Research article

A class of nearly optimal codebooks and their applications in strongly regular Cayley graphs

  • Received: 01 February 2024 Revised: 15 May 2024 Accepted: 27 May 2024 Published: 30 May 2024
  • MSC : 94B05, 11T23, 11T24, 12E20

  • Codebooks with small inner-product correlations are desirable in many fields, including compressed sensing, direct spread code division multiple access (CDMA) systems, and space-time codes. The objective of this paper is to present a class of codebooks and explore their applications in strongly regular Cayley graphs. The obtained codebooks are nearly optimal in the sense that their maximum cross-correlation amplitude nearly meets the Welch bound. As far as we know, this construction of codebooks provides new parameters.

    Citation: Qiuyan Wang, Weixin Liu, Jianming Wang, Yang Yan. A class of nearly optimal codebooks and their applications in strongly regular Cayley graphs[J]. AIMS Mathematics, 2024, 9(7): 18236-18246. doi: 10.3934/math.2024890

    Related Papers:

  • Codebooks with small inner-product correlations are desirable in many fields, including compressed sensing, direct spread code division multiple access (CDMA) systems, and space-time codes. The objective of this paper is to present a class of codebooks and explore their applications in strongly regular Cayley graphs. The obtained codebooks are nearly optimal in the sense that their maximum cross-correlation amplitude nearly meets the Welch bound. As far as we know, this construction of codebooks provides new parameters.



    加载中


    [1] L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE T. Inform. Theory, 20 (1974), 397–399. https://doi.org/10.1109/TIT.1974.1055219 doi: 10.1109/TIT.1974.1055219
    [2] J. H. Conway, R. H. Harding, N. J. A. Sloane, Packing lines, planes, etc.: Packings in Grassmannian spaces, Exp. Math., 5 (1996), 139–159. https://doi.org/10.1080/10586458.1996.10504585 doi: 10.1080/10586458.1996.10504585
    [3] C. Ding, Complex codebooks from combinatorial designs, IEEE T. Inform. Theory, 52 (2006), 4229–4235. https://doi.org/10.1109/TIT.2006.880058 doi: 10.1109/TIT.2006.880058
    [4] M. Fickus, D. G. Mixon, J. Jasper, Equiangular tight frames from hyperovals, IEEE T. Inform. Theory, 62 (2016), 5225–5236. https://doi.org/10.1109/TIT.2016.2587865 doi: 10.1109/TIT.2016.2587865
    [5] M. Fickus, D. G. Mixon, J. C. Tremain, Steiner equiangular tight frames, Linear Algebra Appl., 436 (2012), 1014–1027. https://doi.org/10.1016/j.laa.2011.06.027 doi: 10.1016/j.laa.2011.06.027
    [6] F. Rahimi, Covering graphs and equiangular tight frames, Univ. Waterloo, 2016. Available from: http://hdl.handle.net/10012/10793
    [7] D. Sarwate, Meeting the Welch bound with equality, Sequences their Appl., 1999, 63–79. Available from: https://link.springer.com/chapter/10.1007/978-1-4471-0551-0_6
    [8] T. Strohmer, J. R. W. Heath, Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14 (2003), 257–275. https://doi.org/10.1016/S1063-5203(03)00023-X doi: 10.1016/S1063-5203(03)00023-X
    [9] P. Xia, S. Zhou, G. Giannakis, Achieving the Welch bound with difference sets, IEEE T. Inf. Theory, 51 (2005), 1900–1907. https://doi.org/10.1109/TIT.2005.846411 doi: 10.1109/TIT.2005.846411
    [10] S. Hong, H. Park, T. Helleset, Y. Kim, Near optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping, IEEE T. Inf. Theory, 60 (2014), 3698–3705. https://doi.org/10.1109/TIT.2014.2314298 doi: 10.1109/TIT.2014.2314298
    [11] Z. Heng, C. Ding, Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, IEEE T. Inf. Theory, 63 (2017), 6179–6187. https://doi.org/10.1109/TIT.2017.2693204 doi: 10.1109/TIT.2017.2693204
    [12] H. Hu, J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE T. Inf. Theory, 60 (2014), 1348–1355. https://doi.org/10.1109/TIT.2013.2292745 doi: 10.1109/TIT.2013.2292745
    [13] G. Luo, X. Cao, Two constructions of asymptotically optimal codebooks via the hyper eisenstein sum, IEEE T. Inf. Theory, 64 (2018), 6498–6505. https://doi.org/10.1109/TIT.2017.2777492 doi: 10.1109/TIT.2017.2777492
    [14] S. Satake, Y. Gu, Constructions of complex codebooks asymptotically meeting the Welch bound: A graph theoretic approach, IEEE Int. Symposium Inf. Theory, 2020, 48–53. 10.1109/ISIT44484.2020.9174496 doi: 10.1109/ISIT44484.2020.9174496
    [15] X. Wu, W. Lu, X. Cao, Two constructions of asymptotically optimal codebooks via the trace functions, Cryptogr. Commun., 12 (2020), 1195–1211. https://doi.org/10.1007/s12095-020-00448-w doi: 10.1007/s12095-020-00448-w
    [16] Q. Wang, Y. Yan, Asymptotically optimal codebooks derived from generalised bent functions, IEEE Access, 8 (2020), 54905–54909. https://doi.org/10.1109/ACCESS.2020.2980330 doi: 10.1109/ACCESS.2020.2980330
    [17] Y. Yan, Y. Yao, Z. Chen, Q. Wang, Two new families of asymptotically optimal codebooks from characters of cyclic groups, IEICE Trans. Fundament. Electr. Commun. Comput. Sci., E104 (2021), 1027–1032. https://doi.org/10.1587/transfun.2020EAP1124 doi: 10.1587/transfun.2020EAP1124
    [18] N. Yu, A construction of codebooks associated with binary sequences, IEEE T. Inf. Theory, 58 (2012), 5522–5533. https://doi.org/10.1109/TIT.2012.2196021 doi: 10.1109/TIT.2012.2196021
    [19] R. Lidl, H. Niederreiter, Finite fields, Cambridge: Cambridge University Press, 1997. Available from: https://dl.acm.org/doi/10.5555/248301
    [20] R. S. Coulter, Further evaluation of some Weil sums, Acta Arith., 86 (1998), 217–226. Available from: http://matwbn.icm.edu.pl/ksiazki/aa/aa86/aa8633.pdf
    [21] R. S. Coulter, Explicit evaluations of some Weil sums, Acta Arith., 83 (1998), 241–251. Available from: http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8334.pdf
    [22] K. Conrad, Characters of finite abelian groups, Lect. Notes, 17 (2010). Available from: https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf
    [23] Q. Wang, X. Liang, R. Jin, Y. Yan, Applications of strongly regular cayley graphs to codebooks, IEEE Access, 11 (2023), 106980–106986. https://doi.org/10.1109/ACCESS.2023.3320559 doi: 10.1109/ACCESS.2023.3320559
    [24] A. E. Brouwer, W. H. Haemers, Spectra of graphs, Springer Science & Business Media, 2011.
    [25] Online content: Parameters of Strongly Regular Graphs, Eindhoven: The University, 2024. Available from: https://www.win.tue.nl/aeb/graphs/srg/srgtab.html
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(460) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog