Research article

A new construction of asymptotically optimal codebooks

  • Received: 15 January 2024 Revised: 23 February 2024 Accepted: 01 March 2024 Published: 11 March 2024
  • MSC : 11T23, 11T24, 12E20, 94B05

  • Codebooks with small cross-correlation amplitude have extensive applications in many fields including code division multiple access (CDMA) communications systems, space-time codes, and compressed sensing. In this paper, a class of asymptotically optimal codebooks was constructed, and the maximum inner-product of these presented codebooks was determined by using properties of character sums over finite fields. Furthermore, these codebooks provided new parameters.

    Citation: Yang Yan, Hanning Chen, Jianming Wang, Gang Wang. A new construction of asymptotically optimal codebooks[J]. AIMS Mathematics, 2024, 9(4): 9631-9640. doi: 10.3934/math.2024471

    Related Papers:

  • Codebooks with small cross-correlation amplitude have extensive applications in many fields including code division multiple access (CDMA) communications systems, space-time codes, and compressed sensing. In this paper, a class of asymptotically optimal codebooks was constructed, and the maximum inner-product of these presented codebooks was determined by using properties of character sums over finite fields. Furthermore, these codebooks provided new parameters.



    加载中


    [1] L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory, 20 (1974), 397–399. https://doi.org/10.1109/TIT.1974.1055219 doi: 10.1109/TIT.1974.1055219
    [2] Z. Heng, C. Ding, Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, IEEE Trans. Inform. Theory, 63 (2017), 6179–6187. https://doi.org/10.1109/TIT.2017.2693204 doi: 10.1109/TIT.2017.2693204
    [3] G. Luo, X. Cao, Two constructions of asymptotically optimal codebooks, Cryptogr. Commun., 11 (2019), 825–838. https://doi.org/10.1007/s12095-018-0331-4 doi: 10.1007/s12095-018-0331-4
    [4] G. Luo, X. Cao, Two constructions of asymptotically optimal codebooks via the hyper eisenstein sum, IEEE Trans. Inform. Theory, 64 (2018), 6498–6505. https://doi.org/10.1109/TIT.2017.2777492 doi: 10.1109/TIT.2017.2777492
    [5] Q. Wang, Y. Yan, Asymptotically optimal codebooks derived from generalised bent functions, IEEE Access, 8 (2020), 54905–54909. https://doi.org/10.1109/ACCESS.2020.2980330 doi: 10.1109/ACCESS.2020.2980330
    [6] Y. Yan, Y. Yao, Z. Chen, Q. Wang, Two new families of asymptotically optimal codebooks from characters of cyclic groups, IEICE Trans. Fund. Electr., E104 (2021), 1027–1032. https://doi.org/10.1587/transfun.2020EAP1124 doi: 10.1587/transfun.2020EAP1124
    [7] W. Lu, X. Wu, X. Cao, Three constructions of asymptotically optimal codebooks via multiplicative characters of finite fields, Adv. Math. Commun., 2022 (2022), 1–9. https://doi.org/10.3934/amc.2022091 doi: 10.3934/amc.2022091
    [8] Q. Wang, X. Liang, R. Jin, Y. Yan, Applications of strongly regular Cayley graphs to codebooks, IEEE Access, 11 (2023), 106980–106986. https://doi.org/10.1109/ACCESS.2023.3320559 doi: 10.1109/ACCESS.2023.3320559
    [9] C. Ding, Complex codebooks from combinatorial designs, IEEE Trans. Inform. Theory, 52 (2006), 4229–4235. https://doi.org/10.1109/TIT.2006.880058 doi: 10.1109/TIT.2006.880058
    [10] P. Xia, S. Zhou, G. Giannakis, Achieving the Welch bound with difference sets, IEEE Trans. Inform. Theory, 51 (2005), 1900–1907. https://doi.org/10.1109/TIT.2005.846411 doi: 10.1109/TIT.2005.846411
    [11] E. Candes, M. Wakin, An introduction to compressive sampling, IEEE Signal Proc. Mag., 25 (2008), 21–30. https://doi.org/10.1109/MSP.2007.914731 doi: 10.1109/MSP.2007.914731
    [12] S. Li, G. Ge, Deterministic sensing matrices arising from near orthogonal systems, IEEE Trans. Inform. Theory, 60 (2014), 2291–2302. https://doi.org/10.1109/TIT.2014.2303973 doi: 10.1109/TIT.2014.2303973
    [13] R. Lidl, H. Niederreiter, Finite fields, Cambridge: Cambridge University Press, 1997.
    [14] R. S. Coulter, Explicit evaluations of some Weil sums, Acta Arith., 83 (1998), 241–251. https://doi.org/10.4064/aa-83-3-241-251 doi: 10.4064/aa-83-3-241-251
    [15] R. S. Coulter, Further evaluation of some Weil sums, Acta Arith., 86 (1998), 217–226. https://doi.org/10.4064/aa-86-3-217-226 doi: 10.4064/aa-86-3-217-226
    [16] K. Conrad, Characters of finite abelian groups, Lecture Notes, Vol. 17, 2010. Available from: https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf.
    [17] H. Hu, J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE Trans. Inform. Theory, 60 (2014), 1348–1355. https://doi.org/10.1109/TIT.2013.2292745 doi: 10.1109/TIT.2013.2292745
    [18] C. Li, Q. Yue, Y. Huang, Two families of nearly optimal codebooks, Des. Codes Cryptogr., 75 (2015), 43–57. https://doi.org/10.1007/s10623-013-9891-7 doi: 10.1007/s10623-013-9891-7
    [19] L. Tian, Y. Li, T. Liu, C. Xu, Constructions of codebooks asymptotically achieving the welch bound with additive characters, IEEE Signal Proc. Lett., 26 (2019), 622–626. https://doi.org/10.1109/LSP.2019.2891896 doi: 10.1109/LSP.2019.2891896
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(553) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog