∞) (resp. (1, 2)) such that the inequality

tanp x
x

< (resp. >)
π2

p

π2
p − 4x2 (3.1)

holds for x ∈ (0, πp/2).

Remark 3.2. Inequality (3.1) can be viewed as the p-analogue of Becker-Stark inequality. Our method
in this paper reveals that it only needs to study a ratio of two hypergeometric functions by changing
the variable t = sinp

p x in (3.1).

AIMS Mathematics Volume 9, Issue 7, 19677–19691.



19689

4. Conclusions

In this paper, from the viewpoint of hypergeometric function, we study the well-known Becker-
Stark inequality by changing a variable t = sin2 x. Our main result is to approximate the function
π − [(π2 − 4x2) tan x]/x by the first few terms of the Taylor series, even if we only know finitely many
positive coefficients. In particular, the double inequality

π2 − (π2 − 8) sin2 x
π2 − 4x2 <

tan x
x

<
π2 − (4 − π2/3) sin2 x

π2 − 4x2

holds for x ∈ (0, π/2), which improves Becker-Stark inequality (1.1).
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