Codebooks with small inner-product correlations are desirable in many fields, including compressed sensing, direct spread code division multiple access (CDMA) systems, and space-time codes. The objective of this paper is to present a class of codebooks and explore their applications in strongly regular Cayley graphs. The obtained codebooks are nearly optimal in the sense that their maximum cross-correlation amplitude nearly meets the Welch bound. As far as we know, this construction of codebooks provides new parameters.
Citation: Qiuyan Wang, Weixin Liu, Jianming Wang, Yang Yan. A class of nearly optimal codebooks and their applications in strongly regular Cayley graphs[J]. AIMS Mathematics, 2024, 9(7): 18236-18246. doi: 10.3934/math.2024890
Codebooks with small inner-product correlations are desirable in many fields, including compressed sensing, direct spread code division multiple access (CDMA) systems, and space-time codes. The objective of this paper is to present a class of codebooks and explore their applications in strongly regular Cayley graphs. The obtained codebooks are nearly optimal in the sense that their maximum cross-correlation amplitude nearly meets the Welch bound. As far as we know, this construction of codebooks provides new parameters.
[1] | L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE T. Inform. Theory, 20 (1974), 397–399. https://doi.org/10.1109/TIT.1974.1055219 doi: 10.1109/TIT.1974.1055219 |
[2] | J. H. Conway, R. H. Harding, N. J. A. Sloane, Packing lines, planes, etc.: Packings in Grassmannian spaces, Exp. Math., 5 (1996), 139–159. https://doi.org/10.1080/10586458.1996.10504585 doi: 10.1080/10586458.1996.10504585 |
[3] | C. Ding, Complex codebooks from combinatorial designs, IEEE T. Inform. Theory, 52 (2006), 4229–4235. https://doi.org/10.1109/TIT.2006.880058 doi: 10.1109/TIT.2006.880058 |
[4] | M. Fickus, D. G. Mixon, J. Jasper, Equiangular tight frames from hyperovals, IEEE T. Inform. Theory, 62 (2016), 5225–5236. https://doi.org/10.1109/TIT.2016.2587865 doi: 10.1109/TIT.2016.2587865 |
[5] | M. Fickus, D. G. Mixon, J. C. Tremain, Steiner equiangular tight frames, Linear Algebra Appl., 436 (2012), 1014–1027. https://doi.org/10.1016/j.laa.2011.06.027 doi: 10.1016/j.laa.2011.06.027 |
[6] | F. Rahimi, Covering graphs and equiangular tight frames, Univ. Waterloo, 2016. Available from: http://hdl.handle.net/10012/10793 |
[7] | D. Sarwate, Meeting the Welch bound with equality, Sequences their Appl., 1999, 63–79. Available from: https://link.springer.com/chapter/10.1007/978-1-4471-0551-0_6 |
[8] | T. Strohmer, J. R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14 (2003), 257–275. https://doi.org/10.1016/S1063-5203(03)00023-X doi: 10.1016/S1063-5203(03)00023-X |
[9] | P. Xia, S. Zhou, G. Giannakis, Achieving the Welch bound with difference sets, IEEE T. Inf. Theory, 51 (2005), 1900–1907. https://doi.org/10.1109/TIT.2005.846411 doi: 10.1109/TIT.2005.846411 |
[10] | S. Hong, H. Park, T. Helleset, Y. Kim, Near optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping, IEEE T. Inf. Theory, 60 (2014), 3698–3705. https://doi.org/10.1109/TIT.2014.2314298 doi: 10.1109/TIT.2014.2314298 |
[11] | Z. Heng, C. Ding, Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, IEEE T. Inf. Theory, 63 (2017), 6179–6187. https://doi.org/10.1109/TIT.2017.2693204 doi: 10.1109/TIT.2017.2693204 |
[12] | H. Hu, J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE T. Inf. Theory, 60 (2014), 1348–1355. https://doi.org/10.1109/TIT.2013.2292745 doi: 10.1109/TIT.2013.2292745 |
[13] | G. Luo, X. Cao, Two constructions of asymptotically optimal codebooks via the hyper eisenstein sum, IEEE T. Inf. Theory, 64 (2018), 6498–6505. https://doi.org/10.1109/TIT.2017.2777492 doi: 10.1109/TIT.2017.2777492 |
[14] | S. Satake, Y. Gu, Constructions of complex codebooks asymptotically meeting the Welch bound: A graph theoretic approach, IEEE Int. Symposium Inf. Theory, 2020, 48–53. 10.1109/ISIT44484.2020.9174496 doi: 10.1109/ISIT44484.2020.9174496 |
[15] | X. Wu, W. Lu, X. Cao, Two constructions of asymptotically optimal codebooks via the trace functions, Cryptogr. Commun., 12 (2020), 1195–1211. https://doi.org/10.1007/s12095-020-00448-w doi: 10.1007/s12095-020-00448-w |
[16] | Q. Wang, Y. Yan, Asymptotically optimal codebooks derived from generalised bent functions, IEEE Access, 8 (2020), 54905–54909. https://doi.org/10.1109/ACCESS.2020.2980330 doi: 10.1109/ACCESS.2020.2980330 |
[17] | Y. Yan, Y. Yao, Z. Chen, Q. Wang, Two new families of asymptotically optimal codebooks from characters of cyclic groups, IEICE Trans. Fundament. Electr. Commun. Comput. Sci., E104 (2021), 1027–1032. https://doi.org/10.1587/transfun.2020EAP1124 doi: 10.1587/transfun.2020EAP1124 |
[18] | N. Yu, A construction of codebooks associated with binary sequences, IEEE T. Inf. Theory, 58 (2012), 5522–5533. https://doi.org/10.1109/TIT.2012.2196021 doi: 10.1109/TIT.2012.2196021 |
[19] | R. Lidl, H. Niederreiter, Finite fields, Cambridge: Cambridge University Press, 1997. Available from: https://dl.acm.org/doi/10.5555/248301 |
[20] | R. S. Coulter, Further evaluation of some Weil sums, Acta Arith., 86 (1998), 217–226. Available from: http://matwbn.icm.edu.pl/ksiazki/aa/aa86/aa8633.pdf |
[21] | R. S. Coulter, Explicit evaluations of some Weil sums, Acta Arith., 83 (1998), 241–251. Available from: http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8334.pdf |
[22] | K. Conrad, Characters of finite abelian groups, Lect. Notes, 17 (2010). Available from: https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf |
[23] | Q. Wang, X. Liang, R. Jin, Y. Yan, Applications of strongly regular cayley graphs to codebooks, IEEE Access, 11 (2023), 106980–106986. https://doi.org/10.1109/ACCESS.2023.3320559 doi: 10.1109/ACCESS.2023.3320559 |
[24] | A. E. Brouwer, W. H. Haemers, Spectra of graphs, Springer Science & Business Media, 2011. |
[25] | Online content: Parameters of Strongly Regular Graphs, Eindhoven: The University, 2024. Available from: https://www.win.tue.nl/aeb/graphs/srg/srgtab.html |