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1. Introduction

In this study, we analyze the blow-up criteria for weak solutions in finite time for various fluid
models. The first model consists of five equations governing the unsteady, viscous, incompressible
magneto-micropolar flow:

LU VU-AU+VF +VH-VXW-V-VV =0, in R*xR,,

AW +U-VW-VXU+2W -Vdiv W =0, in R’xR,,
E-AV+U-VV -V -VU=0, inRxR,, (1.1)
V-U=0, V-V=0, inRPxR,,

(U, W, V)= = (U, Wy, Vo), in R,

In the system (1.1), U(x, t) and V(x, t) are the velocity and magnetic fields. The micro-rotational
velocity and hydrostatic pressure are given the notations W(x, 1), W(x, t), while Uy, V, and W, are
the given initial velocity, magnetic field and micro-rotation velocity with V- Uy =0 and V-V, =0
in the distributional sense. Galdi and Rionero [1] were the first who suggested the model (1.1).
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Rojas-Medar and Boldrini [2] established the existence of global weak solutions to the system (1.1).
Later on, the authors in [3] and [4], respectively, considered the problem of the existence of local and
global strong solutions to the same system for small initial data. However, concerning the weak
solutions to the system (1.1), there arises a question of the regularity of these solutions. In this regard,
several publications discussing the regularity of weak solutions of system (1.1) have appeared in the
literature, see for instance [5—12] and references therein. In this article, we also choose to discuss the
blow-up criteria for the system (1.1) that guarantees the regularity of local smooth solutions for all
time [0, o). In view of the physical importance of system (1.1), it models the flow of microelements
under the influence of a magnetic field. These micropolar fluids have a diluted suspension of tiny,
stiff, cylindrical macromolecules that move independently and are affected by spin inertia. Such types
of flows are significant in analysing animal and human blood, polymer fluids, liquid crystals, etc.
Recently, enormous studies have been conducted on studying such fluids on different surfaces,
including bounded and unbounded domains.

The second system we consider here for analysis is the Navier—Stokes-Poisson—Nernst—Planck
system:
UL U-VU - AU+ VY - AYyVy =0, in R*XR,,
V-U=0, in R*xR,,
L+ U-VO-V-(VO+6Vy) =0, in R*xR,,
ZLU-VI-V-(VI-9Vy) =0, in R’ xR,
Ay =6-19, in R*xR,,
(ﬂ, 9, ﬁ)'t:() = (7/{0, 00, 190), in Rg.

(1.2)

In the system (1.2), U(x, t) and P(x, r) are the velocity and pressure, ¢#(x, ) and 6(x, t) are the densities
of binary diffusive negative and positive charges, ¥ is the electric potential, respectively. Rubinstein
[13] proposed system (1.2), which can describe the drift, diffusion, and convection process for the
charged ions in incompressible viscous fluids (see [14—17], and the references cited therein). The well-
posedness problem of the system (1.2) has been tackled by Jerome [18] based on Kato’s semigroup
framework. The global existence of strong solutions for small initial data and the local existence of
strong solutions for arbitary initial data has been established by Zhao et al. [19-21] in various function
spaces. However, for arbitary initial data, the all time existence of local smooth solutions is one of the
key open problem that we will investigate and present new blow-up conditions in anisotropic Lorentz
space. Similar to system (1.1) the electro diffusion model covers various fluid models and could be
considered as general formulation to Navier-Stokes, Micropolar, MHD, and Boussinesq systems. The
momentum and mass conservation equations for the flow are (1.2); and (1.2),, respectively, while
the balance between diffusion and convective transport of charges by the flow and electric fields is
modelled by (1.2); and (1.2)4, respectively, and the Poisson equation for the electrostatic potential is
(1.2)s. Keep in mind that the Lorentz force produced by the charges is represented in (1.2);. To learn
more about the physical backdrop of this issue, we direct the reader to [22-25] and the references
therein.

The regularity of weak solutions plays an important role in understanding the physical and
mathematical significance of both models. Therefore, the question of regularity of weak solutions for
all time (0 < ¢ < o0) is one of the outstanding open problems to be investigated.

In that regard, for the system (1.1), Yuan [26] presented the regularity critreia (1.3), (1.4), Lorenz
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et al. [27] presented conditions (1.5), (1.6) and Wang [28] established the regularity criteria (1.7)

2

U e L0, T; LY(R*), where % + 2 =1, 3<l< oo, (1.3)
m

m [ 3 3 2 3

VU € L0, T; L'(R), wher67+—:2, 5<1§oo, (1.4)
m

VU, V,V,V, W e L7(0,T; AR, (1.5)

03U, 05V, 0;W € L=(0,T; L*(RY)), (1.6)

;U € L0, T; L'(R?)) where % + 2 <1, 3<l<oo, (1.7)
m

where V = (0, d,,93) and V;, = (9;, 02).
For the system (1.2), Zhao and Bai [29] proved the regularity criteria (1.8),(1.9)

3 2 3
U € L0, T; LR?), where TH=< 2, > < [ < oo, (1.8)
m

3 2
VU € L0, T; L'R?), where TH=< 3, 1<1<oo. (1.9)
m

Remark 1.1. The embedding relation L” — L7* ensures that the anisotropic Lorentz space is larger
than the anisotropic Lebesgue space and classical(simple) Lebesgue space. Furthermore, dropping oo
and setting / = m = n in the anisotropic Lorentz space we get anisotorpic Lebesgue space and simple
Lebesgue space. This important observation is very useful because the results in anisotropic Lorentz
sapces hold and improve numerous previous results in smaller spaces.

‘ (@A)

#
1+ ([er+n)

Remark 1.2. Throughout the paper the notation

As the blow-up of solution of the system (1.1) is controlled by four unknowns that is U, V, W, V.
The important question regarding the regularity of weak solutions arises here. Can we propose a
blow-up criteria for the system (1.1) only by controlling velocity and magnetic fields. In this paper,
we give positive answer. Motivated by the above discussion, Remark 1.1 and conditions (1.5), (1.6)
and (1.7), we present the following blow-up criteria in anisotropic Lorentz space for the system (1.1).

is expanded as

l,00
L} m,eo
1 sz

n,00
Ly}

2
1(1+m+n) 1( + +5 )

Lloo Lloo

m o
X

Theorem 1.1. Assume that (U, Vo, Wo) € H'(R?) with V- U, = V-V, = 0 in the sense of
distributions. The Leray-Hopf weak solution (U, V, W) of the system (1.1) is smooth on the interval
(0,T], if

-2
1—(%+%+%)

V) < oo, (1.10)

m,o0
\ 1 sz LZ ,;o

where 2 < [,m,n < 0o and 1 - (3 + = + 1) > 0. Otherwise, if 7 = T* < o is the maximal time for the
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existence of smooth solution then the solution blows up in finite time i.e.

T*
st

As the structure of the systems (1.1) and (1.2) suggests that the velocity plays more dominant role
in the regularity of weak solutions than other unknowns. In view of these observations, we pose
another problem. Can we prove a blow-up criterion that is only controlled by the one-directional
derivative of velocity ”0;U”’?. Thanks to the distributional methods, we give positive answer to this
question and prove this criteria for the system (1.2). Because system (1.2) is also important for the
theoretical and mathematical purposes having wide range of applications in electro-chemical and
fluid-mechanical transport.

2
1—(%+%+%)
= Q.

m,o0

[l@s.a:v)

L],oo
x1 L Lr){,}oo

Theorem 1.2. Assume that (Uy, Vo, Wy) € H'(R?) with V- U, = V-V, = 0 in the sense of
distributions. The Leray-Hopf weak solution (U, V, W) to system (1.2) is regular on the interval

(0,T], if
T
J

where 2 < [,m,n < 00 and 1 - (3 + = + 1) > 0. Otherwise, if T = T* < o is the maximal time for the
existence of smooth solution then the solution blows up to create finite time singularity that is

T*
fo

Result (1.11) is refinement of the result (1.10).

2
1—(%+%+%)

dt < oo, (1.11)

e

l,co
L m,oo
X1 sz Lz,;o

2
l—(%+%+%)
= 0Q.

o

Li,(;o L’;’z’m Lf,’;o
Result (1.11) is also true for the system (1.1) and refines the result (1.10).
2. Preliminaries

Definition 2.1. [31] Let [ = (I, b, 3) and m = (my,my,m3) with 0 < [; < 00,0 <m; < o0. If [; = 00

then m; = oo for every i = 1,2,3. An anisotropic Lorentz space L'"™ (R,,; L>™(R,,; L*™((R,,))) is
the set of functions defined as

o0 0 1 1 1 A2 dio 2 dta L
. I I3 %] ,%0,%3 mi 1 my 2 my 3 m3
lmeHle'{ml o (fo (fo (fo S (0, 1)] h ) 5) ) 13 ) =

Lemma 2.1. [30,31] (Holder’s inequality for Lorentz spaces) If 1 < [y, [, m;, m, < oo, then for any
f e Lll’ml(Rn), g€ le,mz(Rn)’

ly,my T
LX2 L% 3

”fg”LL'"(R”) < CHfllL[l’ml (RH)Hg”lem(Rn),

where %:ll+llandl:—+—.
1 2 m
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Lemma 2.2. [30, 31] (Young’s inequality for Lorentz spaces) Let 1 < [ < 00,1 < m < oo and
et =L i+l —qwithl<l<landm <m < oo. IfE+1:l+%andml2:$+mllthenthe
convolution operator

% Ll,m(Rn) % Lll,ml(Rn) — le mg(Rn)

is a bounded bilinear operator.
For any s > 0, we define homogeneous Sobolev space H*(R") as

B'RY={fes :feL ®)and | |BRIF@) dB < o},
.

21
722 and

where S’ is the space of tempered distributions
Lemma 2.3. [33] For 2 < [ < oo, there exists a constant C=C(l) such that f € H7, then f € L™

Il 2 < SNy

where HT is the homogenous Sobolev space
Lemma 24. [33] Let2</mn<ooand 1 — (3 ++ +1)>0, then 3 C > 0, such that ¥

fe CSO(R3)
‘WV'5 o < ClOL A0 AL A A1
Lemma 2.5. [32] Let 1 < a),@5,a3,04 <00, -+ o=+ - > land 1 + 2> aiz + i + 6%4
Suppose ¢(x) = ¢(x, x2, x3) with 8,¢ € L“Z(R3) 0 e L“*(R3) 63¢ € L“4(R3) then 3 a constant
C = C(a», a3, ay) such that
1
gl < C||51¢||Zaz||02¢||m||33¢||ia4, (2.1)
whena, =a3 =2and 1 < a4 < 00, da C = C(ay), such that
2.2)

pll s < CllO1II, 1102011 z||33¢||Lz,
holds for any ¢ with 8,¢ € L*(R?), 0,¢ € L*(R?), 93¢ € L™(R?)

3. Proofs of Theorems 1.1 and 1.2
The proofs of Theorems 1.1 and 1.2 are based on distributional methods and setting up of a priori

estimates under the blow-up conditions (1.10) and (1.11)

3.1. Proof of Theorem 1.1
In order to get the fundamental energy estimates of the system (1.1), taking inner product of (1.1),,
(1.1)5, (1.1)3 over R* with U, W, V, respectively, then adding the resulting equations and integrating

in time, we get
!
(U, W, VI, + ZI(IIV(UH@ +IIVWIE, + IVVIF)dr + 2f(||V Wi + IWIL)dr
0
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< I Uo, Wo. Voliz.. (3.1)

In order to find L-estimates for one-directional derivative of the velocity, take derivative of (1.1); with
respect to x3, then multiply resulting equation with d;u in L?(R?) inner product and integrating, we get
the resulting equation as

1
Id f 10sU>dx + f VO U*dx — f U -V -Vo;Vdx = — f U - O;U - VUdx
Zdt R3 R3 R3

R3

+ f (937/[ . 8;‘V -VVdx + 83(LI -V x (93(de. (32)
R3

R3
Similarly, multiplying (1.1), with 9;'W and (1.1); with 95V, integrating by parts, we get

1d

—— | |0;W]dx + f VO, W dx + f V-0 WPdx +2 | |0; W] dx
2dt R3 R3 R3 R3

=— f W - 03U - VWdx + f AW -V x ;Udx. (3.3)
R3 R3
1d
—— f 105V dx + f IVO;V|?dx — f V-V -Vo;Udx = — f 0,V - 0;U - VVdx
2dt R3 R3 R3 R3

R3
Adding (3.2), (3.3) and (3.4), we obtain

1d
Ed—t(llﬁﬂllliz + 105 WIZ, +10:VIIE) + (VO UG, + IV WIIL, + IV VI
+div ;W7 + 2010 W,

= - f (937/{ . aﬂl -VUdx + 6371 . (93(V -VVdx - f (93(W . 637/[ - VWdx
R3

R3 R3

+ 63(W-V><83(lex—f (93(V'(93(L['V(de+ 83(V03(VV(LICZX
R3 R3 R3
=P+ P+ P3+ P, + Ps + Pg. (35)

Now, we will find estimates for every term of (3.5), one by one, taking C as a generic constant.
1Pil = | f 85U - 95U - VU],
R3

Using Holder’s inequality and Lemma 2.4. we obtain

|P1|SCHHH63¢1 - lostd]| el o o VLA
S U gl e
deded % :
<cfiiosU| .| . llosUll,, 1010:UI| L1100 U L1030 UN L IVUI
X1 LX2’°° Lﬁ.oo
3
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1_(l m m n
= CHHH83 e || e 10Ul IIV03‘L{| B ”Vﬂ”LZ
sz’ Lﬁ’;c
Applying Young’s inequality

; 1- (]+m+n) 2
2—(l m % 2( +n+n) 2( +n+n) 2

L”’Ioo L’loﬂ
3

Adjusting above inequality’s exponents to apply again Young’s inequality

-} +,L il
<€ Hﬂaﬂ’ e 052, ) IV, + Vo UL,
X1 LT’OO Lﬁ;o
2
=) 2 2 2
< c{|[flos4,.. 65U + VU | + VoI,
A Ll
Finally, we get an estimate for P; as
TTT
1-(F+5+5
P+ ||a3wuLz>( losed,.] .| ||V(u||iz) IV (3.6)
Lg” Ly
Similarly, we get bound for Pg as
TIT
I-(7+m+ty)
IPgl < C(1 + ||afvniz>( H AT v )+ IVo; VI, (3.7)
L 2 L’;,;O
In case of P4, using Holder’s and Young’s inequalities
1
|P4| < ZIIVﬁﬂllliz + Cllas W, (3.8)
Estimating P,, P; and Ps
P2l < C'HH(%(V 2| ‘Ll| L12122 ,122’22 L?zzllV(Vlle
=) 1 0 0
<||l m ||am|| 110,85 U 10205 U 1005 U 19V 2
1-(J+4
||l\|as R N 2 R A
Ly
Following on the same steps as for (3.6)
2
1= ke b

<[]

n,eo
LX3

AIMS Mathematics
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-2
l—(%+ +1

)
Wﬂsal+wﬂm9(“&v +WWEJ+W%ﬂﬁp

1,00
L m,co
A el s

|&ucu+wﬂw@%j&whw | HW%ﬁJ+W%%ﬁp
X1 Linz’m L:%oo
Erny
|&KCUH@W@%H@WUW | +WW@%MWﬂﬁp
x| L;”z’m Lﬁfo

(3.9)

(3.10)

(3.11)

Now we will find L2-estimates for the gradient of velocity, magnetic field and micro-rotational velocity.
In order to get required estimates, multiply (1.1), (1.1),, (1.1); with —AU, — AW, —AV, respectively,

then integrating over R?, adding the resulting three equations, we obtain
Ld SR, + IVWIE, + vV AUIL, + AW, + IAVI];
5 77 VUl + IVWIL + [IVVIR) + (AU + AW + [AVI.)

HIVdiv W2, + 2IIVWIL7,
< (AU, U-VU) = (AU, V -VV) + (AV,V - VV) = (AV,V - VU)
+(AW, W - VW) = 2(AW,V X U)
=B1+ P2+ B3+ B4+ Bs + Be.

(3.12)

The terms in (3.12) are bounded by Tang et al. [34] in inequality (33). For detailed prove see [34].

= IVUIL + VWL, + IVVIZ, < co.
This implies the fact
(U, V, W) e L0, T, H' R) N L0, T, H*(R?)).

Putting all estimates in (3.5), after simplifications, it yields
d
d—t(||53ﬂlliz + 105 W, + 10:VII7) + 2(IV0s U7, + VW, + IV VI

+2lldiv s WII7, + 2010: W7,

2
1-ha ke by

< (1 + 1osta, +10s i, + o | @sz 049

l,oo
L)(1

2| oo
X LX3

HIVUI, + IVVIZ, + ”V(W”iz)

Invoking Gronwall’s inequality with (3.13), we get

t
sup (10U, + 105 WI, + 105VIIE) +2 f (VO UI, + IV WIIZ, + IV VT )dT
0

L
0<t<T

(3.13)
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f t
+2 f div &sWI;,dr + 2 f 160 WII7.dr
0 0

2
1,11
1—(7+W+ﬁ)

SC@+wﬂm@+wﬂm@+wﬂwmx

[l @s.acv)

l,co
L; m,eo
x| sz Lﬁ,;o

HIVUIE + IVVIZ, + ||V(W||i2)

f
sup (10U, + 118 WL, +10:VIIT) + Zf (VO Ul + Vs WIIL, + IV VI )dT
0

0<t<T

! !
+2 f div &sWI3,dt + 2 f 10;WI[>.dr < C.
0 0

Which completes the proof of Theorem 1.1 as desired.

3.2. Proof of Theorem 1.2

The proof of Theorem 1.2 will follow from setting up of a priori estimates for the blow-up conditions
of the system (1.2).
As a first step we will find L*-estimates for U, 6, © and V. Multiplying (1.2); with 6 and (1.2), with
¥, integrating over R3, using divergence free condition (1.2), and (1.2)s, we obtain
1d
EE(IIHIIiz +[19117.) + (VeI + IVIII7.) + fR3(9 +9)(0 - 9)*dx = 0. (3.14)
As masses of 6 and © are conserved, 8 and ¢ are non-negative, we infer from (3.14) thatforall0 < < T

!
(16117, + 19117,) + 2f(IIV0lliz + IVOII2)dT < [16oll7. + I8oll7.. (3.15)
0

Now, multiplying (1.2); with U, (1.2)3, (1.2), with ¥, integrating over R?, and using (1.2)s, it gives

lillfbllliz +IVUII7. - f (6 - HU - Vdx =0, (3.16)
Zdt R3

f [%?p + V- OV — AOY + (U - V)Gw]dx =0, (3.17)
R3

f [aa—?w + V- @OV — A + (U - V)ﬁw]dx = 0. (3.18)
R3

Subtracting (3.18) from (3.17), using integration by parts and Ay = 6 — ), we get
1d
——|IVyll7, + f (0 + 9|\ Vyl*dx + f |AyPdx + f 0 — DU - Vrdx = 0. (3.19)
2dt R3 R3 R3

Adding (3.16) and (3.19), it follows that

1d
Ezt(llﬂlliz + VYT + VUL, + IAYIE, + fR3(9 + )|Vl dx = 0. (3.20)

AIMS Mathematics Volume 8, Issue 2, 4700-4713.



4709

Because of the non-negativity of 6 and ¥}, we obtained the final bound
!
U7, + IV, + 2f IVUIZ, + IAYI.dT < C. (3.2
0

Now, we will find H'-estimates for U, 6 and . For required bounds multiply —AZ{ with (1.2);,
integrating over R?, we get

1d
EEHVWHiZHlA‘UHiz=f(‘Ll-V)7/I-A(L{dx—f AV - AUdx
R3 R3

=01+ Os. (3.22)
For Q,, using Holder’s and Young’s inequalities, using Ay = 6 — 1, interpolation inequality ||V fl|;+ <
1 1
||f||;i4||Af||8 and combining (3.15), (3.21), we obtain

L’
ol < 1AWVl 4 AU 2
1
< ZIIA‘UIIZ + CIIVYLIE, DI

< <IAUIZ, + CIVUILIE, DT, + CIIVE, VIIILIIE, DI

e

< <IAUIZ, + CAVEIT, + VO, + 1). (3.23)

Bl

For O
|Q1] < fR3 VUVUVUdx
< CIIVUIE, < CIVUILE VU, (Interpolation inequality)
< CIVUIE IV U IV UL IVOUZ,  (Lemma 2.5., for @y = 2)
< INUIE IV Ul V05|,

< SIAUIZ, + CIVUIRL IV U2 (Young's inequality) (3.24)

Bl—

Putting (3.23) and (3.24) into (3.22), and employing Gronwall’s inequality, it yields

t t
sup |[VUIIZ, + 2f IAUIZ.dT < (IVUlIT, + €) eXP(Cf(Hvafﬂ/{”iz +IVUIZ, + IV,
0 0

0<t<T L
+ IIVﬁIIi2 + 1)d7). (3.25)
= U e L>0,T,H' R) N L*0, T, H*R?)).
To get similar results for 6 and . Multiply —A# with (1.2); and —Ad with (1.2)4, we achieve

!
sup (V67 + IVII[7.) +2 f (1AGI7, + IADII7,)dT < C. (3.26)
0

L
0<t<T

AIMS Mathematics Volume 8, Issue 2, 4700-4713.
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For our desired results, differentiate (1.2); with respect to x3, then multiply by d;U and integrating by
parts to get

1d
Eztnamniﬁnvmwﬁ - f A5(U - VU) - dsUdx + f A3(AYV )0 Udx
R3 R3

2=

=D, + D,. (327)

Estimating D, as (3.23), we obtain

D < f B5(AYV ) Udx
R3

IVOs U, + CIO, DIILIVE, VRIT, + CIO, DIV,

N

<

< <IVOUIIZ, + CAVEILL, + IV91l7, + 1). (3.28)

I

Similar to (3.6), D, is estimated as

l—(%+%+%

)
|Di| < C(1 + ”337/{”%2)( + IIV(HIIEZ) + Vo U7 (3.29)

oo

1,00
M m,oo
Ly 1 sz

Ly
putting (3.28), (3.29) into (3.27)

1d
YT 10 UI7.) + 1IVO U,

2
T VUL VO, V), + 1).

n,c0
L

<C+ ||(93(Lllliz)(

o

I,00
Lxl L;;zzoo

Applying Gronwall’s inequality together with (3.25) and (3.26) yields

2
(1 + 1105 UI%) +2 f ||Va3fu||§2drg(1+||a3w0||§2)exp(c f (”Haﬂ’ . :
0 0 x| Lzlz’w L,';;O
HI(VU, VO, VI3, + l)d‘['.
T
sup (1 + [10:UII7,) + 2 f IVo; U3, dr < C. (3.30)
0<t<T 0

The bound (3.30) ensures the smoothness of weak solutions of system (1.2) on the interval (0, T].
Hence proved.

AIMS Mathematics Volume 8, Issue 2, 4700-4713.
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4. Conclusions

This study investigates the regularity of magneto-micropolar system in terms of one-directional
derivatives of velocity and magnetic fields that as a result generalize conditions (1.5), (1.6) and (1.7)
in anisotorpic Lorentz space. For the dissipative system modeling electro-diffusion, we established
an improved and new regularity condition in one-directional derivative of velocity, which is important
as velocity plays more dominant role in controlling regularity than other unknowns of the system, in
anisotropic Lorentz space. For future developments, it is interesting to establish the regularity criteria
only in terms of velocity and its components in anisotropic Lebesgue and anisotropic Lorentz spaces
for both systems.
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