Research article

Anisotropic Moser-Trudinger type inequality in Lorentz space

Tao Zhang* and Jie Liu

School of Mathematics and Information Science, Yantai University, Yantai, Shandong, China

* Correspondence: Email: tzhytu@163.com.

Abstract

Our main purpose in this paper is to obtain the anisotropic Moser-Trudinger type inequality in Lorentz space $L(n, q), 1 \leq q \leq \infty$. It can be seen as a generation result of the Moser-Trudinger type inequality in Lorentz space.

Keywords: anisotropic; Moser-Trudinger inequality; Lorentz space
Mathematics Subject Classification: 35A15, 35A23, 39B05

1. Introduction

Let Ω be a domain with finite measure in Euclidean n-space \mathbb{R}^{n} with $n \geq 2$. When $1 \leq p<n$, by the Sobolev embedding theorem, $W_{0}^{1, p}(\Omega) \subset L^{q}(\Omega), 1 \leq q \leq \frac{n p}{n-p}$. Moreover, for the critical situation $p=n$, $W_{0}^{1, n}(\Omega) \subset L^{q}(\Omega), \forall q \geq 1$. However, we can show by many examples that $W_{0}^{1, n}(\Omega) \nsubseteq L^{\infty}(\Omega)[1,2]$. For the anisotropic Sobolev inequalities, we refer to [3-6].

In 1971, Moser [2] established Trudinger's inequality

$$
\begin{equation*}
\sup _{u \in W_{0}^{1, n}(\Omega),\|\nabla u\|_{n} \leq 1} \int_{\Omega} e^{\left.\alpha|u|\right|^{n-1}} d x \leq C, \tag{1.1}
\end{equation*}
$$

for any $\alpha \leq \alpha_{n}=n \omega_{n-1}^{\frac{1}{n-1}}$, where ω_{n-1} is the area of the surface of the unit n-ball. This constant α_{n} is sharp in the sense that, if $\alpha>\alpha_{n}$, then the above inequality (1.1) can no longer hold with some C independent of u.

Furthermore, Alvino, Ferone, and Trombetti [7] proved the following Moser-Trudinger type inequality in Lorentz space. They obtained that if

$$
\begin{equation*}
\|\nabla u\|_{n, q} \leq 1, \quad 1<q<\infty, \tag{1.2}
\end{equation*}
$$

then there exists a constant C, depending only on n and q, such that

$$
\begin{equation*}
\int_{\Omega} e^{\beta \mid u(x))^{q^{\prime}}} d x \leq C|\Omega|, \quad \forall \beta \leq \beta_{q}=\left(n C_{n}^{\frac{1}{n}}\right)^{q^{\prime}}, \tag{1.3}
\end{equation*}
$$

where q^{\prime} is the conjugate index of q, i.e., $q^{\prime}=\frac{q}{q-1}$ and C_{n} is the measure of unit ball in \mathbb{R}^{n}, and the constant β_{q} is sharp.

There have been many generalizations related to the Moser-Trudinger inequality, see [1, $8-18$], etc. These inequalities play a key role in Geometry analysis, calculus of variations and PDEs, see [19-27], etc.

Recently, many authors have intended to establish the Moser-Trudinger type inequality under the anisotropic norm. Let $F \in C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ be a positive, convex, and homogeneous function, and the polar $F^{o}(x)$ of which represents a Finsler metric on \mathbb{R}^{n}. By calculating the Euler-Lagrange equation of the minimization problem

$$
\min _{u \in W_{0}^{1, n}(\Omega)} \int_{\Omega} F^{p}(\nabla u) d x,
$$

we obtain an operator which is called Finsler p-Laplacian operator:

$$
\Delta_{F} u:=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(F^{p-1}(\nabla u) F_{\xi_{i}}(\nabla u)\right) .
$$

The Finsler p-Laplacian becomes the standard p-Laplacian when F is the Euclidean modulus, as well as the pseudo- p-Laplacian when $F(\xi)=\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{\frac{1}{p}}$. The Finsler p-Laplacian operator has been studied in several papers, see [28-35], etc. More properties of $F(x)$ will be given in Section 2.

The first work involving the anisotropic Moser-Trudinger type inequality was that of Wang and Xia [35]. They replaced the Dirichlet norm $\left(\int_{\Omega}|\nabla u|^{n} d x\right)^{\frac{1}{n}}$ with the anisotropic norm $\left(\int_{\Omega} F^{n}(\nabla u) d x\right)^{\frac{1}{n}}$ and proved the following inequality:

$$
\sup _{u \in W_{0}^{1, n}(\Omega), \int_{\Omega} F^{n}(\nabla u) d x \leq 1} \int_{\Omega} e^{\lambda| | \mid n^{n-1}} d x \leq C,
$$

where $\lambda \leq \lambda_{n}=n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}, \kappa_{n}=\left|x \in \mathbb{R}^{n}\right| F^{o}(x) \leq 1 \mid$ is the volume of the unit Wulff ball in \mathbb{R}^{n}, and the constant λ_{n} is sharp. Clearly, this is a generation result of (1.1).

Along this line, in this paper we consider the anisotropic Moser-Trudinger type inequality in Lorentz space $L(n, q), 1 \leq q \leq \infty$. The definition and properties of Lorentz space can be seen in Section 2. Now, we state main results in the paper.
Theorem 1.1. Let Ω be a bounded domain in \mathbb{R}^{n} with $n \geq 2$, and let $u \in W_{0}^{1, n}(\Omega)$ be a function such that

$$
\begin{equation*}
\|F(\nabla u)\|_{n, q} \leq 1, \quad 1 \leq q \leq \infty . \tag{1.4}
\end{equation*}
$$

We conclude that:
(i) If $q=1$, then

$$
\begin{equation*}
\|u\|_{\infty} \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}}\|F(\nabla u)\|_{n, 1} . \tag{1.5}
\end{equation*}
$$

(ii) If $1<q<\infty$, then there exists a constant C, depending only on n and q, such that

$$
\begin{equation*}
\int_{\Omega} e^{\lambda \mid u(x))^{q^{\prime}}} d x \leq C|\Omega|, \quad \forall \lambda \leq \bar{\lambda}_{q}=\left(n \kappa_{n}^{\frac{1}{n}}\right)^{q^{\prime}}, \quad q^{\prime}=\frac{q}{q-1} . \tag{1.6}
\end{equation*}
$$

What is more, the constant $\bar{\lambda}_{q}$ is sharp in the sense that, for any $\lambda>\bar{\lambda}_{q}$, inequality (1.6) can no longer hold with any C independent of u.
(iii) If $q=\infty$, then

$$
\begin{equation*}
\int_{\Omega} e^{\lambda|\mu(x)|} d x \leq C, \quad \forall \lambda<\bar{\lambda}_{\infty}=n \kappa_{n}^{\frac{1}{n}} . \tag{1.7}
\end{equation*}
$$

What is more, the constant $\bar{\lambda}_{\infty}$ is sharp in the sense that, for any $\lambda \geq \bar{\lambda}_{\infty}$, inequality (1.7) can no longer hold with any C independent of u.

2. Preliminaries

In this section, we provide some preliminaries on the Finsler-Laplacian and Lorentz space.
Let $F(x)$ be a function of class $C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$, which is convex and even. $F(x)$ has positively homogenous of degree 1 , i.e., for any $t \in \mathbb{R}, \xi \in \mathbb{R}^{n}$,

$$
F(t \xi)=|t| F(\xi) .
$$

A classical example is $F(\xi)=\left(\sum_{i}\left|\xi_{i}\right|^{q}\right)^{\frac{1}{q}}, q \geq 1$. We further assume that

$$
F(\xi)>0, \forall \xi \neq 0 .
$$

By the property of the homogeneity of F, we can find two positive constants $0<a_{1} \leq a_{2}<\infty$ to have

$$
\begin{equation*}
a_{1}|\xi| \leq F(\xi) \leq a_{2}|\xi|, \quad \forall \xi \in \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

The image of the map $\phi(\xi)=F_{\xi}(\xi), \xi \in S^{n-1}$, is a smooth and convex hypersurface in \mathbb{R}^{n}, which is called the Wulff shape of F. The support function $F^{o}(x)$ of $F(x)$ is defined by $F^{o}(x):=\sup _{\xi \in U}\langle x, \xi\rangle$, where $U=\left\{x \in \mathbb{R}^{n}: F(x) \leq 1\right\}$. We can check that $F^{o}: \mathbb{R}^{n} \mapsto[0,+\infty)$ is also a function of class $C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Besides, $F^{o}(x)$ is also a convex and homogeneous function. Furthermore, $F^{o}(x)$ is dual to $F(x)$ in the sense that

$$
F^{o}(x)=\sup _{\xi \neq 0} \frac{\langle x, \xi\rangle}{F(\xi)}, \quad F(x)=\sup _{\xi \neq 0} \frac{\langle x, \xi\rangle}{F^{o}(\xi)} .
$$

Define

$$
\mathcal{W}_{r}\left(x_{0}\right)=\left\{x \in \mathbb{R}^{n} \mid F^{o}\left(x-x_{0}\right) \leq r\right\},
$$

which is called the Wulff ball of center at x_{0} with radius r. Also for convenience, we denote the unit Wulff ball of center at origin as

$$
\mathcal{W}_{1}:=\left\{x \in \mathbb{R}^{n} \mid F^{o}(x) \leq 1\right\}
$$

and

$$
\kappa_{n}=\left|\mathcal{W}_{1}\right|,
$$

which is the the volume of \mathcal{W}_{1}.
By the assumptions of $F(x)$, we have some conclusions of the function $F(x)$, see [34,36-40].
Lemma 2.1. We have
(i) $|F(x)-F(y)| \leq F(x+y) \leq F(x)+F(y)$;
(ii) $\frac{1}{C} \leq|\nabla F(x)| \leq C$, and $\frac{1}{C} \leq\left|\nabla F^{o}(x)\right| \leq C$ for some $C>0$ and any $x \neq 0$;
(iii) $\langle x, \nabla F(x)\rangle=F(x),\left\langle x, \nabla F^{o}(x)\right\rangle=F^{o}(x)$ for any $x \neq 0$;
(iv) $F\left(\nabla F^{o}(x)\right)=1, F^{o}(\nabla F(x))=1$ for any $x \neq 0$;
(v) $F^{o}(x) F_{\xi}\left(\nabla F^{o}(x)\right)=x$ for any $x \neq 0$;
(vi) $F_{\xi}(t \xi)=\operatorname{sgn}(t) F_{\xi}(\xi)$ for any $\xi \neq 0$ and $t \neq 0$.

Now, we give the co-area formula and isoperimetric inequality with respect to F. For a domain $\Omega \subset \mathbb{R}^{n}, K \subset \Omega$ and a bounded variation function $u \in B V(\Omega)$, the anisotropic bounded variation of u with respect to F is defined by

$$
\int_{\Omega}|\nabla u|_{F}=\sup \left\{\int_{\Omega} u \operatorname{div} \sigma d x, \sigma \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{n}\right), F^{o}(\sigma) \leq 1\right\},
$$

and the anisotropic perimeter of K with respect to F is defined by

$$
P_{F}(K):=\int_{\Omega}\left|\nabla \mathcal{X}_{K}\right|_{F} d x,
$$

where \mathcal{X}_{K} is the characteristic function of the set K. Then, we have the co-area formula

$$
\begin{equation*}
\int_{\Omega}|\nabla u|_{F}=\int_{0}^{\infty} P_{F}(|u|>t) d t \tag{2.2}
\end{equation*}
$$

and the isoperimetric inequality

$$
\begin{equation*}
P_{F}(K) \geq n \kappa_{n}^{\frac{1}{n}}|K|^{1-\frac{1}{n}}, \tag{2.3}
\end{equation*}
$$

see [33]. Moreover, the equality in (2.3) holds if and only if K is a Wulff ball.
In the following, let Ω^{\sharp} be the homothetic Wulff ball in \mathbb{R}^{n} centered at the origin, which satisfies

$$
|\Omega|=\left|\Omega^{\sharp}\right|,
$$

where $|\cdot|$ denotes the volume. For a real-valued function $u: \Omega \rightarrow \mathbb{R}$, the distribution function $\mu_{u}(t):[0,+\infty) \rightarrow[0,+\infty]$ of u is defined as

$$
\mu_{u}(t)=|x \in \Omega \||u(x)|>t|, \text { for } t \geq 0
$$

The decreasing rearrangement u^{*} of u is defined as

$$
u^{*}(s)=\sup \left\{t \geq 0 \mid \mu_{u}(t)>s\right\}, \text { for } s \geq 0 .
$$

Clearly the support of u^{*} satisfies suppu* $\subseteq[0,|\Omega|]$.
Furthermore, the convex symmetrization u^{\sharp} of u with respect to F is defined as

$$
u^{\sharp}(x)=u^{*}\left(\kappa_{n} F^{o}(x)^{n}\right) \text {, for } x \in \Omega^{\sharp} .
$$

Next, we recall some properties of Lorentz space $L(p, q)$.
A function u belongs to Lorentz space $L(p, q), 1<p<\infty, 1 \leq q \leq \infty$, if the quantity

$$
\|u\|_{p, q}= \begin{cases}\left(\int_{0}^{\infty}\left[u^{*}(t) t^{\frac{1}{p}} q \frac{d t}{}\right)^{\frac{1}{q}},\right. & \text { if } \quad 1 \leq q<\infty, \tag{2.4}\\ \sup _{t>0} u^{*}(t) t^{\frac{1}{p}}, & \text { if } q=\infty,\end{cases}
$$

is finite. In particular, we note that $L(p, p)=L^{p}(\Omega)$ and $L(p, \infty)=M^{p}$, which is called the Marcinkiewicz space. Another important property of Lorentz space is the intermediate property between L^{p} space. Precisely, for $1<q<p<r<\infty$, the following conclusion holds:

$$
L^{r} \subset L(p, 1) \subset L(p, q) \subset L(p, p)=L^{p} \subset L(p, r) \subset L(p, \infty) \subset L^{q} .
$$

And, we have

$$
\begin{equation*}
\|u\|_{p, r} \leq\left(\frac{q}{p}\right)^{\frac{1}{q}-\frac{1}{r}}\|u\|_{p, q}, \quad \text { for } \quad q \leq r \tag{2.5}
\end{equation*}
$$

When $q>p$, it is easy to check that the quantity (2.4) is not a norm. Letting

$$
\bar{u}(s)=\frac{1}{s} \int_{0}^{s} u^{*}(t) d t, \quad s \in(0,+\infty)
$$

the quantity

$$
\|u\|_{p, q}^{*}= \begin{cases}\left(\int_{0}^{\infty}\left[\bar{u}(t) t^{\frac{1}{p}}\right]^{q} \frac{d t}{t}\right)^{\frac{1}{q}}, & \text { if } \quad 1 \leq q<\infty, \tag{2.6}\\ \sup \bar{u}(t) t^{\frac{p}{p}}, & \text { if } \quad q=\infty \\ t>0\end{cases}
$$

is a norm for any p and q. Besides, it is proved in [41] that quantity (2.6) is equivalent to the quantity (2.4)

$$
\|u\|_{p, q} \leq\|u\|_{p, q}^{*} \leq C\|u\|_{p, q},
$$

where $C \geq 1$ is a constant depending only on p and q. What is more, under the norm (2.6), $L(p, q)$ is a Banach space. We refer to [41-44] for more information involving the Lorentz space $L(p, q)$.

Now, we give a relationship between two nonnegative functions in $L^{1}(\Omega)$. We say that u is dominated by v, which is written by $u<v$, if

$$
\left\{\begin{array}{l}
\int_{0}^{s} u^{*}(t) d t \leq \int_{0}^{s} v^{*}(t) d t, \quad \forall s \in[0,|\Omega|) \tag{2.7}\\
\int_{0}^{|\Omega|} u^{*}(t) d t=\int_{0}^{|\Omega|} v^{*}(t) d t
\end{array}\right.
$$

Many properties about the relationship are given, for example, in [45]. For later use, we recall the following property:

Lemma 2.2. [45] The following conclusions are equivalent:

(i) $u<v$;
(ii) for all nonnegative functions $\omega \in L^{\infty}(\Omega)$,

$$
\int_{\Omega} u(x) \omega(x) d x \leq \int_{0}^{|\Omega|} v^{*}(s) \omega^{*}(s) d s, \quad \int_{\Omega} u(x) d x=\int_{\Omega} v(x) d x
$$

(iii) for all nonnegative functions $\omega \in L^{\infty}(\Omega)$,

$$
\int_{0}^{|\Omega|} u^{*}(s) \omega^{*}(s) d s \leq \int_{0}^{|\Omega|} v^{*}(s) \omega^{*}(s) d s, \quad \int_{\Omega} u(x) d x=\int_{\Omega} v(x) d x .
$$

Now, we state a key method to construct a function Ψ, which is dominated by a function ψ, see [45]. Let $D(s), s \in[0,|\Omega|]$, be a family of subsets of Ω which have the following properties:
(i) $|D(s)|=s$;
(ii) $D\left(s_{1}\right) \subset D\left(s_{2}\right)$, if $s_{1}<s_{2}$;
(iii) $D(s)=\{x \in \Omega:|u(x)|>t\}, \quad$ if $\quad s=\mu_{u}(t)$.

We see that this means that $D(s)$ is the family of the level sets of $|u(x)|$. For a nonnegative function $\psi \in L^{1}(\Omega)$, we define $\Psi(t)$ as the function such that

$$
\begin{equation*}
\int_{D(s)} \psi(x) d x=\int_{0}^{s} \Psi(t) d t, \quad s \in[0,|\Omega|] . \tag{2.8}
\end{equation*}
$$

For (2.8), we say that Ψ is built from ψ on the level sets of $|u|$. It is shown in [45] that

$$
\begin{equation*}
\Psi<\psi \tag{2.9}
\end{equation*}
$$

3. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1. The proof of Theorem 1.1 is an adaptation of ones given in [7]. We first give some key lemmas. Let u be a measurable function in Ω such that

$$
\begin{equation*}
g(x)=F(\nabla u) \in L(n, q), \quad 1 \leq q \leq \infty . \tag{3.1}
\end{equation*}
$$

We let $G(t)$ be the function built from g on the level sets of u, as in (2.8). Then, we have the following result:

Lemma 3.1. The estimate

$$
\begin{equation*}
u^{*}(s) \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}} \int_{s}^{|\Omega|} G(t) t^{\frac{1}{n}} \frac{d t}{t} \tag{3.2}
\end{equation*}
$$

holds.
Proof. By (2.8) and (3.1), we have

$$
-\frac{d}{d t} \int_{||| |>t} F(\nabla u) d x=-\frac{d}{d t} \int_{|u|>t} g(x) d x=-\frac{d}{d t} \int_{0}^{\mu(t)} G(s) d s=\left(-\mu^{\prime}(t)\right) G(\mu(t)),
$$

where $\mu(t)=\mu_{u}(t)$. By the co-area formula (2.2) and isoperimetric inequality (2.3), we have

$$
n \kappa_{n}^{\frac{1}{n}} \mu(t)^{1-\frac{1}{n}} \leq-\frac{d}{d t} \int_{||u|>t} F(\nabla u) d x=\left(-\mu^{\prime}(t)\right) G(\mu(t)) .
$$

Then, we get

$$
-u^{* \prime}(s) \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}} \frac{G(s)}{s^{1-\frac{1}{n}}}
$$

Thus, the lemma is obtained by direct integration.
By Lemma 3.1, for the purpose of the estimate $u(x)$, we can estimate the H-symmetric and decreasing function

$$
\begin{equation*}
v(x)=\frac{1}{n \kappa_{n}^{\frac{1}{n}}} \int_{\kappa_{n} F^{o}(x)^{n}}^{|\Omega|} G(t) t^{\frac{1}{n}} \frac{d t}{t} . \tag{3.3}
\end{equation*}
$$

By the following lemma, we can estimate $u(x)$ by a function involving g^{*}.

Lemma 3.2. Let $g \in L^{1}(\Omega)$. For any nonnegative function G defined in $[0,|\Omega|]$ such that $G<g$, we let v be the function defined in (3.3). Then, we obtain

$$
\begin{equation*}
\bar{v}(s) \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}}\left[\int_{s}^{|\Omega|} g^{*}(t) t^{\frac{1}{n}} \frac{d t}{t}+\frac{1}{s^{1-\frac{1}{n}}} \int_{0}^{s} g^{*}(t) d t\right] . \tag{3.4}
\end{equation*}
$$

Proof. By (3.3), we have

$$
\begin{aligned}
\bar{v}(s) & =\frac{1}{s} \int_{0}^{s} v^{*}(t) d t \\
& =\frac{1}{n \kappa_{n}^{\frac{1}{n}}}\left(\int_{s}^{|\Omega|} G(t) t^{\frac{1}{n}} \frac{d t}{t}+\frac{1}{s} \int_{0}^{s} G(t) t^{\frac{1}{n}} d t\right) \\
& \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}} \int_{0}^{|\Omega|} G(m) h(m, s) d m
\end{aligned}
$$

where

$$
h(m, s)=\left\{\begin{array}{lll}
s^{-1+\frac{1}{n}}, & \text { if } & 0 \leq m \leq s \\
m^{-1+\frac{1}{n}}, & \text { if } & s<m \leq|\Omega|
\end{array}\right.
$$

Clearly, for any fixed $s, h(m, s)$ is decreasing with respect to m. Then, by Lemma 2.2 and the property $G<g$, we obtain (3.4).

For the aim to prove Theorem 1.1, we need the following lemma proved by Adams [46].
Lemma 3.3. [46] Let a(s,t) be a nonnegative measurable function in $\mathbb{R} \times[0, \infty)$, and for some $q \in$ $(1, \infty), q^{\prime}=\frac{q}{q-1}$,

$$
\begin{equation*}
a(s, t) \leq 1, \quad \text { for } \quad \text { a.e. } 0<s<t, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{t>0}\left(\int_{-\infty}^{0} a(s, t)^{q^{\prime}} d s+\int_{t}^{\infty} a(s, t)^{q^{\prime}} d s\right)^{\frac{1}{q^{\prime}}}=v<+\infty . \tag{3.6}
\end{equation*}
$$

Assume that $\Phi(s) \geq 0$ and

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \Phi(s)^{q} d s \leq 1 \tag{3.7}
\end{equation*}
$$

Then, there exists a constant C, depending only on q and v such that

$$
\int_{0}^{+\infty} e^{-H(t)} d t \leq C
$$

where

$$
H(t)=t-\left(\int_{-\infty}^{+\infty} a(s, t) \Phi(s) d s\right)^{q^{\prime}}
$$

Now, it is sufficient to prove Theorem 1.1.
Proof of Theorem 1.1. We complete the proof by distinguishing three cases.
Case (i) $q=1$. By Lemma 3.1, we have that

$$
\|u\|_{\infty} \leq u^{*}(0) \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}} \int_{0}^{|\Omega|} G(t) t^{\frac{1}{n}} \frac{d t}{t} .
$$

Then, by $G<g$ and Lemma 2.2, we have that

$$
\|u\|_{\infty} \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}} \int_{0}^{|\Omega|} g^{*}(t) t^{\frac{1}{n}} \frac{d t}{t}=\frac{1}{n \kappa_{n}^{\frac{1}{n}}}\|F(\nabla u)\|_{n, 1} .
$$

Then, (1.5) holds.
Case (ii) $1<q<\infty$. By Lemma 3.2, we have

$$
\begin{equation*}
\bar{u}(s) \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}}\left(\int_{s}^{|\Omega|} g^{*}(t) t^{\frac{1}{n}} \frac{d t}{t}+\frac{1}{s^{1-\frac{1}{n}}} \int_{0}^{s} g^{*}(t) d t\right) . \tag{3.8}
\end{equation*}
$$

For the convenience, we denote n^{\prime} as the conjugate index of n, i.e., $n^{\prime}=\frac{n}{n-1}$. Then,

$$
\begin{aligned}
\bar{u}\left(|\Omega| e^{-t}\right) & \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}}\left(\int_{|\Omega| e^{-t}}^{|\Omega|} g^{*}(t) t^{\frac{1}{n}} \frac{d t}{t}+\frac{1}{\left(|\Omega| e^{-t}\right)^{1-\frac{1}{n}}} \int_{0}^{|\Omega| e^{-t}} g^{*}(t) d t\right) \\
& =\frac{|\Omega|^{\frac{1}{n}}}{n \kappa_{n}^{\frac{1}{n}}}\left(\int_{0}^{t} g^{*}\left(|\Omega| e^{-r}\right) e^{-\frac{r}{n}} d r+e^{t\left(1-\frac{1}{n}\right)} \int_{t}^{\infty} g^{*}\left(|\Omega| e^{-r}\right) e^{-r} d r\right) \\
& =\frac{1}{n K_{n}^{\frac{1}{n}}} \int_{-\infty}^{+\infty} a(s, t) \Phi(s) d s,
\end{aligned}
$$

where

$$
a(s, t)= \begin{cases}0, & \text { if } \quad s \leq 0 \\ e^{\frac{t-s}{n^{s}}}, & \text { if } \quad t<s<+\infty \\ 1, & \text { if } \quad 0<s<t\end{cases}
$$

and

$$
\Phi(s)= \begin{cases}|\Omega|^{\frac{1}{n}} g^{*}\left(|\Omega| e^{-s}\right) e^{-\frac{s}{n}}, & \text { if } \quad s \geq 0, \\ 0, & \text { if } \quad s<0 .\end{cases}
$$

It is obvious that (3.5) holds. Next, for any $1<q<\infty$, we obtain

$$
\begin{aligned}
& \left(\int_{-\infty}^{0} a(s, t)^{q^{\prime}} d s+\int_{t}^{\infty} a(s, t)^{q^{\prime}} d s\right)^{\frac{1}{q^{\prime}}} \\
= & \left(\int_{t}^{\infty} e^{\frac{q^{\prime}(t-s)}{n^{\prime}}} d s\right)^{\frac{1}{q^{\prime}}} \\
= & \left(e^{\frac{q^{\prime}}{n^{\prime}}} \int_{t}^{\infty} e^{-\frac{s q^{\prime}}{n^{\prime}}} d s\right)^{\frac{1}{q^{\prime}}} \\
= & \left(\frac{n^{\prime}}{q^{\prime}}\right)^{\frac{1}{q^{\prime}}} .
\end{aligned}
$$

Then, we get (3.6) by choosing $v=\left(\frac{n^{\prime}}{q^{\prime}}\right)^{\frac{1}{q^{\prime}}}$.
Finally, by (1.4), we have that

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \Phi(s)^{q} d s & =|\Omega|^{\frac{q}{n}} \int_{0}^{+\infty}\left(g^{*}\left(|\Omega| e^{-s}\right) e^{-\frac{s}{n}}\right)^{q} d s \\
& =\int_{0}^{|\Omega|}\left(g^{*}(t) t^{\frac{1}{n}}\right)^{q} \frac{d t}{t} \\
& =\|F(\nabla u)\|_{n, q}^{q} \leq 1
\end{aligned}
$$

This means that (3.7) holds. Then, by Lemma 3.3, we have

$$
\int_{0}^{+\infty} e^{-t+\left(\bar{u}\left(\Omega \mid e^{-t}\right) n \kappa_{n}^{\frac{1}{n}}\right)^{\prime}} d t \leq C
$$

which means that

$$
\int_{0}^{|\Omega|} e^{\left(\bar{u}(s) \pi \kappa_{n}^{\frac{1}{n}} \varphi^{\prime}\right.} d s \leq C|\Omega| .
$$

Furthermore, by the fact $u^{*}(s) \leq \bar{u}(s)$, we obtain

$$
\int_{\Omega} e^{\lambda \mid u(x))^{q^{\prime}}} d x=\int_{0}^{|\Omega|} e^{\lambda u^{*}(s)^{q^{\prime}}} d s \leq \int_{0}^{|\Omega|} e^{\lambda \bar{u}(s)^{q^{\prime}}} d s \leq C|\Omega|, \quad \forall \lambda \leq\left(n \kappa_{n}^{\frac{1}{n}}\right)^{q^{\prime}}=\bar{\lambda}_{q} .
$$

Case (iii) $q=\infty$. By (3.8) and (1.4), we obtain

$$
\begin{aligned}
\bar{u}(s) & \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}}\left(\int_{s}^{|\Omega|} g^{*}(t) t^{\frac{1}{n}} \frac{d t}{t}+\frac{1}{s^{1-\frac{1}{n}}} \int_{0}^{s} g^{*}(t) d t\right) \\
& \leq \frac{1}{n \kappa_{n}^{\frac{1}{n}}}\left(\int_{s}^{|\Omega|} \frac{1}{t} d t+\frac{1}{s^{1-\frac{1}{n}}} \int_{0}^{s} t^{-\frac{1}{n}} d t\right) \\
& =\frac{1}{n \kappa_{n}^{\frac{1}{n}}}\left(\log \frac{|\Omega|}{s}+\frac{n}{n-1}\right) .
\end{aligned}
$$

It follows that

$$
\int_{0}^{|\Omega|} e^{\lambda \bar{u}(s)} d s \leq e^{\frac{\lambda}{(n-1) k_{n}^{\frac{1}{n}}}} \int_{0}^{|\Omega|}\left(\frac{|\Omega|}{s}\right)^{\frac{\lambda}{n x_{n}^{n}}} d s
$$

Clearly, the right hand side is finite if and only if $\lambda<n \kappa_{n}^{\frac{1}{n}}=\bar{\lambda}_{\infty}$. Then, we get (1.7).
At last, we prove the sharpness of (1.5)-(1.7).
We easily see that equality (1.5) holds if $u(x)=u^{\sharp}(x)$ and $F(\nabla u)=F(\nabla u)^{\sharp} \in L(n, 1)$.
The proof of sharpness for (1.6) is more complicated. If $1<q<\infty$, for any $\lambda>\bar{\lambda}_{q}$, we will construct a sequence of functions u_{k} such that $\left\|F\left(\nabla u_{k}\right)\right\|_{n, q} \leq 1$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\Omega} e^{\lambda \mid u_{k}(x) q^{\prime}} d x=+\infty \tag{3.9}
\end{equation*}
$$

Define

$$
u_{k}(x)= \begin{cases}\frac{k^{\frac{1}{q^{\prime}}}}{n \kappa_{n}^{\frac{1}{n}}}, & \text { if } \quad 0 \leq \kappa_{n} F^{o}(x)^{n} \leq e^{-k}, \tag{3.10}\\ \frac{n n_{n}^{1}}{n \kappa_{n}^{\frac{1}{n}} \frac{1}{q}} \log \left(\frac{1}{\kappa_{n} F^{o}(x)^{n}}\right), & \text { if } \quad e^{-k} \leq \kappa_{n} F^{o}(x)^{n} \leq 1, \\ 0, & \text { if } \quad \kappa_{n} F^{o}(x)^{n}>1 .\end{cases}
$$

Then, by direct calculation, using Lemma 2.1, we have that the decreasing rearrangement of $F\left(\nabla u_{k}\right)$ is

$$
F\left(\nabla u_{k}\right)^{*}(s)=\left\{\begin{array}{lll}
0, & \text { if } \quad 1-e^{-k} \leq s \leq 1, \\
\frac{k^{-\frac{1}{q}}}{\left(s+e^{-k}\right)^{\frac{1}{n}}}, & \text { if } \quad 0 \leq s<1-e^{-k} .
\end{array}\right.
$$

We consider $1<q<n, q=n$, and $n<q<\infty$ separately.
When $1<q<n$, making the change of variable $m=1+s e^{k}$, then

$$
\begin{aligned}
\left\|F\left(\nabla u_{k}\right)\right\|_{n, q} & =\left(\frac{1}{k} \int_{0}^{1-e^{-k}}\left(\frac{s}{s+e^{-k}}\right)^{\frac{q}{n}} \frac{d s}{s}\right)^{\frac{1}{q}} \\
& =\left(\frac{1}{k} \int_{1}^{e^{k}}\left(1-\frac{1}{m}\right)^{\frac{q}{n}} \frac{d m}{m-1}\right)^{\frac{1}{q}} .
\end{aligned}
$$

We let

$$
\beta_{k}=\left\|F\left(\nabla u_{k}\right)\right\|_{n, q}=\left(\frac{1}{k} \int_{1}^{e^{k}}\left(1-\frac{1}{m}\right)^{\frac{q}{n}} \frac{d m}{m-1}\right)^{\frac{1}{q}} .
$$

Then,

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{1}{k} \int_{1}^{e^{k}}\left(1-\frac{1}{m}\right)^{\frac{q}{n}} \frac{d m}{m-1} \\
= & \lim _{k \rightarrow \infty} \frac{1}{k} \int_{1}^{e^{k}} \frac{1}{(m-1)^{1-\frac{q}{n} m^{\frac{q}{n}}} d m} \\
= & \lim _{k \rightarrow \infty} \frac{e^{k}}{\left(e^{k}-1\right)^{1-\frac{q}{n}}\left(e^{k}\right)^{\frac{q}{n}}} \\
= & \lim _{k \rightarrow \infty}\left(\frac{e^{k}}{e^{k}-1}\right)^{1-\frac{q}{n}}=1 .
\end{aligned}
$$

Hence, we have $\lim _{k \rightarrow \infty} \beta_{k}=1$.
Now, we set

$$
v_{k}(x)=\frac{u_{k}(x)}{\beta_{k}} .
$$

Clearly, $\left\|F\left(\nabla v_{k}\right)\right\|_{n, q}=1$. However, when $\lambda>\bar{\lambda}_{q}=\left(n \kappa_{n}^{\frac{1}{n}}\right)^{q^{\prime}}$, as $k \rightarrow+\infty$,

$$
\begin{aligned}
\int_{\Omega} e^{\lambda \mid v_{k}(x) q^{q^{\prime}}} d x & \geq \int_{0}^{e^{-k}} \exp \left[\frac{k \lambda}{\beta_{k}^{q^{\prime}}\left(n \kappa_{n}^{\frac{1}{n}}\right)}\right] d s \\
& =\exp \left[k\left(\frac{\lambda}{\beta_{k}^{q^{\prime}}\left(n \kappa_{n}^{\frac{1}{n}}\right) q^{q^{\prime}}}-1\right)\right] \\
& \rightarrow+\infty .
\end{aligned}
$$

When $q=n$, the proof is similar to that in [2]. We have

$$
\begin{equation*}
\left\|F\left(\nabla u_{k}\right)\right\|_{n, n}=\left\|F\left(\nabla u_{k}\right)\right\|_{n} \leq 1 . \tag{3.11}
\end{equation*}
$$

Then, when $\lambda>\bar{\lambda}_{n, n}=n^{\frac{n}{n-1}} K_{n}^{\frac{1}{n-1}}$, as $k \rightarrow+\infty$,

$$
\int_{\Omega} e^{x\left|u_{k}\right| n} \left\lvert\, \frac{n}{n-1} d x=\int_{0}^{|\Omega|} e^{\lambda \left\lvert\, u_{k}^{n} \frac{n}{n-1}\right.} d s\right.
$$

$$
\geq \exp \left[k\left(\frac{\lambda}{n^{\frac{n}{n-1}} K_{n}^{\frac{1}{n-1}}}-1\right)\right] \rightarrow+\infty
$$

When $n \leq q<\infty$, from (2.5) and (3.11) we have

$$
\left\|F\left(\nabla u_{k}\right)\right\|_{n, q} \leq\left\|F\left(\nabla u_{k}\right)\right\|_{n}=1
$$

Then, as the case of $q=n$, it is easy to prove that

$$
\int_{B} e^{\lambda\left|u_{k}(x)\right|^{q^{\prime}}} d x \rightarrow+\infty \text { as } k \rightarrow \infty, \quad \text { when } \lambda>\bar{\lambda}_{q}=\left(n \kappa_{n}^{\frac{1}{n}}\right)^{q^{\prime}}
$$

When $q=\infty$, we construct a function u such that $\|F(\nabla u)\|_{n, \infty} \leq 1$, and for any $\lambda \geq \bar{\lambda}_{\infty}=n \kappa_{n}^{\frac{1}{n}}$,

$$
\int_{\Omega} e^{\lambda|u(x)|} d x=+\infty
$$

Let

$$
u(x)=\frac{1}{n \kappa_{n}^{\frac{1}{n}}} \log \left(\frac{1}{\kappa_{n} F^{o}(x)^{n}}\right), \quad \forall x \in \mathcal{W}_{1} .
$$

By direct calculation, using Lemma 2.1, we obtain

$$
F(\nabla u)^{*}(s)=\frac{1}{s^{\frac{1}{n}}},
$$

and then

$$
\|F(\nabla u)\|_{n, \infty} \leq 1
$$

Thus, when $\lambda \geq \bar{\lambda}_{\infty}=n \kappa_{n}^{\frac{1}{n}}$, by the co-area formula (2.2), we have

$$
\begin{aligned}
\int_{\mathcal{W}_{1}} e^{\lambda|u(x)|} d x & =\int_{0}^{1} \exp \left(\frac{\lambda}{n \kappa_{n^{\frac{1}{n}}}} \log \left(\frac{1}{s}\right)\right) d s \\
& \geq C \int_{0}^{1} \frac{1}{s} d s=+\infty .
\end{aligned}
$$

The proof is completed.

4. Conclusions

In this paper, we mainly study the anisotropic Moser-Trudinger type inequality in Lorentz space $L(n, q), 1 \leq q \leq \infty$. It is a generation result of Moser-Trudinger type inequality in Lorentz space. The extremal function of such inequality is closely related to existence of solutions of Finsler-Liouville type equation. We believe that the sharp inequality will be the key tool to study the existence of solutions for some quasi-linear elliptic equations, such as Finsler-Laplacian equation.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The work of the first author is supported by NSFC of China (No. 12001472).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. http://dx.doi.org/10.1512/iumj.1968.17.17028
2. J. Moser, A sharp form of an inequality by N. Trudinger, Indiana U. Math. J., 11 (1971), 10771092. http://dx.doi.org/10.2307/24890183
3. A. Cianchi, A fully anisotropic Sobolev inequality, Pac. J. Math., 196 (2000), 283-295. http://dx.doi.org/10.2140/pjm.2000.196.283
4. A. Cianchi, Optimal Orlicz-Sobolev embeddings, Rev. Mat. Iberoamericana, 20 (2002), 427-474. http://dx.doi.org/10.4171/RMI/396
5. L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital., 1998, 479-500.
6. F. Feo, J. Martin, M. R. Posteraro, Sobolev anisotropic inequalities with monomial weights, J. Math. Anal. Appl., 505 (2022), 125557. http://dx.doi.org/10.1016/j.jmaa.2021.125557
7. A. Alvino, V. Ferone, G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal., $\mathbf{5}$ (1996), 273-299. http://dx.doi.org/10.1007/BF00282364
8. S. Adachi, K. Tanaka, Trudinger type inequalities in \mathbb{R}^{N} and their best exponents, P. Am. Math. Soc., $\mathbf{1 2 8}$ (2000), 2051-2057. http://dx.doi.org/10.1090/S0002-9939-99-05180-1
9. A. Karppinen, Fractional operators and their commutators on generalized Orlicz spaces, Opusc. Math., 42 (2022), 583-604. http://dx.doi.org/10.7494/OpMath.2022.42.4.573
10. Q. H. Yang, Y. Li, Trudinger-Moser inequalities on hyperbolic spaces under Lorentz norms, J. Math. Anal. Appl., 472 (2019), 1236-1252. http://dx.doi.org/10.1016/j.jmaa.2018.11.074
11. G. Lu, H. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, $A d v$. Nonlinear Stud., 16 (2016), 581-601. http://dx.doi.org/10.1515/ans-2015-5046
12. G. Lu, H. Tang, Sharp Moser-Trudinger inequalities on hyperbolic spaces with the exact growth condition, J. Geom. Anal., 26 (2016), 837-857. http://dx.doi.org/10.1007/s12220-015-9573-y
13. L. Carleson, S. Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, B. Sci. Math., 110 (1986), 113-127.
14. N. Labropoulos, Vector analysis on symmetric manifolds and Sobolev inequalities, Rend. Circ. Mat. Palerm., 71 (2022), 1173-1215. http://dx.doi.org/10.1007/s12215-022-00792-1
15. M. Flucher, Extremal functions for Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv., 67 (1992), 471-497. http://dx.doi.org/10.1007/bf02566514
16. N. Lam, G. Lu, L. Zhang, Existence and nonexistence of extremal functions for sharp Trudinger-Moser inequalities, Adv. Math., 352 (2019), 1253-1298. http://dx.doi.org/10.1016/j.aim.2019.06.020
17. Y. Li, B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{n}, Indiana U. Math. J., 57 (2008), 451-480. http://dx.doi.org/10.1512/iumj.2008.57.3137
18. B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{2}, J. Funct. Anal., 219 (2005), 340-367. http://dx.doi.org/10.1016/j.jfa.2004.06.013
19. S. Y. A. Chang, P. Yang, The inequality of Moser and Trudinger and applications to conformal geometry, Commun. Pur. Appl. Math., 56 (2003), 1135-1150. http://dx.doi.org/10.1002/cpa. 3029
20. D. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in \mathbb{R}^{2}, Commun. Part. Diff. Eq., 17 (1992), 407-435.
21. D. Cassani, L. Du, Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs, Adv. Nonlinear Anal., 12 (2023), 20230103. http://dx.doi.org/10.1515/anona-2023-0103
22. D. G. de Figueiredo, O. H. Miyagaki, B. Ruf, Elliptic equations in \mathbb{R}^{2} with nonlinearities in the critical growth range, Calc. Var. Partial. Dif., 3 (1995), 139-153. http://dx.doi.org/10.1007/BF01189954
23. T. Ogawa, T. Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531-540. http://dx.doi.org/10.1016/0022-247X(91)90017-T
24. N. Lam, G. Lu, Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal., 24 (2014), 118-143. http://dx.doi.org/10.1007/s12220-012-9330-4
25. X. Lin, X. Tang, On concave perturbations of a periodic elliptic problem in \mathbb{R}^{2} involving critical exponential growth, Adv. Nonlinear Anal., 12 (2023), 169-181. http://dx.doi.org/10.1515/anona-2022-0257
26. Z. Liu, V. D. Radulescu, J. Zhang, A planar Schrödinger-Newton system with Trudinger-Moser critical growth, Calc. Var. Part. Diff. Eq., 62 (2023), 122. http://dx.doi.org/10.1007/s00526-023-02463-0
27. C. S. Lin, J. C. Wei, Locating the peaks of solutions via the maximum principle II: A local version of the method of moving planes, Commun. Pur. Appl. Math., 56 (2013), 784-809.
28. A. Alvino, V. Ferone, G. Trombetti, P. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 275-293. http://dx.doi.org/10.1016/S0294-1449(97)80147-3
29. M. Belloni, V. Ferone, B. Kawohl, Isoperimetric inequalities, wulffshape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys., 54 (2003), 771-783. http://dx.doi.org/10.1007/s00033-003-3209-y
30. M. Belloni, B. Kawohl, P. Juutinen, The p-Laplace eigenvalue problem as $p \rightarrow \infty$ in a Finsler metric, J. Eur. Math. Soc., 8 (2006), 123-138. http://dx.doi.org/10.4171/JEMS/40
31. C. Bianchini, G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Part. Diff. Eq., 43 (2018), 790-820. http://dx.doi.org/10.1080/03605302.2018.1475488
32. A. Cianchi, P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859881. http://dx.doi.org/10.1007/s00208-009-0386-9
33. I. Fonseca, S. Muller, A uniqueness proof for the Wulff theorem, P. Roy. Soc. Edinb. A., 119 (1991), 125-136. http://dx.doi.org/10.1017/S0308210500028365
34. V. Ferone, B. Kawohl, Remarks on a Finsler-Laplacian, P. Am. Math. Soc., 137 (2009), 247-253. http://dx.doi.org/10.1090/S0002-9939-08-09554-3
35. G. Wang, C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differ. Equations, 252 (2012), 1668-1700. http://dx.doi.org/10.1016/j.jde.2011.08.001
36. G. Bellettini, M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, J. Hokkaido Math., 25 (1996), 537-566. http://dx.doi.org/10.14492/hokmj/1351516749
37. G. Wang, C. Xia, A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Ration. Mech. An., 99 (2011), 99-115.
38. R. L. Xie, H. J. Gong, A priori estimates and blow-up behavior for solutions of $-Q_{n} u=V e^{u}$ in bounded domain in \mathbb{R}^{n}, Sci. China Math., 59 (2016), 479-492. http://dx.doi.org/10.1007/S11425-015-5060-Y
39. C. L. Zhou, C. Q. Zhou, Moser-Trudinger inequality involving the anisotropic Dirichlet norm $\left(\int_{\Omega} F^{N}(\nabla u) d x\right)^{\frac{1}{N}}$ on $W_{0}^{1, N}(\Omega)$, J. Funct. Anal., 276 (2019), 2901-2935. http://dx.doi.org/10.1016/j.jfa.2018.12.001
40. C. L. Zhou, C. Q. Zhou, Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian, Commun. Pur. Appl. Anal., 17 (2018), 2309-2328. http://dx.doi.org/10.3934/cpaa. 2018110
41. R. O'Neil, Integral transforms and tensor products on Orlicz spaces and $L(p, q)$ spaces, J. Anal. Math., 21 (1968), 1-276. http://dx.doi.org/10.1007/BF02787670
42. G. G. Lorentz, Some new functional spaces, Ann. Math., 51 (1950), 37-55.
43. R. Hunt, On $L(p, q)$ spaces, Enseign. Math., 12 (1967), 249-276.
44. C. Bennett, R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, Academic Press, 129 (1988). http://dx.doi.org/10.1016/S0079-8169(08)60845-4
45. A. Alvino, P. L. Lions, G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Anal.-Theor., 13 (1989), 185-220. http://dx.doi.org/10.1016/0362-546X(89)90043-6
46. D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. Math., 188 (1988), 385-398. http://dx.doi.org/10.2307/1971445

AIMS Press
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)

