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1. Introduction

Let Ω be a domain with finite measure in Euclidean n-space Rn with n ≥ 2. When 1 ≤ p < n, by the
Sobolev embedding theorem, W1,p

0 (Ω) ⊂ Lq(Ω), 1 ≤ q ≤ np
n−p . Moreover, for the critical situation p = n,

W1,n
0 (Ω) ⊂ Lq(Ω), ∀q ≥ 1. However, we can show by many examples that W1,n

0 (Ω) * L∞(Ω) [1, 2]. For
the anisotropic Sobolev inequalities, we refer to [3–6].

In 1971, Moser [2] established Trudinger’s inequality

sup
u∈W1,n

0 (Ω),‖∇u‖n≤1

∫
Ω

eα|u|
n

n−1 dx ≤ C, (1.1)

for any α ≤ αn = nω
1

n−1
n−1, where ωn−1 is the area of the surface of the unit n-ball. This constant αn

is sharp in the sense that, if α > αn, then the above inequality (1.1) can no longer hold with some C
independent of u.

Furthermore, Alvino, Ferone, and Trombetti [7] proved the following Moser-Trudinger type
inequality in Lorentz space. They obtained that if

‖∇u‖n,q ≤ 1, 1 < q < ∞, (1.2)

then there exists a constant C, depending only on n and q, such that∫
Ω

eβ|u(x)|q
′

dx ≤ C|Ω|, ∀β ≤ βq = (nC
1
n
n )q′ , (1.3)
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where q′ is the conjugate index of q, i.e., q′ =
q

q−1 and Cn is the measure of unit ball in Rn, and the
constant βq is sharp.

There have been many generalizations related to the Moser-Trudinger inequality, see [1, 8–18], etc.
These inequalities play a key role in Geometry analysis, calculus of variations and PDEs, see [19–27],
etc.

Recently, many authors have intended to establish the Moser-Trudinger type inequality under the
anisotropic norm. Let F ∈ C2(Rn\{0}) be a positive, convex, and homogeneous function, and the polar
Fo(x) of which represents a Finsler metric on Rn. By calculating the Euler-Lagrange equation of the
minimization problem

min
u∈W1,n

0 (Ω)

∫
Ω

F p(∇u)dx,

we obtain an operator which is called Finsler p-Laplacian operator:

∆Fu :=
n∑

i=1

∂

∂xi
(F p−1(∇u)Fξi(∇u)).

The Finsler p-Laplacian becomes the standard p-Laplacian when F is the Euclidean modulus, as well
as the pseudo-p-Laplacian when F(ξ) = (

∑n
i=1 |ξi|

p)
1
p . The Finsler p-Laplacian operator has been

studied in several papers, see [28–35], etc. More properties of F(x) will be given in Section 2.
The first work involving the anisotropic Moser-Trudinger type inequality was that of Wang and

Xia [35]. They replaced the Dirichlet norm (
∫

Ω
|∇u|ndx)

1
n with the anisotropic norm (

∫
Ω

Fn(∇u)dx)
1
n

and proved the following inequality:

sup
u∈W1,n

0 (Ω),
∫
Ω

Fn(∇u)dx≤1

∫
Ω

eλ|u|
n

n−1 dx ≤ C,

where λ ≤ λn = n
n

n−1 κ
1

n−1
n , κn = |x ∈ Rn|Fo(x) ≤ 1| is the volume of the unit Wulff ball in Rn, and the

constant λn is sharp. Clearly, this is a generation result of (1.1).
Along this line, in this paper we consider the anisotropic Moser-Trudinger type inequality in Lorentz

space L(n, q), 1 ≤ q ≤ ∞. The definition and properties of Lorentz space can be seen in Section 2.
Now, we state main results in the paper.

Theorem 1.1. Let Ω be a bounded domain in Rn with n ≥ 2, and let u ∈ W1,n
0 (Ω) be a function such that

‖F(∇u)‖n,q ≤ 1, 1 ≤ q ≤ ∞. (1.4)

We conclude that:

(i) If q = 1, then

‖u‖∞ ≤
1

nκ
1
n
n

‖F(∇u)‖n,1. (1.5)

(ii) If 1 < q < ∞, then there exists a constant C, depending only on n and q, such that∫
Ω

eλ|u(x)|q
′

dx ≤ C|Ω|, ∀λ ≤ λ̄q = (nκ
1
n
n )q′ , q′ =

q
q − 1

. (1.6)

What is more, the constant λ̄q is sharp in the sense that, for any λ > λ̄q, inequality (1.6) can no
longer hold with any C independent of u.
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(iii) If q = ∞, then ∫
Ω

eλ|u(x)|dx ≤ C, ∀λ < λ̄∞ = nκ
1
n
n . (1.7)

What is more, the constant λ̄∞ is sharp in the sense that, for any λ ≥ λ̄∞, inequality (1.7) can no
longer hold with any C independent of u.

2. Preliminaries

In this section, we provide some preliminaries on the Finsler-Laplacian and Lorentz space.
Let F(x) be a function of class C2(Rn\{0}), which is convex and even. F(x) has positively

homogenous of degree 1, i.e., for any t ∈ R, ξ ∈ Rn,

F(tξ) = |t|F(ξ).

A classical example is F(ξ) = (
∑

i |ξi|
q)

1
q , q ≥ 1. We further assume that

F(ξ) > 0,∀ξ , 0.

By the property of the homogeneity of F, we can find two positive constants 0 < a1 ≤ a2 < ∞ to have

a1|ξ| ≤ F(ξ) ≤ a2|ξ|, ∀ξ ∈ Rn. (2.1)

The image of the map φ(ξ) = Fξ(ξ), ξ ∈ S n−1, is a smooth and convex hypersurface in Rn, which
is called the Wulff shape of F. The support function Fo(x) of F(x) is defined by Fo(x) := sup

ξ∈U
〈x, ξ〉,

where U = {x ∈ Rn : F(x) ≤ 1}. We can check that Fo : Rn 7→ [0,+∞) is also a function of class
C2(Rn\{0}). Besides, Fo(x) is also a convex and homogeneous function. Furthermore, Fo(x) is dual to
F(x) in the sense that

Fo(x) = sup
ξ,0

〈x, ξ〉
F(ξ)

, F(x) = sup
ξ,0

〈x, ξ〉
Fo(ξ)

.

Define
Wr(x0) = {x ∈ Rn|Fo(x − x0) ≤ r},

which is called the Wulff ball of center at x0 with radius r. Also for convenience, we denote the unit
Wulff ball of center at origin as

W1 := {x ∈ Rn|Fo(x) ≤ 1}

and
κn = |W1|,

which is the the volume ofW1.
By the assumptions of F(x), we have some conclusions of the function F(x), see [34, 36–40].

Lemma 2.1. We have

(i) |F(x) − F(y)| ≤ F(x + y) ≤ F(x) + F(y);
(ii) 1

C ≤ |∇F(x)| ≤ C, and 1
C ≤ |∇Fo(x)| ≤ C for some C > 0 and any x , 0;

(iii) 〈x,∇F(x)〉 = F(x), 〈x,∇Fo(x)〉 = Fo(x) for any x , 0;
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(iv) F(∇Fo(x)) = 1, Fo(∇F(x)) = 1 for any x , 0;
(v) Fo(x)Fξ(∇Fo(x)) = x for any x , 0;

(vi) Fξ(tξ) = sgn(t)Fξ(ξ) for any ξ , 0 and t , 0.

Now, we give the co-area formula and isoperimetric inequality with respect to F. For a domain
Ω ⊂ Rn, K ⊂ Ω and a bounded variation function u ∈ BV(Ω), the anisotropic bounded variation of u
with respect to F is defined by∫

Ω

|∇u|F = sup{
∫

Ω

u divσdx, σ ∈ C1
0(Ω;Rn), Fo(σ) ≤ 1},

and the anisotropic perimeter of K with respect to F is defined by

PF(K) :=
∫

Ω

|∇XK |Fdx,

where XK is the characteristic function of the set K. Then, we have the co-area formula∫
Ω

|∇u|F =

∫ ∞

0
PF(|u| > t)dt (2.2)

and the isoperimetric inequality
PF(K) ≥ nκ

1
n
n |K|1−

1
n , (2.3)

see [33]. Moreover, the equality in (2.3) holds if and only if K is a Wulff ball.
In the following, let Ω] be the homothetic Wulff ball in Rn centered at the origin, which satisfies

|Ω| = |Ω]|,

where | · | denotes the volume. For a real-valued function u : Ω → R, the distribution function
µu(t) : [0,+∞)→ [0,+∞] of u is defined as

µu(t) = |x ∈ Ω||u(x)| > t|, for t ≥ 0.

The decreasing rearrangement u∗ of u is defined as

u∗(s) = sup{t ≥ 0|µu(t) > s}, for s ≥ 0.

Clearly the support of u∗ satisfies suppu∗ ⊆ [0, |Ω|].
Furthermore, the convex symmetrization u] of u with respect to F is defined as

u](x) = u∗(κnFo(x)n), for x ∈ Ω].

Next, we recall some properties of Lorentz space L(p, q).
A function u belongs to Lorentz space L(p, q), 1 < p < ∞, 1 ≤ q ≤ ∞, if the quantity

‖u‖p,q =

 (
∫ ∞

0
[u∗(t)t

1
p ]q dt

t )
1
q , if 1 ≤ q < ∞,

sup
t>0

u∗(t)t
1
p , if q = ∞,

(2.4)
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is finite. In particular, we note that L(p, p) = Lp(Ω) and L(p,∞) = Mp, which is called the
Marcinkiewicz space. Another important property of Lorentz space is the intermediate property
between Lp space. Precisely, for 1 < q < p < r < ∞, the following conclusion holds:

Lr ⊂ L(p, 1) ⊂ L(p, q) ⊂ L(p, p) = Lp ⊂ L(p, r) ⊂ L(p,∞) ⊂ Lq.

And, we have
‖u‖p,r ≤ (

q
p

)
1
q−

1
r ‖u‖p,q, for q ≤ r. (2.5)

When q > p, it is easy to check that the quantity (2.4) is not a norm. Letting

ū(s) =
1
s

∫ s

0
u∗(t)dt, s ∈ (0,+∞),

the quantity

‖u‖∗p,q =

 (
∫ ∞

0
[ū(t)t

1
p ]q dt

t )
1
q , if 1 ≤ q < ∞,

sup
t>0

ū(t)t
1
p , if q = ∞,

(2.6)

is a norm for any p and q. Besides, it is proved in [41] that quantity (2.6) is equivalent to the
quantity (2.4)

‖u‖p,q ≤ ‖u‖∗p,q ≤ C‖u‖p,q,

where C ≥ 1 is a constant depending only on p and q. What is more, under the norm (2.6), L(p, q) is a
Banach space. We refer to [41–44] for more information involving the Lorentz space L(p, q).

Now, we give a relationship between two nonnegative functions in L1(Ω). We say that u is
dominated by v, which is written by u ≺ v, if

∫ s

0
u∗(t)dt ≤

∫ s

0
v∗(t)dt, ∀s ∈ [0, |Ω|),∫ |Ω|

0
u∗(t)dt =

∫ |Ω|
0

v∗(t)dt.
(2.7)

Many properties about the relationship are given, for example, in [45]. For later use, we recall the
following property:

Lemma 2.2. [45] The following conclusions are equivalent:

(i) u ≺ v;
(ii) for all nonnegative functions ω ∈ L∞(Ω),∫

Ω

u(x)ω(x)dx ≤
∫ |Ω|

0
v∗(s)ω∗(s)ds,

∫
Ω

u(x)dx =

∫
Ω

v(x)dx;

(iii) for all nonnegative functions ω ∈ L∞(Ω),∫ |Ω|

0
u∗(s)ω∗(s)ds ≤

∫ |Ω|

0
v∗(s)ω∗(s)ds,

∫
Ω

u(x)dx =

∫
Ω

v(x)dx.

Now, we state a key method to construct a function Ψ, which is dominated by a function ψ, see [45].
Let D(s), s ∈ [0, |Ω|], be a family of subsets of Ω which have the following properties:
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(i) |D(s)| = s;
(ii) D(s1) ⊂ D(s2), if s1 < s2;

(iii) D(s) = {x ∈ Ω : |u(x)| > t}, if s = µu(t).

We see that this means that D(s) is the family of the level sets of |u(x)|. For a nonnegative function
ψ ∈ L1(Ω), we define Ψ(t) as the function such that∫

D(s)
ψ(x)dx =

∫ s

0
Ψ(t)dt, s ∈ [0, |Ω|]. (2.8)

For (2.8), we say that Ψ is built from ψ on the level sets of |u|. It is shown in [45] that

Ψ ≺ ψ. (2.9)

3. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1. The proof of Theorem 1.1 is an adaptation
of ones given in [7]. We first give some key lemmas. Let u be a measurable function in Ω such that

g(x) = F(∇u) ∈ L(n, q), 1 ≤ q ≤ ∞. (3.1)

We let G(t) be the function built from g on the level sets of u, as in (2.8). Then, we have the
following result:

Lemma 3.1. The estimate

u∗(s) ≤
1

nκ
1
n
n

∫ |Ω|

s
G(t)t

1
n
dt
t

(3.2)

holds.

Proof. By (2.8) and (3.1), we have

−
d
dt

∫
|u|>t

F(∇u)dx = −
d
dt

∫
|u|>t

g(x)dx = −
d
dt

∫ µ(t)

0
G(s)ds = (−µ′(t))G(µ(t)),

where µ(t) = µu(t). By the co-area formula (2.2) and isoperimetric inequality (2.3), we have

nκ
1
n
n µ(t)1− 1

n ≤ −
d
dt

∫
|u|>t

F(∇u)dx = (−µ′(t))G(µ(t)).

Then, we get

−u∗′(s) ≤
1

nκ
1
n
n

G(s)

s1− 1
n

.

Thus, the lemma is obtained by direct integration. �

By Lemma 3.1, for the purpose of the estimate u(x), we can estimate the H-symmetric and
decreasing function

v(x) =
1

nκ
1
n
n

∫ |Ω|

κnFo(x)n
G(t)t

1
n
dt
t
. (3.3)

By the following lemma, we can estimate u(x) by a function involving g∗.
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Lemma 3.2. Let g ∈ L1(Ω). For any nonnegative function G defined in [0, |Ω|] such that G ≺ g, we
let v be the function defined in (3.3). Then, we obtain

v̄(s) ≤
1

nκ
1
n
n

[
∫ |Ω|

s
g∗(t)t

1
n
dt
t

+
1

s1− 1
n

∫ s

0
g∗(t)dt]. (3.4)

Proof. By (3.3), we have

v̄(s) =
1
s

∫ s

0
v∗(t)dt

=
1

nκ
1
n
n

(
∫ |Ω|

s
G(t)t

1
n
dt
t

+
1
s

∫ s

0
G(t)t

1
n dt)

≤
1

nκ
1
n
n

∫ |Ω|

0
G(m)h(m, s)dm,

where

h(m, s) =

{
s−1+ 1

n , if 0 ≤ m ≤ s,
m−1+ 1

n , if s < m ≤ |Ω|.

Clearly, for any fixed s, h(m, s) is decreasing with respect to m. Then, by Lemma 2.2 and the property
G ≺ g, we obtain (3.4). �

For the aim to prove Theorem 1.1, we need the following lemma proved by Adams [46].

Lemma 3.3. [46] Let a(s, t) be a nonnegative measurable function in R × [0,∞), and for some q ∈
(1,∞), q′ =

q
q−1 ,

a(s, t) ≤ 1, for a.e. 0 < s < t, (3.5)

and

sup
t>0

(
∫ 0

−∞

a(s, t)q′ds +

∫ ∞

t
a(s, t)q′ds)

1
q′ = ν < +∞. (3.6)

Assume that Φ(s) ≥ 0 and ∫ +∞

−∞

Φ(s)qds ≤ 1. (3.7)

Then, there exists a constant C, depending only on q and ν such that∫ +∞

0
e−H(t)dt ≤ C,

where

H(t) = t − (
∫ +∞

−∞

a(s, t)Φ(s)ds)q′ .

Now, it is sufficient to prove Theorem 1.1.
Proof of Theorem 1.1. We complete the proof by distinguishing three cases.
Case (i) q = 1. By Lemma 3.1, we have that

‖u‖∞ ≤ u∗(0) ≤
1

nκ
1
n
n

∫ |Ω|

0
G(t)t

1
n
dt
t
.
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Then, by G ≺ g and Lemma 2.2, we have that

‖u‖∞ ≤
1

nκ
1
n
n

∫ |Ω|

0
g∗(t)t

1
n
dt
t

=
1

nκ
1
n
n

‖F(∇u)‖n,1.

Then, (1.5) holds.
Case (ii) 1 < q < ∞. By Lemma 3.2, we have

ū(s) ≤
1

nκ
1
n
n

(
∫ |Ω|

s
g∗(t)t

1
n
dt
t

+
1

s1− 1
n

∫ s

0
g∗(t)dt). (3.8)

For the convenience, we denote n′ as the conjugate index of n, i.e., n′ = n
n−1 . Then,

ū(|Ω|e−t) ≤
1

nκ
1
n
n

(
∫ |Ω|

|Ω|e−t
g∗(t)t

1
n
dt
t

+
1

(|Ω|e−t)1− 1
n

∫ |Ω|e−t

0
g∗(t)dt)

=
|Ω|

1
n

nκ
1
n
n

(
∫ t

0
g∗(|Ω|e−r)e−

r
n dr + et(1− 1

n )
∫ ∞

t
g∗(|Ω|e−r)e−rdr)

=
1

nκ
1
n
n

∫ +∞

−∞

a(s, t)Φ(s)ds,

where

a(s, t) =


0, if s ≤ 0,
e

t−s
n′ , if t < s < +∞,

1, if 0 < s < t,

and

Φ(s) =

{
|Ω|

1
n g∗(|Ω|e−s)e−

s
n , if s ≥ 0,

0, if s < 0.
It is obvious that (3.5) holds. Next, for any 1 < q < ∞, we obtain

(
∫ 0

−∞

a(s, t)q′ds +

∫ ∞

t
a(s, t)q′ds)

1
q′

= (
∫ ∞

t
e

q′(t−s)
n′ ds)

1
q′

= (e
tq′

n′

∫ ∞

t
e−

sq′

n′ ds)
1
q′

= (
n′

q′
)

1
q′ .

Then, we get (3.6) by choosing ν = ( n′
q′ )

1
q′ .

Finally, by (1.4), we have that∫ +∞

−∞

Φ(s)qds = |Ω|
q
n

∫ +∞

0
(g∗(|Ω|e−s)e−

s
n )qds

=

∫ |Ω|

0
(g∗(t)t

1
n )q dt

t
= ‖F(∇u)‖qn,q ≤ 1.
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This means that (3.7) holds. Then, by Lemma 3.3, we have∫ +∞

0
e−t+(ū(|Ω|e−t)nκ

1
n
n )q′

dt ≤ C,

which means that ∫ |Ω|

0
e(ū(s)nκ

1
n
n )q′

ds ≤ C|Ω|.

Furthermore, by the fact u∗(s) ≤ ū(s), we obtain∫
Ω

eλ|u(x)|q
′

dx =

∫ |Ω|

0
eλu∗(s)q′

ds ≤
∫ |Ω|

0
eλū(s)q′

ds ≤ C|Ω|, ∀λ ≤ (nκ
1
n
n )q′ = λ̄q.

Case (iii) q = ∞. By (3.8) and (1.4), we obtain

ū(s) ≤
1

nκ
1
n
n

(
∫ |Ω|

s
g∗(t)t

1
n
dt
t

+
1

s1− 1
n

∫ s

0
g∗(t)dt)

≤
1

nκ
1
n
n

(
∫ |Ω|

s

1
t
dt +

1

s1− 1
n

∫ s

0
t−

1
n dt)

=
1

nκ
1
n
n

(log
|Ω|

s
+

n
n − 1

).

It follows that ∫ |Ω|

0
eλū(s)ds ≤ e

λ

(n−1)κ
1
n
n

∫ |Ω|

0
(
|Ω|

s
)

λ

nκ
1
n
n ds.

Clearly, the right hand side is finite if and only if λ < nκ
1
n
n = λ̄∞. Then, we get (1.7).

At last, we prove the sharpness of (1.5)–(1.7).
We easily see that equality (1.5) holds if u(x) = u](x) and F(∇u) = F(∇u)] ∈ L(n, 1).
The proof of sharpness for (1.6) is more complicated. If 1 < q < ∞, for any λ > λ̄q, we will

construct a sequence of functions uk such that ‖F(∇uk)‖n,q ≤ 1 and

lim
k→∞

∫
Ω

eλ|uk(x)|q
′

dx = +∞. (3.9)

Define

uk(x) =


k

1
q′

nκ
1
n
n

, if 0 ≤ κnFo(x)n ≤ e−k,

1

nκ
1
n
n k

1
q

log( 1
κnFo(x)n ), if e−k ≤ κnFo(x)n ≤ 1,

0, if κnFo(x)n > 1.

(3.10)

Then, by direct calculation, using Lemma 2.1, we have that the decreasing rearrangement of F(∇uk) is

F(∇uk)∗(s) =

 0, if 1 − e−k ≤ s ≤ 1,
k−

1
q

(s+e−k)
1
n
, if 0 ≤ s < 1 − e−k.
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We consider 1 < q < n, q = n, and n < q < ∞ separately.
When 1 < q < n, making the change of variable m = 1 + sek, then

‖F(∇uk)‖n,q = (
1
k

∫ 1−e−k

0
(

s
s + e−k )

q
n
ds
s

)
1
q

= (
1
k

∫ ek

1
(1 −

1
m

)
q
n

dm
m − 1

)
1
q .

We let

βk = ‖F(∇uk)‖n,q = (
1
k

∫ ek

1
(1 −

1
m

)
q
n

dm
m − 1

)
1
q .

Then,

lim
k→∞

1
k

∫ ek

1
(1 −

1
m

)
q
n

dm
m − 1

= lim
k→∞

1
k

∫ ek

1

1

(m − 1)1− q
n m

q
n
dm

= lim
k→∞

ek

(ek − 1)1− q
n (ek)

q
n

= lim
k→∞

(
ek

ek − 1
)1− q

n = 1.

Hence, we have lim
k→∞

βk = 1.
Now, we set

vk(x) =
uk(x)
βk

.

Clearly, ‖F(∇vk)‖n,q = 1. However, when λ > λ̄q = (nκ
1
n
n )q′ , as k → +∞,∫

Ω

eλ|vk(x)|q
′

dx ≥

∫ e−k

0
exp[

kλ

β
q′

k (nκ
1
n
n )q′

]ds

= exp[k(
λ

β
q′

k (nκ
1
n
n )q′
− 1)]

→ +∞.

When q = n, the proof is similar to that in [2]. We have

‖F(∇uk)‖n,n = ‖F(∇uk)‖n ≤ 1. (3.11)

Then, when λ > λ̄n,n = n
n

n−1 κ
1

n−1
n , as k → +∞,∫
Ω

eλ|uk |
n

n−1 dx =

∫ |Ω|

0
eλ|u

∗
k |

n
n−1 ds
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≥ exp[k(
λ

n
n

n−1 κ
1

n−1
n

− 1)]→ +∞.

When n ≤ q < ∞, from (2.5) and (3.11) we have

‖F(∇uk)‖n,q ≤ ‖F(∇uk)‖n = 1.

Then, as the case of q = n, it is easy to prove that∫
B

eλ|uk(x)|q
′

dx→ +∞ as k → ∞, when λ > λ̄q = (nκ
1
n
n )q′ .

When q = ∞, we construct a function u such that ‖F(∇u)‖n,∞ ≤ 1, and for any λ ≥ λ̄∞ = nκ
1
n
n ,∫

Ω

eλ|u(x)|dx = +∞.

Let
u(x) =

1

nκ
1
n
n

log(
1

κnFo(x)n ), ∀x ∈ W1.

By direct calculation, using Lemma 2.1, we obtain

F(∇u)∗(s) =
1

s
1
n

,

and then
‖F(∇u)‖n,∞ ≤ 1.

Thus, when λ ≥ λ̄∞ = nκ
1
n
n , by the co-area formula (2.2), we have∫

W1

eλ|u(x)|dx =

∫ 1

0
exp(

λ

nκn
1
n

log(
1
s

))ds

≥ C
∫ 1

0

1
s

ds = +∞.

The proof is completed. �

4. Conclusions

In this paper, we mainly study the anisotropic Moser-Trudinger type inequality in Lorentz space
L(n, q), 1 ≤ q ≤ ∞. It is a generation result of Moser-Trudinger type inequality in Lorentz space. The
extremal function of such inequality is closely related to existence of solutions of Finsler-Liouville type
equation. We believe that the sharp inequality will be the key tool to study the existence of solutions
for some quasi-linear elliptic equations, such as Finsler-Laplacian equation.
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