

AIMS Mathematics, 9(4): 9808–9821. DOI: 10.3934/math.2024480 Received: 26 January 2024 Revised: 29 February 2024 Accepted: 01 March 2024 Published: 11 March 2024

https://www.aimspress.com/journal/Math

Research article

Anisotropic Moser-Trudinger type inequality in Lorentz space

Tao Zhang* and Jie Liu

School of Mathematics and Information Science, Yantai University, Yantai, Shandong, China

* Correspondence: Email: tzhytu@163.com.

Abstract: Our main purpose in this paper is to obtain the anisotropic Moser-Trudinger type inequality in Lorentz space L(n, q), $1 \le q \le \infty$. It can be seen as a generation result of the Moser-Trudinger type inequality in Lorentz space.

Keywords: anisotropic; Moser-Trudinger inequality; Lorentz space **Mathematics Subject Classification:** 35A15, 35A23, 39B05

1. Introduction

Let Ω be a domain with finite measure in Euclidean *n*-space \mathbb{R}^n with $n \ge 2$. When $1 \le p < n$, by the Sobolev embedding theorem, $W_0^{1,p}(\Omega) \subset L^q(\Omega)$, $1 \le q \le \frac{np}{n-p}$. Moreover, for the critical situation p = n, $W_0^{1,n}(\Omega) \subset L^q(\Omega)$, $\forall q \ge 1$. However, we can show by many examples that $W_0^{1,n}(\Omega) \nsubseteq L^{\infty}(\Omega)$ [1,2]. For the anisotropic Sobolev inequalities, we refer to [3–6].

In 1971, Moser [2] established Trudinger's inequality

$$\sup_{u \in W_0^{1,n}(\Omega), \|\nabla u\|_n \le 1} \int_{\Omega} e^{\alpha |u|^{\frac{n}{n-1}}} dx \le C,$$
(1.1)

for any $\alpha \leq \alpha_n = n\omega_{n-1}^{\frac{1}{n-1}}$, where ω_{n-1} is the area of the surface of the unit *n*-ball. This constant α_n is sharp in the sense that, if $\alpha > \alpha_n$, then the above inequality (1.1) can no longer hold with some *C* independent of *u*.

Furthermore, Alvino, Ferone, and Trombetti [7] proved the following Moser-Trudinger type inequality in Lorentz space. They obtained that if

$$\|\nabla u\|_{n,q} \le 1, \quad 1 < q < \infty, \tag{1.2}$$

then there exists a constant C, depending only on n and q, such that

$$\int_{\Omega} e^{\beta |u(x)|^{q'}} dx \le C |\Omega|, \quad \forall \beta \le \beta_q = (nC_n^{\frac{1}{n}})^{q'}, \tag{1.3}$$

where q' is the conjugate index of q, i.e., $q' = \frac{q}{q-1}$ and C_n is the measure of unit ball in \mathbb{R}^n , and the constant β_q is sharp.

There have been many generalizations related to the Moser-Trudinger inequality, see [1,8–18], etc. These inequalities play a key role in Geometry analysis, calculus of variations and PDEs, see [19–27], etc.

Recently, many authors have intended to establish the Moser-Trudinger type inequality under the anisotropic norm. Let $F \in C^2(\mathbb{R}^n \setminus \{0\})$ be a positive, convex, and homogeneous function, and the polar $F^o(x)$ of which represents a Finsler metric on \mathbb{R}^n . By calculating the Euler-Lagrange equation of the minimization problem

$$\min_{u\in W_0^{1,n}(\Omega)}\int_{\Omega}F^p(\nabla u)dx,$$

we obtain an operator which is called Finsler *p*-Laplacian operator:

$$\Delta_F u := \sum_{i=1}^n \frac{\partial}{\partial x_i} (F^{p-1}(\nabla u) F_{\xi_i}(\nabla u)).$$

The Finsler *p*-Laplacian becomes the standard *p*-Laplacian when *F* is the Euclidean modulus, as well as the pseudo-*p*-Laplacian when $F(\xi) = (\sum_{i=1}^{n} |\xi_i|^p)^{\frac{1}{p}}$. The Finsler *p*-Laplacian operator has been studied in several papers, see [28–35], etc. More properties of F(x) will be given in Section 2.

The first work involving the anisotropic Moser-Trudinger type inequality was that of Wang and Xia [35]. They replaced the Dirichlet norm $(\int_{\Omega} |\nabla u|^n dx)^{\frac{1}{n}}$ with the anisotropic norm $(\int_{\Omega} F^n(\nabla u) dx)^{\frac{1}{n}}$ and proved the following inequality:

$$\sup_{u\in W_0^{1,n}(\Omega),\int_{\Omega}F^n(\nabla u)dx\leq 1}\int_{\Omega}e^{\lambda|u|\frac{n}{n-1}}dx\leq C,$$

where $\lambda \leq \lambda_n = n^{\frac{n}{n-1}} \kappa_n^{\frac{1}{n-1}}$, $\kappa_n = |x \in \mathbb{R}^n | F^o(x) \leq 1|$ is the volume of the unit Wulff ball in \mathbb{R}^n , and the constant λ_n is sharp. Clearly, this is a generation result of (1.1).

Along this line, in this paper we consider the anisotropic Moser-Trudinger type inequality in Lorentz space L(n,q), $1 \le q \le \infty$. The definition and properties of Lorentz space can be seen in Section 2. Now, we state main results in the paper.

Theorem 1.1. Let Ω be a bounded domain in \mathbb{R}^n with $n \ge 2$, and let $u \in W_0^{1,n}(\Omega)$ be a function such that

$$\|F(\nabla u)\|_{n,q} \le 1, \quad 1 \le q \le \infty.$$

$$(1.4)$$

We conclude that:

(i) If q = 1, then

$$\|u\|_{\infty} \le \frac{1}{n\kappa_n^{\frac{1}{n}}} \|F(\nabla u)\|_{n,1}.$$
(1.5)

(ii) If $1 < q < \infty$, then there exists a constant C, depending only on n and q, such that

$$\int_{\Omega} e^{\lambda |u(x)|^{q'}} dx \le C |\Omega|, \quad \forall \lambda \le \bar{\lambda}_q = (n\kappa_n^{\frac{1}{n}})^{q'}, \quad q' = \frac{q}{q-1}.$$
(1.6)

What is more, the constant $\bar{\lambda}_q$ is sharp in the sense that, for any $\lambda > \bar{\lambda}_q$, inequality (1.6) can no longer hold with any *C* independent of *u*.

AIMS Mathematics

(iii) If $q = \infty$, then

$$\int_{\Omega} e^{\lambda |u(x)|} dx \le C, \quad \forall \lambda < \bar{\lambda}_{\infty} = n \kappa_n^{\frac{1}{n}}.$$
(1.7)

What is more, the constant $\overline{\lambda}_{\infty}$ is sharp in the sense that, for any $\lambda \geq \overline{\lambda}_{\infty}$, inequality (1.7) can no longer hold with any C independent of u.

2. Preliminaries

In this section, we provide some preliminaries on the Finsler-Laplacian and Lorentz space.

Let F(x) be a function of class $C^2(\mathbb{R}^n \setminus \{0\})$, which is convex and even. F(x) has positively homogenous of degree 1, i.e., for any $t \in \mathbb{R}, \xi \in \mathbb{R}^n$,

$$F(t\xi) = |t|F(\xi).$$

A classical example is $F(\xi) = (\sum_i |\xi_i|^q)^{\frac{1}{q}}, q \ge 1$. We further assume that

$$F(\xi) > 0, \forall \xi \neq 0.$$

By the property of the homogeneity of *F*, we can find two positive constants $0 < a_1 \le a_2 < \infty$ to have

$$a_1|\xi| \le F(\xi) \le a_2|\xi|, \quad \forall \xi \in \mathbb{R}^n.$$

$$(2.1)$$

The image of the map $\phi(\xi) = F_{\xi}(\xi), \xi \in S^{n-1}$, is a smooth and convex hypersurface in \mathbb{R}^n , which is called the Wulff shape of F. The support function $F^o(x)$ of F(x) is defined by $F^o(x) := \sup_{\xi \in U} \langle x, \xi \rangle$, where $U = \{x \in \mathbb{R}^n : F(x) \le 1\}$. We can check that $F^o : \mathbb{R}^n \mapsto [0, +\infty)$ is also a function of class $C^2(\mathbb{R}^n \setminus \{0\})$. Besides, $F^o(x)$ is also a convex and homogeneous function. Furthermore, $F^o(x)$ is dual to F(x) in the sense that

$$F^{o}(x) = \sup_{\xi \neq 0} \frac{\langle x, \xi \rangle}{F(\xi)}, \qquad F(x) = \sup_{\xi \neq 0} \frac{\langle x, \xi \rangle}{F^{o}(\xi)}.$$

Define

$$\mathcal{W}_r(x_0) = \{x \in \mathbb{R}^n | F^o(x - x_0) \le r\}$$

which is called the Wulff ball of center at x_0 with radius r. Also for convenience, we denote the unit Wulff ball of center at origin as

$$\mathcal{W}_1 := \{ x \in \mathbb{R}^n | F^o(x) \le 1 \}$$

and

$$\kappa_n = |\mathcal{W}_1|,$$

which is the the volume of W_1 .

By the assumptions of F(x), we have some conclusions of the function F(x), see [34, 36–40].

Lemma 2.1. We have

(i) $|F(x) - F(y)| \le F(x + y) \le F(x) + F(y);$ (ii) $\frac{1}{C} \le |\nabla F(x)| \le C$, and $\frac{1}{C} \le |\nabla F^o(x)| \le C$ for some C > 0 and any $x \ne 0$; (iii) $\langle x, \nabla F(x) \rangle = F(x), \langle x, \nabla F^o(x) \rangle = F^o(x)$ for any $x \ne 0$;

AIMS Mathematics

(*iv*) $F(\nabla F^o(x)) = 1$, $F^o(\nabla F(x)) = 1$ for any $x \neq 0$; (*v*) $F^o(x)F_{\xi}(\nabla F^o(x)) = x$ for any $x \neq 0$; (*vi*) $F_{\xi}(t\xi) = sgn(t)F_{\xi}(\xi)$ for any $\xi \neq 0$ and $t \neq 0$.

Now, we give the co-area formula and isoperimetric inequality with respect to *F*. For a domain $\Omega \subset \mathbb{R}^n$, $K \subset \Omega$ and a bounded variation function $u \in BV(\Omega)$, the anisotropic bounded variation of *u* with respect to *F* is defined by

$$\int_{\Omega} |\nabla u|_F = \sup\{\int_{\Omega} u \operatorname{div} \sigma dx, \sigma \in C_0^1(\Omega; \mathbb{R}^n), F^o(\sigma) \le 1\},\$$

and the anisotropic perimeter of K with respect to F is defined by

$$P_F(K) := \int_{\Omega} |\nabla \mathcal{X}_K|_F dx,$$

where X_K is the characteristic function of the set K. Then, we have the co-area formula

$$\int_{\Omega} |\nabla u|_F = \int_0^\infty P_F(|u| > t) dt$$
(2.2)

and the isoperimetric inequality

$$P_F(K) \ge n\kappa_n^{\frac{1}{n}} |K|^{1-\frac{1}{n}},$$
(2.3)

see [33]. Moreover, the equality in (2.3) holds if and only if K is a Wulff ball.

In the following, let Ω^{\sharp} be the homothetic Wulff ball in \mathbb{R}^n centered at the origin, which satisfies

$$|\Omega| = |\Omega^{\sharp}|,$$

where $|\cdot|$ denotes the volume. For a real-valued function $u : \Omega \to \mathbb{R}$, the distribution function $\mu_u(t) : [0, +\infty) \to [0, +\infty]$ of *u* is defined as

$$\mu_u(t) = |x \in \Omega| |u(x)| > t|$$
, for $t \ge 0$.

The decreasing rearrangement u^* of u is defined as

$$\mu^*(s) = \sup\{t \ge 0 | \mu_u(t) > s\}, \text{ for } s \ge 0.$$

Clearly the support of u^* satisfies $suppu^* \subseteq [0, |\Omega|]$.

Furthermore, the convex symmetrization u^{\sharp} of u with respect to F is defined as

$$u^{\sharp}(x) = u^*(\kappa_n F^o(x)^n), \text{ for } x \in \Omega^{\sharp}.$$

Next, we recall some properties of Lorentz space L(p, q). A function *u* belongs to Lorentz space L(p, q), $1 , <math>1 \le q \le \infty$, if the quantity

$$\|u\|_{p,q} = \begin{cases} (\int_0^\infty [u^*(t)t^{\frac{1}{p}}]^q \frac{dt}{t})^{\frac{1}{q}}, & \text{if } 1 \le q < \infty, \\ \sup_{t>0} u^*(t)t^{\frac{1}{p}}, & \text{if } q = \infty, \end{cases}$$
(2.4)

AIMS Mathematics

is finite. In particular, we note that $L(p, p) = L^p(\Omega)$ and $L(p, \infty) = M^p$, which is called the Marcinkiewicz space. Another important property of Lorentz space is the intermediate property between L^p space. Precisely, for $1 < q < p < r < \infty$, the following conclusion holds:

$$L^r \subset L(p,1) \subset L(p,q) \subset L(p,p) = L^p \subset L(p,r) \subset L(p,\infty) \subset L^q.$$

And, we have

$$\|u\|_{p,r} \le \left(\frac{q}{p}\right)^{\frac{1}{q} - \frac{1}{r}} \|u\|_{p,q}, \quad \text{for } q \le r.$$
(2.5)

When q > p, it is easy to check that the quantity (2.4) is not a norm. Letting

$$\bar{u}(s) = \frac{1}{s} \int_0^s u^*(t) dt, \quad s \in (0, +\infty),$$

the quantity

$$\|u\|_{p,q}^{*} = \begin{cases} (\int_{0}^{\infty} [\bar{u}(t)t^{\frac{1}{p}}]^{q} \frac{dt}{t})^{\frac{1}{q}}, & \text{if } 1 \le q < \infty, \\ \sup_{t > 0} \bar{u}(t)t^{\frac{1}{p}}, & \text{if } q = \infty, \end{cases}$$
(2.6)

is a norm for any p and q. Besides, it is proved in [41] that quantity (2.6) is equivalent to the quantity (2.4)

$$||u||_{p,q} \le ||u||_{p,q}^* \le C||u||_{p,q},$$

where $C \ge 1$ is a constant depending only on p and q. What is more, under the norm (2.6), L(p,q) is a Banach space. We refer to [41–44] for more information involving the Lorentz space L(p,q).

Now, we give a relationship between two nonnegative functions in $L^1(\Omega)$. We say that *u* is dominated by *v*, which is written by $u \prec v$, if

$$\begin{cases} \int_0^s u^*(t)dt \le \int_0^s v^*(t)dt, \quad \forall s \in [0, |\Omega|), \\ \int_0^{|\Omega|} u^*(t)dt = \int_0^{|\Omega|} v^*(t)dt. \end{cases}$$
(2.7)

Many properties about the relationship are given, for example, in [45]. For later use, we recall the following property:

Lemma 2.2. [45] The following conclusions are equivalent:

(i) u < v;
(ii) for all nonnegative functions ω ∈ L[∞](Ω),

$$\int_{\Omega} u(x)\omega(x)dx \leq \int_{0}^{|\Omega|} v^{*}(s)\omega^{*}(s)ds, \quad \int_{\Omega} u(x)dx = \int_{\Omega} v(x)dx;$$

(iii) for all nonnegative functions $\omega \in L^{\infty}(\Omega)$,

$$\int_0^{|\Omega|} u^*(s)\omega^*(s)ds \le \int_0^{|\Omega|} v^*(s)\omega^*(s)ds, \quad \int_\Omega u(x)dx = \int_\Omega v(x)dx.$$

Now, we state a key method to construct a function Ψ , which is dominated by a function ψ , see [45]. Let D(s), $s \in [0, |\Omega|]$, be a family of subsets of Ω which have the following properties:

AIMS Mathematics

(i) |D(s)| = s; (ii) $D(s_1) \subset D(s_2)$, if $s_1 < s_2$; (iii) $D(s) = \{x \in \Omega : |u(x)| > t\}$, if $s = \mu_u(t)$.

We see that this means that D(s) is the family of the level sets of |u(x)|. For a nonnegative function $\psi \in L^1(\Omega)$, we define $\Psi(t)$ as the function such that

$$\int_{D(s)} \psi(x) dx = \int_0^s \Psi(t) dt, \quad s \in [0, |\Omega|].$$
(2.8)

For (2.8), we say that Ψ is built from ψ on the level sets of |u|. It is shown in [45] that

$$\Psi \prec \psi. \tag{2.9}$$

3. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1. The proof of Theorem 1.1 is an adaptation of ones given in [7]. We first give some key lemmas. Let u be a measurable function in Ω such that

$$g(x) = F(\nabla u) \in L(n,q), \quad 1 \le q \le \infty.$$
(3.1)

We let G(t) be the function built from g on the level sets of u, as in (2.8). Then, we have the following result:

Lemma 3.1. The estimate

$$u^{*}(s) \leq \frac{1}{n\kappa_{n}^{\frac{1}{n}}} \int_{s}^{|\Omega|} G(t) t^{\frac{1}{n}} \frac{dt}{t}$$
(3.2)

holds.

Proof. By (2.8) and (3.1), we have

$$-\frac{d}{dt} \int_{|u|>t} F(\nabla u) dx = -\frac{d}{dt} \int_{|u|>t} g(x) dx = -\frac{d}{dt} \int_{0}^{\mu(t)} G(s) ds = (-\mu'(t)) G(\mu(t)).$$

where $\mu(t) = \mu_u(t)$. By the co-area formula (2.2) and isoperimetric inequality (2.3), we have

$$n\kappa_n^{\frac{1}{n}}\mu(t)^{1-\frac{1}{n}} \le -\frac{d}{dt} \int_{|u|>t} F(\nabla u) dx = (-\mu'(t))G(\mu(t)).$$

Then, we get

$$-u^{*'}(s) \le \frac{1}{n\kappa_n^{\frac{1}{n}}} \frac{G(s)}{s^{1-\frac{1}{n}}}$$

Thus, the lemma is obtained by direct integration.

By Lemma 3.1, for the purpose of the estimate u(x), we can estimate the *H*-symmetric and decreasing function

$$v(x) = \frac{1}{n\kappa_n^{\frac{1}{n}}} \int_{\kappa_n F^o(x)^n}^{|\Omega|} G(t) t^{\frac{1}{n}} \frac{dt}{t}.$$
(3.3)

By the following lemma, we can estimate u(x) by a function involving g^* .

AIMS Mathematics

Volume 9, Issue 4, 9808–9821.

Lemma 3.2. Let $g \in L^1(\Omega)$. For any nonnegative function G defined in $[0, |\Omega|]$ such that $G \prec g$, we let v be the function defined in (3.3). Then, we obtain

$$\bar{v}(s) \le \frac{1}{n\kappa_n^{\frac{1}{n}}} \left[\int_s^{|\Omega|} g^*(t) t^{\frac{1}{n}} \frac{dt}{t} + \frac{1}{s^{1-\frac{1}{n}}} \int_0^s g^*(t) dt \right].$$
(3.4)

Proof. By (3.3), we have

$$\bar{v}(s) = \frac{1}{s} \int_{0}^{s} v^{*}(t) dt$$

= $\frac{1}{n\kappa_{n}^{\frac{1}{n}}} (\int_{s}^{|\Omega|} G(t) t^{\frac{1}{n}} \frac{dt}{t} + \frac{1}{s} \int_{0}^{s} G(t) t^{\frac{1}{n}} dt)$
 $\leq \frac{1}{n\kappa_{n}^{\frac{1}{n}}} \int_{0}^{|\Omega|} G(m) h(m, s) dm,$

where

$$h(m, s) = \begin{cases} s^{-1+\frac{1}{n}}, & \text{if } 0 \le m \le s, \\ m^{-1+\frac{1}{n}}, & \text{if } s < m \le |\Omega|. \end{cases}$$

Clearly, for any fixed *s*, h(m, s) is decreasing with respect to *m*. Then, by Lemma 2.2 and the property $G \prec g$, we obtain (3.4).

For the aim to prove Theorem 1.1, we need the following lemma proved by Adams [46].

Lemma 3.3. [46] Let a(s,t) be a nonnegative measurable function in $\mathbb{R} \times [0,\infty)$, and for some $q \in (1,\infty)$, $q' = \frac{q}{q-1}$,

$$a(s,t) \le 1, \quad for \quad a.e. \quad 0 < s < t,$$
 (3.5)

and

$$\sup_{t>0} (\int_{-\infty}^{0} a(s,t)^{q'} ds + \int_{t}^{\infty} a(s,t)^{q'} ds)^{\frac{1}{q'}} = \nu < +\infty.$$
(3.6)

Assume that $\Phi(s) \ge 0$ and

$$\int_{-\infty}^{+\infty} \Phi(s)^q ds \le 1.$$
(3.7)

Then, there exists a constant C, depending only on q and v such that

$$\int_0^{+\infty} e^{-H(t)} dt \le C,$$

where

$$H(t) = t - \left(\int_{-\infty}^{+\infty} a(s,t)\Phi(s)ds\right)^{q'}.$$

Now, it is sufficient to prove Theorem 1.1.

Proof of Theorem 1.1. We complete the proof by distinguishing three cases. **Case (i)** q = 1. By Lemma 3.1, we have that

$$||u||_{\infty} \le u^*(0) \le \frac{1}{n\kappa_n^{\frac{1}{n}}} \int_0^{|\Omega|} G(t) t^{\frac{1}{n}} \frac{dt}{t}.$$

AIMS Mathematics

Then, by G < g and Lemma 2.2, we have that

$$||u||_{\infty} \leq \frac{1}{n\kappa_n^{\frac{1}{n}}} \int_0^{|\Omega|} g^*(t) t^{\frac{1}{n}} \frac{dt}{t} = \frac{1}{n\kappa_n^{\frac{1}{n}}} ||F(\nabla u)||_{n,1}.$$

Then, (1.5) holds.

Case (ii) $1 < q < \infty$. By Lemma 3.2, we have

$$\bar{u}(s) \le \frac{1}{n\kappa_n^{\frac{1}{n}}} \left(\int_s^{|\Omega|} g^*(t) t^{\frac{1}{n}} \frac{dt}{t} + \frac{1}{s^{1-\frac{1}{n}}} \int_0^s g^*(t) dt \right).$$
(3.8)

For the convenience, we denote n' as the conjugate index of n, i.e., $n' = \frac{n}{n-1}$. Then,

$$\begin{split} \bar{u}(|\Omega|e^{-t}) &\leq \frac{1}{n\kappa_n^{\frac{1}{n}}} (\int_{|\Omega|e^{-t}}^{|\Omega|} g^*(t)t^{\frac{1}{n}} \frac{dt}{t} + \frac{1}{(|\Omega|e^{-t})^{1-\frac{1}{n}}} \int_0^{|\Omega|e^{-t}} g^*(t)dt) \\ &= \frac{|\Omega|^{\frac{1}{n}}}{n\kappa_n^{\frac{1}{n}}} (\int_0^t g^*(|\Omega|e^{-t})e^{-\frac{t}{n}}dt + e^{t(1-\frac{1}{n})} \int_t^{\infty} g^*(|\Omega|e^{-t})e^{-t}dt) \\ &= \frac{1}{n\kappa_n^{\frac{1}{n}}} \int_{-\infty}^{+\infty} a(s,t)\Phi(s)ds, \end{split}$$

where

$$a(s,t) = \begin{cases} 0, & \text{if } s \le 0, \\ e^{\frac{t-s}{n^{t}}}, & \text{if } t < s < +\infty, \\ 1, & \text{if } 0 < s < t, \end{cases}$$

and

$$\Phi(s) = \begin{cases} |\Omega|^{\frac{1}{n}} g^*(|\Omega| e^{-s}) e^{-\frac{s}{n}}, & \text{if } s \ge 0, \\ 0, & \text{if } s < 0. \end{cases}$$

It is obvious that (3.5) holds. Next, for any $1 < q < \infty$, we obtain

$$(\int_{-\infty}^{0} a(s,t)^{q'} ds + \int_{t}^{\infty} a(s,t)^{q'} ds)^{\frac{1}{q'}}$$

= $(\int_{t}^{\infty} e^{\frac{q'(t-s)}{n'}} ds)^{\frac{1}{q'}}$
= $(e^{\frac{tq'}{n'}} \int_{t}^{\infty} e^{-\frac{sq'}{n'}} ds)^{\frac{1}{q'}}$
= $(\frac{n'}{q'})^{\frac{1}{q'}}.$

Then, we get (3.6) by choosing $v = \left(\frac{n'}{q'}\right)^{\frac{1}{q'}}$. Finally, by (1.4), we have that

$$\int_{-\infty}^{+\infty} \Phi(s)^{q} ds = |\Omega|^{\frac{q}{n}} \int_{0}^{+\infty} (g^{*}(|\Omega|e^{-s})e^{-\frac{s}{n}})^{q} ds$$
$$= \int_{0}^{|\Omega|} (g^{*}(t)t^{\frac{1}{n}})^{q} \frac{dt}{t}$$
$$= ||F(\nabla u)||_{n,q}^{q} \le 1.$$

AIMS Mathematics

This means that (3.7) holds. Then, by Lemma 3.3, we have

$$\int_0^{+\infty} e^{-t+(\bar{u}(|\Omega|e^{-t})n\kappa_n^{\frac{1}{n}})^{q'}} dt \leq C,$$

which means that

$$\int_0^{|\Omega|} e^{(\bar{u}(s)n\kappa_n^{\frac{1}{n}})^{q'}} ds \le C|\Omega|$$

Furthermore, by the fact $u^*(s) \le \overline{u}(s)$, we obtain

$$\int_{\Omega} e^{\lambda |u(x)|^{q'}} dx = \int_{0}^{|\Omega|} e^{\lambda u^*(s)^{q'}} ds \le \int_{0}^{|\Omega|} e^{\lambda \bar{u}(s)^{q'}} ds \le C |\Omega|, \quad \forall \lambda \le (n\kappa_n^{\frac{1}{n}})^{q'} = \bar{\lambda}_q.$$

Case (iii) $q = \infty$. By (3.8) and (1.4), we obtain

$$\begin{split} \bar{u}(s) &\leq \frac{1}{n\kappa_n^{\frac{1}{n}}} (\int_s^{|\Omega|} g^*(t) t^{\frac{1}{n}} \frac{dt}{t} + \frac{1}{s^{1-\frac{1}{n}}} \int_0^s g^*(t) dt) \\ &\leq \frac{1}{n\kappa_n^{\frac{1}{n}}} (\int_s^{|\Omega|} \frac{1}{t} dt + \frac{1}{s^{1-\frac{1}{n}}} \int_0^s t^{-\frac{1}{n}} dt) \\ &= \frac{1}{n\kappa_n^{\frac{1}{n}}} (\log \frac{|\Omega|}{s} + \frac{n}{n-1}). \end{split}$$

It follows that

$$\int_0^{|\Omega|} e^{\lambda \bar{u}(s)} ds \le e^{\frac{\lambda}{(n-1)\kappa_n^{\frac{1}{n}}}} \int_0^{|\Omega|} (\frac{|\Omega|}{s})^{\frac{\lambda}{n\kappa_n^{\frac{1}{n}}}} ds.$$

Clearly, the right hand side is finite if and only if $\lambda < n\kappa_n^{\frac{1}{n}} = \bar{\lambda}_{\infty}$. Then, we get (1.7). At last, we prove the sharpness of (1.5)–(1.7).

We easily see that equality (1.5) holds if $u(x) = u^{\sharp}(x)$ and $F(\nabla u) = F(\nabla u)^{\sharp} \in L(n, 1)$.

The proof of sharpness for (1.6) is more complicated. If $1 < q < \infty$, for any $\lambda > \overline{\lambda}_q$, we will construct a sequence of functions u_k such that $||F(\nabla u_k)||_{n,q} \le 1$ and

$$\lim_{k \to \infty} \int_{\Omega} e^{\lambda |u_k(x)|^{q'}} dx = +\infty.$$
(3.9)

Define

$$u_{k}(x) = \begin{cases} \frac{k^{\frac{1}{q'}}}{n\kappa_{n}^{\frac{1}{n}}}, & \text{if } 0 \le \kappa_{n}F^{o}(x)^{n} \le e^{-k}, \\ \frac{1}{n\kappa_{n}^{\frac{1}{n}}k^{\frac{1}{q}}} \log(\frac{1}{\kappa_{n}F^{o}(x)^{n}}), & \text{if } e^{-k} \le \kappa_{n}F^{o}(x)^{n} \le 1, \\ 0, & \text{if } \kappa_{n}F^{o}(x)^{n} > 1. \end{cases}$$
(3.10)

Then, by direct calculation, using Lemma 2.1, we have that the decreasing rearrangement of $F(\nabla u_k)$ is

$$F(\nabla u_k)^*(s) = \begin{cases} 0, & \text{if } 1 - e^{-k} \le s \le 1, \\ \frac{k^{-\frac{1}{q}}}{(s + e^{-k})^{\frac{1}{n}}}, & \text{if } 0 \le s < 1 - e^{-k}. \end{cases}$$

AIMS Mathematics

We consider 1 < q < n, q = n, and $n < q < \infty$ separately. When 1 < q < n, making the change of variable $m = 1 + se^k$, then

$$||F(\nabla u_k)||_{n,q} = \left(\frac{1}{k} \int_0^{1-e^{-k}} \left(\frac{s}{s+e^{-k}}\right)^{\frac{q}{n}} \frac{ds}{s}\right)^{\frac{1}{q}} \\ = \left(\frac{1}{k} \int_1^{e^k} \left(1-\frac{1}{m}\right)^{\frac{q}{n}} \frac{dm}{m-1}\right)^{\frac{1}{q}}.$$

We let

$$\beta_k = \|F(\nabla u_k)\|_{n,q} = \left(\frac{1}{k}\int_1^{e^k} (1-\frac{1}{m})^{\frac{q}{n}} \frac{dm}{m-1}\right)^{\frac{1}{q}}.$$

Then,

$$\lim_{k \to \infty} \frac{1}{k} \int_{1}^{e^{k}} (1 - \frac{1}{m})^{\frac{q}{n}} \frac{dm}{m - 1}$$

$$= \lim_{k \to \infty} \frac{1}{k} \int_{1}^{e^{k}} \frac{1}{(m - 1)^{1 - \frac{q}{n}} m^{\frac{q}{n}}} dm$$

$$= \lim_{k \to \infty} \frac{e^{k}}{(e^{k} - 1)^{1 - \frac{q}{n}} (e^{k})^{\frac{q}{n}}}$$

$$= \lim_{k \to \infty} (\frac{e^{k}}{e^{k} - 1})^{1 - \frac{q}{n}} = 1.$$

Hence, we have $\lim_{k\to\infty} \beta_k = 1$. Now, we set

$$v_k(x) = \frac{u_k(x)}{\beta_k}.$$

Clearly, $||F(\nabla v_k)||_{n,q} = 1$. However, when $\lambda > \overline{\lambda}_q = (n\kappa_n^{\frac{1}{n}})^{q'}$, as $k \to +\infty$,

$$\int_{\Omega} e^{\lambda |v_k(x)|^{q'}} dx \geq \int_{0}^{e^{-k}} \exp\left[\frac{k\lambda}{\beta_k^{q'}(n\kappa_n^{\frac{1}{n}})^{q'}}\right] ds$$
$$= \exp\left[k\left(\frac{\lambda}{\beta_k^{q'}(n\kappa_n^{\frac{1}{n}})^{q'}}-1\right)\right]$$
$$\to +\infty.$$

When q = n, the proof is similar to that in [2]. We have

$$\|F(\nabla u_k)\|_{n,n} = \|F(\nabla u_k)\|_n \le 1.$$
(3.11)

Then, when $\lambda > \overline{\lambda}_{n,n} = n^{\frac{n}{n-1}} \kappa_n^{\frac{1}{n-1}}$, as $k \to +\infty$,

$$\int_{\Omega} e^{\lambda |u_k|^{\frac{n}{n-1}}} dx = \int_{0}^{|\Omega|} e^{\lambda |u_k^*|^{\frac{n}{n-1}}} ds$$

AIMS Mathematics

$$\geq \exp[k(\frac{\lambda}{n^{\frac{n}{n-1}}\kappa_n^{\frac{1}{n-1}}}-1)] \to +\infty.$$

When $n \le q < \infty$, from (2.5) and (3.11) we have

$$||F(\nabla u_k)||_{n,q} \le ||F(\nabla u_k)||_n = 1.$$

Then, as the case of q = n, it is easy to prove that

$$\int_{B} e^{\lambda |u_{k}(x)|^{q'}} dx \to +\infty \quad \text{as} \quad k \to \infty, \quad \text{when} \quad \lambda > \bar{\lambda}_{q} = (n \kappa_{n}^{\frac{1}{n}})^{q'}.$$

When $q = \infty$, we construct a function u such that $||F(\nabla u)||_{n,\infty} \le 1$, and for any $\lambda \ge \overline{\lambda}_{\infty} = n\kappa_n^{\frac{1}{n}}$,

$$\int_{\Omega} e^{\lambda |u(x)|} dx = +\infty.$$

Let

$$u(x) = \frac{1}{n\kappa_n^{\frac{1}{n}}}\log(\frac{1}{\kappa_n F^o(x)^n}), \quad \forall x \in \mathcal{W}_1.$$

By direct calculation, using Lemma 2.1, we obtain

$$F(\nabla u)^*(s) = \frac{1}{s^{\frac{1}{n}}},$$

and then

 $\|F(\nabla u)\|_{n,\infty} \leq 1.$

Thus, when $\lambda \ge \bar{\lambda}_{\infty} = n\kappa_n^{\frac{1}{n}}$, by the co-area formula (2.2), we have

$$\int_{W_1} e^{\lambda |u(x)|} dx = \int_0^1 \exp(\frac{\lambda}{n\kappa_n^{\frac{1}{n}}} \log(\frac{1}{s})) ds$$
$$\geq C \int_0^1 \frac{1}{s} ds = +\infty.$$

The proof is completed.

4. Conclusions

In this paper, we mainly study the anisotropic Moser-Trudinger type inequality in Lorentz space L(n,q), $1 \le q \le \infty$. It is a generation result of Moser-Trudinger type inequality in Lorentz space. The extremal function of such inequality is closely related to existence of solutions of Finsler-Liouville type equation. We believe that the sharp inequality will be the key tool to study the existence of solutions for some quasi-linear elliptic equations, such as Finsler-Laplacian equation.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics

Acknowledgments

The work of the first author is supported by NSFC of China (No. 12001472).

Conflict of interest

The authors declare there is no conflict of interest.

References

- 1. N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473–483. http://dx.doi.org/10.1512/iumj.1968.17.17028
- 2. J. Moser, A sharp form of an inequality by N. Trudinger, *Indiana U. Math. J.*, **11** (1971), 1077–1092. http://dx.doi.org/10.2307/24890183
- 3. A. Cianchi, A fully anisotropic Sobolev inequality, *Pac. J. Math.*, **196** (2000), 283–295. http://dx.doi.org/10.2140/pjm.2000.196.283
- 4. A. Cianchi, Optimal Orlicz-Sobolev embeddings, *Rev. Mat. Iberoamericana*, **20** (2002), 427–474. http://dx.doi.org/10.4171/RMI/396
- 5. L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces, *Boll. Unione Mat. Ital.*, 1998, 479–500.
- 6. F. Feo, J. Martin, M. R. Posteraro, Sobolev anisotropic inequalities with monomial weights, *J. Math. Anal. Appl.*, **505** (2022), 125557. http://dx.doi.org/10.1016/j.jmaa.2021.125557
- A. Alvino, V. Ferone, G. Trombetti, Moser-type inequalities in Lorentz spaces, *Potential Anal.*, 5 (1996), 273–299. http://dx.doi.org/10.1007/BF00282364
- 8. S. Adachi, K. Tanaka, Trudinger type inequalities in \mathbb{R}^N and their best exponents, *P. Am. Math. Soc.*, **128** (2000), 2051–2057. http://dx.doi.org/10.1090/S0002-9939-99-05180-1
- 9. A. Karppinen, Fractional operators and their commutators on generalized Orlicz spaces, *Opusc. Math.*, **42** (2022), 583–604. http://dx.doi.org/10.7494/OpMath.2022.42.4.573
- Q. H. Yang, Y. Li, Trudinger-Moser inequalities on hyperbolic spaces under Lorentz norms, J. Math. Anal. Appl., 472 (2019), 1236–1252. http://dx.doi.org/10.1016/j.jmaa.2018.11.074
- 11. G. Lu, H. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, *Adv. Nonlinear Stud.*, **16** (2016), 581–601. http://dx.doi.org/10.1515/ans-2015-5046
- 12. G. Lu, H. Tang, Sharp Moser-Trudinger inequalities on hyperbolic spaces with the exact growth condition, *J. Geom. Anal.*, **26** (2016), 837–857. http://dx.doi.org/10.1007/s12220-015-9573-y
- 13. L. Carleson, S. Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, *B. Sci. Math.*, **110** (1986), 113–127.
- 14. N. Labropoulos, Vector analysis on symmetric manifolds and Sobolev inequalities, *Rend. Circ. Mat. Palerm.*, **71** (2022), 1173–1215. http://dx.doi.org/10.1007/s12215-022-00792-1
- 15. M. Flucher, Extremal functions for Trudinger-Moser inequality in 2 dimensions, *Comment. Math. Helv.*, **67** (1992), 471–497. http://dx.doi.org/10.1007/bf02566514

AIMS Mathematics

- 16. N. Lam, G. Lu, L. Zhang, Existence and of functions nonexistence extremal Trudinger-Moser inequalities, (2019),1253-1298. for sharp Adv. Math., 352 http://dx.doi.org/10.1016/j.aim.2019.06.020
- 17. Y. Li, B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^n , *Indiana U. Math. J.*, **57** (2008), 451–480. http://dx.doi.org/10.1512/iumj.2008.57.3137
- 18. B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^2 , *J. Funct. Anal.*, **219** (2005), 340–367. http://dx.doi.org/10.1016/j.jfa.2004.06.013
- 19. S. Y. A. Chang, P. Yang, The inequality of Moser and Trudinger and applications to conformal geometry, *Commun. Pur. Appl. Math.*, **56** (2003), 1135–1150. http://dx.doi.org/10.1002/cpa.3029
- 20. D. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in \mathbb{R}^2 , *Commun. Part. Diff. Eq.*, **17** (1992), 407–435.
- D. Cassani, L. Du, Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs, *Adv. Nonlinear Anal.*, **12** (2023), 20230103. http://dx.doi.org/10.1515/anona-2023-0103
- 22. D. G. de Figueiredo, O. H. Miyagaki, B. Ruf, Elliptic equations in ℝ² with nonlinearities in the critical growth range, *Calc. Var. Partial. Dif.*, **3** (1995), 139–153. http://dx.doi.org/10.1007/BF01189954
- 23. T. Ogawa, T. Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531–540. http://dx.doi.org/10.1016/0022-247X(91)90017-T
- 24. N. Lam, G. Lu, Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, *J. Geom. Anal.*, **24** (2014), 118–143. http://dx.doi.org/10.1007/s12220-012-9330-4
- 25. X. Lin, X. Tang, On concave perturbations of a periodic elliptic problem in ℝ² involving critical exponential growth, *Adv. Nonlinear Anal.*, **12** (2023), 169–181. http://dx.doi.org/10.1515/anona-2022-0257
- 26. Z. Liu, V. D. Radulescu, J. Zhang, A planar Schrödinger-Newton system with Trudinger-Moser critical growth, *Calc. Var. Part. Diff. Eq.*, **62** (2023), 122. http://dx.doi.org/10.1007/s00526-023-02463-0
- 27. C. S. Lin, J. C. Wei, Locating the peaks of solutions via the maximum principle II: A local version of the method of moving planes, *Commun. Pur. Appl. Math.*, **56** (2013), 784–809.
- A. Alvino, V. Ferone, G. Trombetti, P. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 275–293. http://dx.doi.org/10.1016/S0294-1449(97)80147-3
- M. Belloni, V. Ferone, B. Kawohl, Isoperimetric inequalities, wulffshape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys., 54 (2003), 771–783. http://dx.doi.org/10.1007/s00033-003-3209-y
- 30. M. Belloni, B. Kawohl, P. Juutinen, The *p*-Laplace eigenvalue problem as $p \rightarrow \infty$ in a Finsler metric, *J. Eur. Math. Soc.*, **8** (2006), 123–138. http://dx.doi.org/10.4171/JEMS/40

- 31. C. Bianchini, G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Part. Diff. Eq., 43 (2018),790-820. http://dx.doi.org/10.1080/03605302.2018.1475488
- A. Cianchi, P. Salani, Overdetermined anisotropic elliptic problems, *Math. Ann.*, 345 (2009), 859– 881. http://dx.doi.org/10.1007/s00208-009-0386-9
- 33. I. Fonseca, S. Muller, A uniqueness proof for the Wulff theorem, *P. Roy. Soc. Edinb. A.*, **119** (1991), 125–136. http://dx.doi.org/10.1017/S0308210500028365
- 34. V. Ferone, B. Kawohl, Remarks on a Finsler-Laplacian, *P. Am. Math. Soc.*, **137** (2009), 247–253. http://dx.doi.org/10.1090/S0002-9939-08-09554-3
- 35. G. Wang, C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, *J. Differ. Equations*, **252** (2012), 1668–1700. http://dx.doi.org/10.1016/j.jde.2011.08.001
- 36. G. Bellettini, M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, *J. Hokkaido Math.*, **25** (1996), 537–566. http://dx.doi.org/10.14492/hokmj/1351516749
- 37. G. Wang, C. Xia, A characterization of the Wulff shape by an overdetermined anisotropic PDE, *Arch. Ration. Mech. An.*, **99** (2011), 99–115.
- 38. R. L. Xie, H. J. Gong, A priori estimates and blow-up behavior for solutions of $-Q_n u = Ve^u$ in bounded domain in \mathbb{R}^n , *Sci. China Math.*, **59** (2016), 479–492. http://dx.doi.org/10.1007/S11425-015-5060-Y
- 39. C. L. Zhou, C. Q. Zhou, Moser-Trudinger inequality involving the anisotropic Dirichlet norm $(\int_{\Omega} F^{N}(\nabla u)dx)^{\frac{1}{N}}$ on $W_{0}^{1,N}(\Omega)$, J. Funct. Anal., **276** (2019), 2901–2935. http://dx.doi.org/10.1016/j.jfa.2018.12.001
- Extremal 40. C. L. Zhou. C. Q. Zhou, functions of Moser-Trudinger inequality Finsler-Laplacian, 2309-2328. involving Commun. Pur. Appl. Anal., 17 (2018),http://dx.doi.org/10.3934/cpaa.2018110
- 41. R. O'Neil, Integral transforms and tensor products on Orlicz spaces and *L*(*p*, *q*) spaces, *J. Anal. Math.*, **21** (1968), 1–276. http://dx.doi.org/10.1007/BF02787670
- 42. G. G. Lorentz, Some new functional spaces, Ann. Math., 51 (1950), 37-55.
- 43. R. Hunt, On *L*(*p*, *q*) spaces, *Enseign. Math.*, **12** (1967), 249–276.
- 44. C. Bennett, R. Sharpley, *Interpolation of operators*, Pure and Applied Mathematics, Academic Press, **129** (1988). http://dx.doi.org/10.1016/S0079-8169(08)60845-4
- 45. A. Alvino, P. L. Lions, G. Trombetti, On optimization problems with prescribed rearrangements, *Nonlinear Anal.-Theor.*, **13** (1989), 185–220. http://dx.doi.org/10.1016/0362-546X(89)90043-6
- 46. D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, *Ann. Math.*, **188** (1988), 385–398. http://dx.doi.org/10.2307/1971445

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics