In this manuscript, we introduce the notion of ℜ$ \alpha $-$ \theta $-contractions and prove some fixed-point theorems in the sense of ℜ-complete metric spaces. These results generalize existing ones in the literature. Also, we provide some illustrative non-trivial examples and applications to a non-linear fractional differential equation.
Citation: Khalil Javed, Muhammad Arshad, Amani S. Baazeem, Nabil Mlaiki. Solving a fractional differential equation via $ {\theta } $-contractions in ℜ-complete metric spaces[J]. AIMS Mathematics, 2022, 7(9): 16869-16888. doi: 10.3934/math.2022926
In this manuscript, we introduce the notion of ℜ$ \alpha $-$ \theta $-contractions and prove some fixed-point theorems in the sense of ℜ-complete metric spaces. These results generalize existing ones in the literature. Also, we provide some illustrative non-trivial examples and applications to a non-linear fractional differential equation.
[1] | M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38 |
[2] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publicationes Math. Debrecon, 57 (2000), 31-37. |
[3] | H. Baghani, M. Ramezani, A fixed point theorem for a new class of set-valued mappings in $\mathfrak{R} $-complete (not necessarily complete) metric spaces, Filomat, 31 (2017), 3875-3884. https://doi.org/10.2298/FIL1712875B doi: 10.2298/FIL1712875B |
[4] | J. Ahmad, A. E. Al-Mazrooei, Y. Cho, Y. Yang, Fixed point results for generalized Θ-contractions, J. Nonlinear Sci. Appl., 10 (2017), 2350-2358. http://dx.doi.org/10.22436/jnsa.010.05.07 doi: 10.22436/jnsa.010.05.07 |
[5] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive mappings, Nonlinear Anal., 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[6] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations integrales, Fund. Math., 3 (1922), 133-181. |
[7] | R. Caccioppoli, Un teorema generale sull' esistenza di elementi uniti in una trasformazione funzionale, Rend. Accad. Naz. Lincei, 11 (1930), 794-799. |
[8] | M. Arshad, E. Meer, E. Karapinar, Generalized contractions with triangular α-orbital admissible mapping on Branciari metric spaces, J. Inequal. Appl., 2016 (2016), 63. https://doi.org/10.1186/s13660-016-1010-7 doi: 10.1186/s13660-016-1010-7 |
[9] | P. Das, A fixed point theorem on a class of generalized metric spaces, Korean J. Math., 9 (2002), 29-33. |
[10] | T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal., 2014 (2014), 458098. https://doi.org/10.1155/2014/458098 doi: 10.1155/2014/458098 |
[11] | C. R. Diminnie, A new orthogonality relation for normed linear spaces, Math. Nachr., 114 (1983), 197-203. https://doi.org/10.1002/mana.19831140115 doi: 10.1002/mana.19831140115 |
[12] | L. J. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2 |
[13] | A. Ahmad, A. S. Al-Rawashdeh, A. Azam, Fixed point results for {α, ξ}-expansive locally contractive mappings, J. Inequal. Appl., 2014 (2014), 364. https://doi.org/10.1186/1029-242X-2014-364 doi: 10.1186/1029-242X-2014-364 |
[14] | J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed-point theorems for generalized F-contractions in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 80. https://doi.org/10.1186/s13663-015-0333-2 doi: 10.1186/s13663-015-0333-2 |
[15] | K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-theoretic fixed-point results in fuzzy b-metric spaces with an application, J. Math., 2021 (2021), 6663707. https://doi.org/10.1155/2021/6663707 doi: 10.1155/2021/6663707 |
[16] | M. Jleli, E. Karapinar, B. Samet, Further generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 439. https://doi.org/10.1186/1029-242X-2014-439 doi: 10.1186/1029-242X-2014-439 |
[17] | D. Baleanu, S. Rezapour, H. Mohammadi, Some existence results on nonlinear fractional differential equations, Philos. Trans. R. Soc. A, 371 (2013), 1-7. https://doi.org/10.1098/rsta.2012.0144 doi: 10.1098/rsta.2012.0144 |
[18] | W. Sudsutad, J. Tariboon, Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions, Adv. Differ. Equations, 2012 (2012), 93. https://doi.org/10.1186/1687-1847-2012-93 doi: 10.1186/1687-1847-2012-93 |
[19] | S. Khalehoghli, H. Rahimi, M. E. Gordji, Fixed point theorem in $\mathfrak{R} $-metric spaces with applications, AIMS Math., 5 (2020), 3125-3137. http://dx.doi.org/10.3934/math.2020201 doi: 10.3934/math.2020201 |
[20] | M. U. Ali, Y. Guo, F. Uddin, H. Aydi, K. Javed, Z. Ma, On partial metric spaces and related fixed-point results with applications, J. Funct. Spaces, 2020 (2020), 6671828. https://doi.org/10.1155/2020/6671828 doi: 10.1155/2020/6671828 |