In this paper, some sharp Sobolev inequalities on $ BV({\mathbb{R}}^n) $, the space of functions of bounded variation on $ {\mathbb{R}}^n $, $ n\geq 2 $, are deduced through the $ L_p $ Brunn-Minkowski theory. We will prove that these inequalities can all imply the sharp Sobolev inequality on $ BV({\mathbb{R}}^n) $.
Citation: Jin Dai, Shuang Mou. Some sharp Sobolev inequalities on $ BV({\mathbb{R}}^n) $[J]. AIMS Mathematics, 2022, 7(9): 16851-16868. doi: 10.3934/math.2022925
In this paper, some sharp Sobolev inequalities on $ BV({\mathbb{R}}^n) $, the space of functions of bounded variation on $ {\mathbb{R}}^n $, $ n\geq 2 $, are deduced through the $ L_p $ Brunn-Minkowski theory. We will prove that these inequalities can all imply the sharp Sobolev inequality on $ BV({\mathbb{R}}^n) $.
[1] | T. Aubin, Problèmes isopérimétriques et espaces de Sobolev (French), J. Differ. Geom., 11 (1976), 573–598. https://doi.org/10.4310/jdg/1214433725 doi: 10.4310/jdg/1214433725 |
[2] | T. Aubin, Y.Y. Li, On the best Sobolev inequality, J. Math. Pure. Appl., 78 (1999), 353–387. https://doi.org/10.1016/S0021-7824(99)00012-4 doi: 10.1016/S0021-7824(99)00012-4 |
[3] | D. Bakry, M. Ledoux, Lévy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator, Invent. Math., 123 (1996), 259–281. https://doi.org/10.1007/s002220050026 doi: 10.1007/s002220050026 |
[4] | W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math., 138 (1993), 213–242. https://doi.org/10.2307/2946638 doi: 10.2307/2946638 |
[5] | W. Beckner, M. Pearson, On sharp Sobolev embedding and the logarithmic Sobolev inequality, Bull. Lond. Math. Soc., 30 (1998), 80–84. https://doi.org/10.1112/S0024609397003901 doi: 10.1112/S0024609397003901 |
[6] | A. Cianchi, A quantitative Sobolev inequality in $BV$, J. Funct. Anal., 237 (2006), 466–481. https://doi.org/10.1016/j.jfa.2005.12.008 doi: 10.1016/j.jfa.2005.12.008 |
[7] | D. Cordero-Erausquin, B. Nazaret, C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math., 182 (2004), 307–332. https://doi.org/10.1016/S0001-8708(03)00080-X doi: 10.1016/S0001-8708(03)00080-X |
[8] | O. Druet, Optimal Sobolev inequalities of arbitrary order on Riemannian compact manifolds, J. Funct. Anal., 159 (1998), 217–242. https://doi.org/10.1006/jfan.1998.3264 doi: 10.1006/jfan.1998.3264 |
[9] | L. C. Evans, R. F. Gariepy, Measure theory and fine properties of fuctions, 2 Eds., CRC Press Taylor and Francis Group, Boca Raton, 2015. |
[10] | H. Federer, W. Fleming, Normal and integral currents, Ann. Math., 72 (1960), 458–520. https://doi.org/10.2307/1970227 doi: 10.2307/1970227 |
[11] | W. Fleming, R. Rischel, An integral formula for total gradient variation, Arch. Math., 11 (1960), 218–232. https://doi.org/10.1007/BF01236935 doi: 10.1007/BF01236935 |
[12] | R. J. Gardner, Geometric tomography, Springer-Verlag, Berlin, 2006. |
[13] | P. M. Gruber, Convex and discrete geometry, Springer-Verlag, Berlin Heidelberg, 2007. |
[14] | C. Haberl, F. E. Schuster, Asymmetric affine $L_p$ Sobolev inequalities, J. Funct. Anal., 257 (2009), 641–658. https://doi.org/10.1016/j.jfa.2009.04.009 doi: 10.1016/j.jfa.2009.04.009 |
[15] | C. Haberl, F. E. Schuster, J. Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann., 352 (2012), 517–542. https://doi.org/10.1007/s00208-011-0640-9 doi: 10.1007/s00208-011-0640-9 |
[16] | Q. Huang, A. Li, Optimal Sobolev norms in the affine class, J. Math. Anal. Appl., 436 (2016), 568–585. http://dx.doi.org/10.1016/j.jmaa.2015.11.063 doi: 10.1016/j.jmaa.2015.11.063 |
[17] | Q. Huang, A. Li, The $L_p$ Gagliardo-Nirenberg-Zhang inequality, Adv. Appl. Math., 113 (2020), 101971. https://doi.org/10.1016/j.aam.2019.101971 doi: 10.1016/j.aam.2019.101971 |
[18] | Y. Huang, E. Lutwak, D. Yang, G. Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216 (2016), 325–388. https://doi.org/10.1007/s11511-016-0140-6 doi: 10.1007/s11511-016-0140-6 |
[19] | Y. Huang, E. Lutwak, D. Yang, G. Zhang, The $L_p$-Aleksandrov problem for $L_p$-integral curvature, J. Differ. Geom., 110 (2018), 1–29. https://doi.org/10.4310/jdg/1536285625 doi: 10.4310/jdg/1536285625 |
[20] | P. Kniefacz, F. E. Schuster, Sharp Sobolev inequalities via projection averages, J. Geom. Anal., 31 (2021), 7436–7454. https://doi.org/10.1007/s12220-020-00544-6 doi: 10.1007/s12220-020-00544-6 |
[21] | Y. Y. Li, M. Zhu, Sharp Sobolev inequalities involving boundary terms, Geom. Funct. Anal., 8 (1998), 59–87. https://doi.org/10.1007/s000390050048 doi: 10.1007/s000390050048 |
[22] | Y. Lin, The affine Orlicz Pólya-Szegö principle on $BV(\Omega)$, Calc. Var. Partial Dif., 58 (2019). https://doi.org/10.1007/s00526-019-1622-0 doi: 10.1007/s00526-019-1622-0 |
[23] | Y. Lin, D. Xi, Affine Orlicz Pólya-Szegö principles and their equality cases, Int. Math. Res. Not., 9 (2021), 7159–7204. https://doi.org/10.1093/imrn/rnz061 doi: 10.1093/imrn/rnz061 |
[24] | M. Ludwig, J. Xiao, G. Zhang, Sharp convex Lorentz-Sobolev inequalities, Math. Ann., 350 (2011), 169–197. https://doi.org/10.1007/s00208-010-0555-x doi: 10.1007/s00208-010-0555-x |
[25] | M. Ludwig, Valuations on Sobolev spaces, Amer. J. Math., 134 (2012), 827–842. https://doi.org/10.1353/ajm.2012.0019 doi: 10.1353/ajm.2012.0019 |
[26] | E. Lutwak, D. Yang, G. Zhang, $L_p$ affine isoperimetric inequalities, J. Differ. Geom., 56 (2000), 111–132. https://doi.org/10.4310/jdg/1090347527 doi: 10.4310/jdg/1090347527 |
[27] | E. Lutwak, D. Yang, G. Zhang, Sharp affine $L_p$ Sobolev inequalities, J. Differ. Geom., 62 (2002), 17–38. https://doi.org/10.4310/jdg/1090425527 doi: 10.4310/jdg/1090425527 |
[28] | E. Lutwak, D. Yang, G. Zhang, On the $L_p$-Minkowski problem, Trans. Amer. Math. Soc., 356 (2004), 4359–4370. https://doi.org/10.1090/S0002-9947-03-03403-2 doi: 10.1090/S0002-9947-03-03403-2 |
[29] | E. Lutwak, D. Yang, G. Zhang, Optimal Sobolev norms and $L^p$ Minkowski problem, Int. Math. Res. Not., 2006 (2006), 62987. https://doi.org/10.1155/IMRN/2006/62987 doi: 10.1155/IMRN/2006/62987 |
[30] | V. G. Maz'ya, Classes of domains and imbedding theorems for function spaces, Dokl. Akad. Nauk. SSSR, 133 (1960), 527–530. |
[31] | G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pur. Appl., 110 (1976), 353–372. https://doi.org/10.1007/BF02418013 doi: 10.1007/BF02418013 |
[32] | R. Schneider, Convex bodies: The Brunn-Minkowski theory, 2 Eds., Cambridge Univ., 2014. |
[33] | T. Wang, The affine Sobolev-Zhang inequality on $BV(\mathbb R^n)$, Adv. Math., 230 (2012), 2457–2473. https://doi.org/10.1016/j.aim.2012.04.022 doi: 10.1016/j.aim.2012.04.022 |
[34] | T. Wang, Semi-valuations on $BV(\mathbb{R}^n)$, Indiana Univ. Math. J., 63 (2014), 1447–1465. Available from: http://www.jstor.org/stable/24904282. |
[35] | T. Wang, On the discrete functional $L_p$ Minkowski problem, Int. Math. Res. Not., 20 (2015), 10563–10585. https://doi.org/10.1093/imrn/rnu256 doi: 10.1093/imrn/rnu256 |
[36] | G. Xiong G. J. Xiong, The Orlicz Minkowski problem for the electrostatic p-capacity, Adv. Appl. Math., 137 (2022), 102339. https://doi.org/10.1016/j.aam.2022.102339 doi: 10.1016/j.aam.2022.102339 |
[37] | S. T. Yau, Sobolev inequality for measure space, Internat. Press, Cambridge, MA, 1997. |
[38] | G. Zhang, The affine Sobolev inequality, J. Differ. Geom., 53 (1999), 183–202. https://doi.org/10.4310/jdg/1214425451 doi: 10.4310/jdg/1214425451 |
[39] | B. Zhu, S. Xing, D. Ye, The dual Orlicz-Minkowski problem, J. Geom. Anal., 28 (2018), 3829–3855. https://doi.org/10.1007/s12220-018-0002-x doi: 10.1007/s12220-018-0002-x |