Research article

Fixed point results with applications to nonlinear fractional differential equations

  • Received: 31 December 2022 Revised: 18 February 2023 Accepted: 21 February 2023 Published: 13 June 2023
  • MSC : 46S40, 47H10, 54H25

  • The aim of this paper is to define a Berinde type ($ \rho $, $ \mu $)-$ \vartheta $ contraction and establish some fixed point results for self mappings in the setting of complete metric spaces. We derive new fixed point results, which extend and improve some results in the literature. We also supply a non trivial example to support the obtained results. Finally, we investigate the existence of solutions for the nonlinear fractional differential equation.

    Citation: Saleh Abdullah Al-Mezel, Jamshaid Ahmad. Fixed point results with applications to nonlinear fractional differential equations[J]. AIMS Mathematics, 2023, 8(8): 19743-19756. doi: 10.3934/math.20231006

    Related Papers:

  • The aim of this paper is to define a Berinde type ($ \rho $, $ \mu $)-$ \vartheta $ contraction and establish some fixed point results for self mappings in the setting of complete metric spaces. We derive new fixed point results, which extend and improve some results in the literature. We also supply a non trivial example to support the obtained results. Finally, we investigate the existence of solutions for the nonlinear fractional differential equation.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181. http://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181
    [2] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum, 9 (2004), 43–53.
    [3] V. Berinde, General constructive fixed point theorem for Ćirić-type almost contractions in metric spaces, Carpathian J. Math., 24 (2008), 10–19.
    [4] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $\alpha$-$\psi$ contractive type mappings, Nonlinear Anal. Thero., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [5] P. Salimi, C. Vetro, P. Vetro, Fixed point theorems for twisted ($\alpha $, $\beta $)-$\psi$-contractive type mappings and applications, Filomat, 27 (2013), 605–615. https://doi.org/10.2298/FIL1304605S doi: 10.2298/FIL1304605S
    [6] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38
    [7] J. Ahmad, A. E. Al-Mazrooei, Y. J. Cho, Y. O. Yang, Fixed point results for generalized $\Theta$-contractions, J. Nonlinear Sci. Appl., 10 (2017), 2350–2358. https://doi.org/10.22436/jnsa.010.05.07 doi: 10.22436/jnsa.010.05.07
    [8] M. Abbas, H. Iqbal, A. Petrusel, Fixed points for multivalued Suzuki type $(\Theta, \mathfrak{R})$-contraction mapping with applications, J. Funct. Space., 2019 (2019), 9565804. https://doi.org/10.1155/2019/9565804 doi: 10.1155/2019/9565804
    [9] J. Ahmad, A. S. Al-Rawashdeh, Common fixed points of set mappings endowed with directed graph, Tbilisi Math. J., 11 (2018), 107–123. https://doi.org/10.32513/tbilisi/1538532030 doi: 10.32513/tbilisi/1538532030
    [10] J. Ahmad, A. E. Al-Mazrooei, Common fixed point theorems for multivalued mappings on metric spaces with a directed graph, Bull. Math. Anal. Appl., 10 (2018), 26–37.
    [11] J. Ahmad, A. E. Al-Mazrooei, I. Altun, Generalized $\Theta$ -contractive fuzzy mappings, J. Intell. Fuzzy Syst., 35 (2018), 1935–1942. https://doi.org/10.3233/JIFS-171515 doi: 10.3233/JIFS-171515
    [12] J. Ahmad, D. Lateef, Fixed point theorems for rational type ($\alpha, \Theta $)-contractions in controlled metric spaces, J. Nonlinear Sci. Appl., 13 (2020), 163–170. https://doi.org/10.22436/jnsa.013.03.05 doi: 10.22436/jnsa.013.03.05
    [13] A. E. Al-Mazrooei, J. Ahmad, Multivalued fixed point theorems of generalized (K, J)-contractions with applications, J. Math. Anal., 11 (2020), 113–122.
    [14] A. Al-Rawashdeh, J. Ahmad, Common fixed point theorems for JS-contractions, Bull. Math. Anal. Appl., 8 (2016), 12–22.
    [15] Z. Aslam, J. Ahmad, N. Sultana, New common fixed point theorems for cyclic compatible contractions, J. Math. Anal., 8 (2017), 1–12.
    [16] N. Hussain, A. E. Al-Mazrooei, J. Ahmad, Fixed point results for generalized ($\alpha $-$\eta$)-$\Theta$ contractions with applications, J. Nonlinear Sci. Appl., 10 (2017), 4197–4208. https://doi.org/10.22436/JNSA.010.08.15 doi: 10.22436/JNSA.010.08.15
    [17] Z. Ma, J. Ahmad, A. E. Al-Mazrooei, D. Lateef, Fixed point results for rational orbitally ($\Theta$, $\delta_{b}$)-contractions with an application, J. Funct. Space., 2021 (2021), 9946125. https://doi.org/10.1155/2021/9946125 doi: 10.1155/2021/9946125
    [18] D. Baleanu, S. Rezapour, H. Mohammadi, Some existence results on nonlinear fractional differential equations, Phil. Trans. R. Soc. A, 371 (2013), 20120144. http://doi.org/10.1098/rsta.2012.0144 doi: 10.1098/rsta.2012.0144
    [19] H. H. Al-Sulami, J. Ahmad, N. Hussain, A. Latif, Relation theoretic ($\Theta$, $R$) contraction results with applications to nonlinear matrix equations, Symmetry, 10 (2018), 767. http://doi.org/10.3390/sym10120767 doi: 10.3390/sym10120767
    [20] W. Onsod, T. Saleewong, J. Ahmad, A. E. Al-Mazrooei, P. Kumam, Fixed points of a $\Theta$-contraction on metric spaces with a graph, Commun. Nonlinear Anal., 2 (2016), 139–149.
    [21] J. Zhou, S. Zhang, Y. He, Existence and stability of solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 498 (2021), 124921. https://doi.org/10.1016/j.jmaa.2020.124921 doi: 10.1016/j.jmaa.2020.124921
    [22] J. Zhou, S. Zhang, Y. He, Existence and stability of solution for nonlinear differential equations with $\psi$-Hilfer fractional derivative, Appl. Math. Lett., 121 (2021), 107457. https://doi.org/10.1016/j.aml.2021.107457 doi: 10.1016/j.aml.2021.107457
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1034) PDF downloads(36) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog