Research article Special Issues

Sharp Adams type inequalities in Lorentz-Sobole space

  • Received: 11 February 2023 Revised: 21 June 2023 Accepted: 25 June 2023 Published: 12 July 2023
  • MSC : 35J20, 35J60

  • This article addresses several sharp weighted Adams type inequalities in Lorentz-Sobolev spaces by using symmetry, rearrangement and the Riesz representation formula. In particular, the sharpness of these inequalities were also obtained by constructing a proper test sequence.

    Citation: Guanglan Wang, Yan Wu, Guoliang Li. Sharp Adams type inequalities in Lorentz-Sobole space[J]. AIMS Mathematics, 2023, 8(9): 22192-22206. doi: 10.3934/math.20231131

    Related Papers:

  • This article addresses several sharp weighted Adams type inequalities in Lorentz-Sobolev spaces by using symmetry, rearrangement and the Riesz representation formula. In particular, the sharpness of these inequalities were also obtained by constructing a proper test sequence.



    加载中


    [1] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. Math., 128 (1988), 385–398. https://doi.org/10.2307/1971445 doi: 10.2307/1971445
    [2] Adimurthi, K. Sandeep, A singular Moser-Trudinger embedding and its applications, Nolinear Differ. Equ. Appl., 13 (2007), 585–603. https://doi.org/10.1007/s00030-006-4025-9 doi: 10.1007/s00030-006-4025-9
    [3] Adimurthi, O. Druet, Blow-up analysis in dimension $2$ and a sharp form of Trudinger-Moser inequality, Commun. Part. Diff. Eq., 29 (2005), 295–322. https://doi.org/10.1081/PDE-120028854 doi: 10.1081/PDE-120028854
    [4] S. Adachi, K. Tanaka, Trudinger type inequalities in $R^{N}$ and their best exponents, P. Am. Math. Soc., 128 (2000), 2051–2057. https://doi.org/10.1090/S0002-9939-99-05180-1 doi: 10.1090/S0002-9939-99-05180-1
    [5] A. Alvino, V. Ferone, G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal., 5 (1996), 273–299. https://doi.org/10.1007/BF00282364 doi: 10.1007/BF00282364
    [6] D. Cassani, C. Tarsi, A Moser-type inequality in Lorentz-Sobolev spaces for unbounded domains in $\mathbb{R}^{N}$, Asymptotic Anal., 64 (2009), 29–51. https://doi.org/10.3233/ASY-2009-0934 doi: 10.3233/ASY-2009-0934
    [7] D. M. Cao, Nontrivial solution of semilinear elliptic equations with critical exponent in $\mathbb{R}^{2}$, Commun. Part. Diff. Eq., 17 (1992), 407–435. https://doi.org/10.1080/03605309208820848 doi: 10.1080/03605309208820848
    [8] L. Carleson, S. Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110 (1986), 113–127.
    [9] S. Y. A. Chang, P. C. Yang, The inequality of Moser and Trudinger and applications to conformal geometry, Commun. Pur. Appl. Math., 56 (2003), 1135–1150. https://doi.org/10.1002/cpa.3029 doi: 10.1002/cpa.3029
    [10] W. Chen, Z. W. Fu, L. Grafakos, Y. Wu, Fractional Fourier transforms on $L^p$ and applications, Appl. Computat. Harmon. A., 55 (2021), 71–96. https://doi.org/10.1016/j.acha.2021.04.004 doi: 10.1016/j.acha.2021.04.004
    [11] D. G. de Figueiredo, J. M. do O, B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Commun. Pur. Appl. Math., 55 (2002), https://doi.org/10.1002/cpa.10015 doi: 10.1002/cpa.10015
    [12] B. H. Dong, Z. W. Fu, J. S. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math., 61 (2018), 1807–1824. https://doi.org/10.1007/s11425-017-9274-0 doi: 10.1007/s11425-017-9274-0
    [13] M. Ishiwata, M, Nakamura, H. Wadade, On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 297–314. https://doi.org/10.1016/j.anihpc.2013.03.004 doi: 10.1016/j.anihpc.2013.03.004
    [14] E. Lieb, M. Loss, Analysis, American Mathematical Society, 2001.
    [15] G. Z. Lu, H. L. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Adv. Nonlinear Stud., 16 (2016), 581–601. https://doi.org/10.1515/ans-2015-5046 doi: 10.1515/ans-2015-5046
    [16] N. Lam, G. Z. Lu, Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications, Adv. Math., 231 (2012), 3259–3287. https://doi.org/10.1016/j.aim.2012.09.004 doi: 10.1016/j.aim.2012.09.004
    [17] N. Lam, G. Z. Lu, A new approach to sharp Moser-Trudinger and Adams type inequalities: A rearrangement-free argument, J. Differ. Equations, 255 (2013), 298–325. https://doi.org/10.1016/j.jde.2013.04.005 doi: 10.1016/j.jde.2013.04.005
    [18] N. Lam, G. Z. Lu, L. Zhang, Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities, Rev. Mat. Iberoam., 33 (2017), 1219–1246. https://doi.org/10.4171/RMI/969 doi: 10.4171/RMI/969
    [19] Y. X. Li, B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $ \mathbb{R}^{n}$, Indiana Univ. Math. J., 57 (2008), 451–480. https://doi.org/10.1512/iumj.2008.57.3137 doi: 10.1512/iumj.2008.57.3137
    [20] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077–1092. https://doi.org/10.1512/iumj.1971.20.20101 doi: 10.1512/iumj.1971.20.20101
    [21] R. O'Neil, Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129–142. https://doi.org/10.1215/S0012-7094-63-03015-1 doi: 10.1215/S0012-7094-63-03015-1
    [22] B. Ruf, F. Sani, Sharp Adams-type inequality in $\mathbb{R}^{n}$, T. Am. Math. Soc., 365 (2013), 645–670. https://doi.org/10.1090/S0002-9947-2012-05561-9 doi: 10.1090/S0002-9947-2012-05561-9
    [23] B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $\mathbb{R}^{2}$, J. Funct. Anal., 219 (2005), 340–367. https://doi.org/10.1016/j.jfa.2004.06.013 doi: 10.1016/j.jfa.2004.06.013
    [24] S. G. Shi, J. Xiao, Fractional capacities relative to bounded open Lipschitz sets, Potential Anal., 45 (2016), 261–298. https://doi.org/10.1007/s11118-016-9545-2 doi: 10.1007/s11118-016-9545-2
    [25] S. G. Shi, J. Xiao, Fractional capacities relative to bounded open Lipschitz sets complemented, Calc. Var., 56 (2017), 3. https://doi.org/10.1007/s00526-016-1105-5 doi: 10.1007/s00526-016-1105-5
    [26] S. G. Shi, J. Xiao, A tracing of the fractional temperature field, Sci. China. Math., 60 (2017), 2303–2320. https://doi.org/10.1007/s11425-016-0494-6 doi: 10.1007/s11425-016-0494-6
    [27] S. G. Shi, L. Zhang, G. L. Wang, Fractional non-linear regularity, potential and Balayage, J. Geom. Anal., 32 (2022), 221. https://doi.org/10.1007/s12220-022-00956-6 doi: 10.1007/s12220-022-00956-6
    [28] G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sci., 3 (1976), 697–718.
    [29] S. B. Yang, D. C. Chang, D. C. Yang, Z. W. Fu, Gradient estimates via rearrangements for solutions of some Schrödinger equations, Anal. Appl., 16 (2018), 339–361. https://doi.org/10.1142/s0219530517500142 doi: 10.1142/s0219530517500142
    [30] N. Trudinger, On imbeddings into Orlicz spaces and some applications, Indiana Univ. Math. J., 17 (1968), 473–483. https://doi.org/10.1512/iumj.1968.17.17028 doi: 10.1512/iumj.1968.17.17028
    [31] V. I. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR, 138 (1961), 805–808.
    [32] C. F. Zhang, L. Chen, Concentration-compactness principle of singular Trudinger-Moser inequalities in $\mathbb{R}^n$ and $n$-Laplace equations, Adv. Nonlinear Stud., 18 (2018), 567–585. https://doi.org/10.1515/ans-2017-6041 doi: 10.1515/ans-2017-6041
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1046) PDF downloads(60) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog