This paper investigates the existence of positive solutions for a nonhomogeneous nonlinear integral equation of the form
$ \begin{equation} u^{p-1}(x) = \int_{\Omega} \frac{u(y)}{|x-y|^{n-\alpha}} d y+\int_{\Omega} \frac{f(y)}{|x-y|^{n-\alpha}} d y, \ x \in \bar{\Omega}\nonumber \end{equation} $
where $ \frac{2n}{n+\alpha}\leq p < 2, $ $ 1 < \alpha < n $, $ n > 2, $ $ \Omega $ is a bounded domain in $ \mathbb R^{n} $. We show that under suitable assumptions on $ f, $ the integral equation admits a positive solution in $ L^{\frac{2n}{n+\alpha}}\left(\Omega\right) $. Our method combines the Ekeland variational principle, a blow-up argument and a rescaling argument which allows us to overcome the difficulties arising from the lack of Brezis-Lieb lemma in $ L^{\frac{2n}{n+\alpha}}(\Omega) $.
Citation: Xing Yi. Nonhomogeneous nonlinear integral equations on bounded domains[J]. AIMS Mathematics, 2023, 8(9): 22207-22224. doi: 10.3934/math.20231132
This paper investigates the existence of positive solutions for a nonhomogeneous nonlinear integral equation of the form
$ \begin{equation} u^{p-1}(x) = \int_{\Omega} \frac{u(y)}{|x-y|^{n-\alpha}} d y+\int_{\Omega} \frac{f(y)}{|x-y|^{n-\alpha}} d y, \ x \in \bar{\Omega}\nonumber \end{equation} $
where $ \frac{2n}{n+\alpha}\leq p < 2, $ $ 1 < \alpha < n $, $ n > 2, $ $ \Omega $ is a bounded domain in $ \mathbb R^{n} $. We show that under suitable assumptions on $ f, $ the integral equation admits a positive solution in $ L^{\frac{2n}{n+\alpha}}\left(\Omega\right) $. Our method combines the Ekeland variational principle, a blow-up argument and a rescaling argument which allows us to overcome the difficulties arising from the lack of Brezis-Lieb lemma in $ L^{\frac{2n}{n+\alpha}}(\Omega) $.
[1] | J. P. Aubin, I. Ekeland, Applied nonlinear analysis, Wiley Interscience Publications, 1984. |
[2] | L. Baldelli, Y. Brizi, R. Filippucci, Multiplicity results for (p, q)-Laplacian equations with critical exponent in $\mathbb{R}^N$ and negative energy, Calc. Var. Partial Dif., 60 (2021). https://doi.org/10.1007/s00526-020-01867-6 doi: 10.1007/s00526-020-01867-6 |
[3] | L. Baldelli, R. Filippucci, Existence of solutions for critical (p, q)-Laplacian equations in $\mathbb{R}^N$, Commun. Contemp. Math., 25 (2023), 2150109. https://doi.org/10.1142/S0219199721501091 doi: 10.1142/S0219199721501091 |
[4] | H. Brezis, E. Lieb, A relations between pointwise convergence of functions and convergence of integrals, P. Am. Math. Soc., 88 (1983), 486–490. |
[5] | D. Cao, S. Peng, The asymptotic behaviour of the ground state solutions for Hénon equation, J. Math. Anal. Appl., 278 (2003), 1–17. https://doi.org/10.1016/S0022-247X(02)00292-5 doi: 10.1016/S0022-247X(02)00292-5 |
[6] | L. Chen, Z. Liu, G. Lu, Symmetry and regularity of solutions to the weighted Hardy-Sobolev type system, Adv. Nonlinear Stud., 16 (2016), 1–13. https://doi.org/10.1515/ans-2015-5005 doi: 10.1515/ans-2015-5005 |
[7] | L. Chen, G. Lu, C. Tao, Reverse Stein-Weiss inequalities on the upper half space and the existence of their extremals, Adv. Nonlinear Stud., 19 (2019), 475–494. https://doi.org/10.1515/ans-2018-2038 doi: 10.1515/ans-2018-2038 |
[8] | W. Chen, C. Li, B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330–343. |
[9] | W. Chen, M. Squassina, Critical nonlocal systems with concave-convex powers, Adv. Nonlinear Stud., 16 (2016), 821–842. https://doi.org/10.1515/ans-2015-5055 doi: 10.1515/ans-2015-5055 |
[10] | Y. Deng, Q. Jin, W. Shuai, Existence of positive ground state solutions for Choquard systems, Adv. Nonlinear Stud., 20 (2020), 819–831. https://doi.org/10.1515/ans-2020-2099 doi: 10.1515/ans-2020-2099 |
[11] | J. Dou, M. Zhu, Nonlinear integral equations on bounded domains, J. Funct. Anal., 277 (2019) 111–134. https://doi.org/10.1016/j.jfa.2018.05.020 doi: 10.1016/j.jfa.2018.05.020 |
[12] | J. Dou, M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Notices, 2015 (2015), 651–687. https://doi:10.1093/imrn/rnt213 doi: 10.1093/imrn/rnt213 |
[13] | J. Dou, Q. Guo, M. Zhu, Negative power nonlinear integral equations on bounded domains, J. Differ. Equations, 269 (2020), 10527–10557. https://doi.org/10.1016/j.jde.2020.07.021 doi: 10.1016/j.jde.2020.07.021 |
[14] | Q. Guo, Blow up analysis for integral equations on bounded domains, J. Differ. Equations, 266 (2019), 8258–8280. https://doi.org/10.1016/j.jde.2018.12.028 doi: 10.1016/j.jde.2018.12.028 |
[15] | G. H. Hardy, J. E. Littlewood, Some properties of fractional integrals. I., Math. Z., 27 (1928), 565–606. https://doi.org/10.1007/BF01171116 doi: 10.1007/BF01171116 |
[16] | G. H. Hardy, J. E. Littlewood, On certain inequalities connected with the calculus of variations, J. Lond. Math. Soc., 5 (1930), 34–39. |
[17] | F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373–383. https://doi.org/10.48550/arXiv.math/0703778 doi: 10.48550/arXiv.math/0703778 |
[18] | Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153–180. https://doi.org/10.4171/jems/6 doi: 10.4171/jems/6 |
[19] | E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349–374. https://doi.org/10.2307/2007032 doi: 10.2307/2007032 |
[20] | E. M. Stein, Singular integrals and differentiability properties of functions, Princeton: Princeton University Press, 1970. |
[21] | S. L. Sobolev, On a theorem of functional analysis, Mat. Sbornik, 4 (1938), 471–479. |
[22] | G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. I. H. Poincar$\grave{e}$-An., 9 (1992), 281–304. https://doi.org/10.1016/S0294-1449(16)30238-4 doi: 10.1016/S0294-1449(16)30238-4 |
[23] | Z. Xu, J. Yang, Multiple solutions to multi-critical Schrödinger equations, Adv. Nonlinear Stud., 22 (2022), 273–288. https://doi.org/10.1515/ans-2022-0014 doi: 10.1515/ans-2022-0014 |
[24] | X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var. Partial Dif., 46 (2013), 75–95. https://doi.org/10.1007/s00526-011-0474-z doi: 10.1007/s00526-011-0474-z |
[25] | J. Yang, X. Yu, Fractional Hardy-Sobolev elliptic problems. Topol. Method. Nonl. An., 55 (2020), 257–280. https://doi.org/10.12775/tmna.2019.075 doi: 10.12775/tmna.2019.075 |