Research article Special Issues

Threshold analysis of an algae-zooplankton model incorporating general interaction rates and nonlinear independent stochastic components

  • Received: 27 March 2024 Revised: 23 May 2024 Accepted: 27 May 2024 Published: 29 May 2024
  • MSC : 37A50

  • The stochastic nature of ecological systems is fundamental to their modeling and understanding. In this paper, we introduce a comprehensive algae-zooplankton model that incorporates general interaction rate and second-order independent stochastic components. Our model's perturbation component encompasses both white noise and jump processes, enabling us to account for various sources of variability and capture a wide range of potential fluctuations in the system. By utilizing an auxiliary equation, we establish a global threshold for the stochastic system, distinguishing between scenarios of extinction and ergodicity. This threshold serves as a critical determinant of the system's long-term behavior and sheds light on the delicate balance between population persistence and decline in ecological communities. To elucidate the impact of noise on the dynamics of algae and zooplankton, we present a series of numerical illustrations. Through these simulations, we highlight how noise influences not only the extinction time but also the shape of the stationary distribution. Our findings underscore the significant role of stochasticity in shaping ecological dynamics and emphasize the importance of considering noise effects in ecological modeling and management practices.

    Citation: Yassine Sabbar, Aeshah A. Raezah. Threshold analysis of an algae-zooplankton model incorporating general interaction rates and nonlinear independent stochastic components[J]. AIMS Mathematics, 2024, 9(7): 18211-18235. doi: 10.3934/math.2024889

    Related Papers:

  • The stochastic nature of ecological systems is fundamental to their modeling and understanding. In this paper, we introduce a comprehensive algae-zooplankton model that incorporates general interaction rate and second-order independent stochastic components. Our model's perturbation component encompasses both white noise and jump processes, enabling us to account for various sources of variability and capture a wide range of potential fluctuations in the system. By utilizing an auxiliary equation, we establish a global threshold for the stochastic system, distinguishing between scenarios of extinction and ergodicity. This threshold serves as a critical determinant of the system's long-term behavior and sheds light on the delicate balance between population persistence and decline in ecological communities. To elucidate the impact of noise on the dynamics of algae and zooplankton, we present a series of numerical illustrations. Through these simulations, we highlight how noise influences not only the extinction time but also the shape of the stationary distribution. Our findings underscore the significant role of stochasticity in shaping ecological dynamics and emphasize the importance of considering noise effects in ecological modeling and management practices.



    加载中


    [1] S. Winkelmann, C. Schutte, Stochastic dynamics in computational biology, Springer, 2020.
    [2] N. S. Goel, N. R. Dyn, Stochastic models in biology, Elsevier, 2016.
    [3] D. J. Wilkinso, Stochastic modelling for systems biology, Chapman and Hall-CRC, 2006.
    [4] X. Mao, Stochastic differential equations and applications, Elsevier, 2007.
    [5] S. Zhang, T. Zhang, S. Yuan, Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation, Ecol. Complex., 45 (2021), 100889. https://doi.org/10.1016/j.ecocom.2020.100889 doi: 10.1016/j.ecocom.2020.100889
    [6] Y. Zhang, B. Tian, X. Chen, J. Li, A stochastic diseased predator system with modified LG-Holling type Ⅱ functional response, Ecol. Complex., 45 (2021), 100881. https://doi.org/10.1016/j.ecocom.2020.100881 doi: 10.1016/j.ecocom.2020.100881
    [7] R. S. K. Barnes, R. N. Hughes, An introduction to marine ecology, UK: John Wiley and Sons, 1999.
    [8] R. V. Tait, F. Dipper, Elements of marine ecology, UK: Butterworth-Heinemann, 1998.
    [9] V. F. Krapivin, Mathematical model for global ecological investigations, Ecol. Model., 67 (1993), 103–127. https://doi.org/10.1016/0304-3800(93)90001-9 doi: 10.1016/0304-3800(93)90001-9
    [10] V. Grimm, Mathematical models and understanding in ecology, Ecol. Model., 75 (1994), 641–651. https://doi.org/10.1016/0304-3800(94)90056-6 doi: 10.1016/0304-3800(94)90056-6
    [11] T. Liao, Dynamical complexity driven by water temperature in a size-dependent phytoplankton zooplankton model with environmental variability, Chinese J. Phys., 88 (2024), 557–583. https://doi.org/10.1016/j.cjph.2023.11.025 doi: 10.1016/j.cjph.2023.11.025
    [12] T. Liao, H. Yu, C. Dai, M. Zhao, Impact of cell size effect on nutrient-phytoplankton dynamics, Complexity, 2019 (2019), 1–23. https://doi.org/10.1155/2019/8205696 doi: 10.1155/2019/8205696
    [13] T. Liao, C. Dai, H. Yu, Z. Ma, Q. Wang, M. Zhao, Dynamical analysis of a stochastic toxin-producing phytoplankton-fish system with harvesting, Adv. Differ. Equ., 2020 (2020), 1–22. https://doi.org/10.1186/s13662-020-02573-5 doi: 10.1186/s13662-020-02573-5
    [14] T. Liao, The impact of plankton body size on phytoplankton-zooplankton dynamics in the absence and presence of stochastic environmental fluctuation, Chaos Soliton. Fract., 154 (2022), 111617. https://doi.org/10.1016/j.chaos.2021.111617 doi: 10.1016/j.chaos.2021.111617
    [15] D. Kiouach, Y. Sabbar, Developing new techniques for obtaining the threshold of a stochastic SIR epidemic model with 3-dimensional Levy process, J. Appl. Nonlinear Dyn., 11 (2022), 401–414.
    [16] D. Kiouach, Y. Sabbar, Dynamic characterization of a stochastic sir infectious disease model with dual perturbation, Int. J. Biomath., 14 (2021), 2150016. https://doi.org/10.1142/S1793524521500169 doi: 10.1142/S1793524521500169
    [17] Z. Yang, S. Yuan, Dynamical behavior of a stochastic nutrient-plankton food chain model with lévy jumps, J. Nonlinear Model. Anal., 5 (2023), 415. https://doi.org/10.1007/s00216-022-04429-1 doi: 10.1007/s00216-022-04429-1
    [18] Y. Sabbar, A. Khan, A. Din, Probabilistic analysis of a marine ecological system with intense variability, Mathematics, 10 (2022), 2262. https://doi.org/10.3390/math10132262 doi: 10.3390/math10132262
    [19] J. E. Cohen, S. L. Pimm, P. Yodzis, J. Saldana, Body sizes of animal predators and animal prey in food webs, J. Anim. Ecol., 1993, 67–78. https://doi.org/10.2307/5483
    [20] J. E. Cohen, T. Jonsson, S. R. Carpenter, Ecological community description using the food web, species abundance, and body size, P. Natl. A. Sci., 100 (2003), 1781–1786. https://doi.org/10.1073/pnas.232715699 doi: 10.1073/pnas.232715699
    [21] J. Memmott, N. D. Martinez, J. E. Cohen, Predators, parasitoids and pathogens: Species richness, trophic generality and body sizes in a natural food web, J. Anim. Ecol., 69 (2000), 1–15. https://doi.org/10.1046/j.1365-2656.2000.00367.x doi: 10.1046/j.1365-2656.2000.00367.x
    [22] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic predator-prey model with stage structure for predator and Holling type Ⅱ functional response, J. Nonlinear Sci., 28 (2018), 1151–1187. https://doi.org/10.1007/s00332-018-9444-3 doi: 10.1007/s00332-018-9444-3
    [23] Q. Liu, D. Jiang, Dynamical behavior of a higher order stochastically perturbed HIV-AIDS model with differential infectivity and amelioration, Chaos Soliton. Fract., 141 (2020), 110333. https://doi.org/10.1016/j.chaos.2020.110333 doi: 10.1016/j.chaos.2020.110333
    [24] D. Kiouach, Y. Sabbar, Threshold analysis of the stochastic Hepatitis B epidemic model with successful vaccination and Levy jumps, 2019 4th World Conference on Complex Systems (WCCS), IEEE, 2019. https://doi.org/10.1109/ICoCS.2019.8930709
    [25] Y. Sabbar, A. Din, D. Kiouach, Influence of fractal-fractional differentiation and independent quadratic Lévy jumps on the dynamics of a general epidemic model with vaccination strategy, Chaos Soliton. Fract., 171 (2023), 113434. https://doi.org/10.1016/j.chaos.2023.113434 doi: 10.1016/j.chaos.2023.113434
    [26] B. Zhou, B. Han, D. Jiang, Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations, Chaos Soliton. Fract., 152 (2021), 111338. https://doi.org/10.1016/j.chaos.2021.111338 doi: 10.1016/j.chaos.2021.111338
    [27] Q. Liu, D. Jiang, Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation, Appl. Math. Lett., 73 (2017), 8–15. https://doi.org/10.12968/nuwa.2017.Sup23.15 doi: 10.12968/nuwa.2017.Sup23.15
    [28] J. Rosinski, Tempering stable processes, Stoch. Proc. Appl., 117 (2007), 677–707. https://doi.org/10.1016/j.spa.2006.10.003 doi: 10.1016/j.spa.2006.10.003
    [29] D. Kiouach, Y. Sabbar, S. E. A. El-idrissi, New results on the asymptotic behavior of an SIS epidemiological model with quarantine strategy, stochastic transmission, and Levy disturbance, Math. Method. Appl. Sci., 44 (2021), 13468–13492. https://doi.org/10.1002/mma.7638 doi: 10.1002/mma.7638
    [30] N. Ikeda, S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619–633.
    [31] Y. Sabbar, D. Kiouach, S. P. Rajasekar, S. E. A. El-idrissi, The influence of quadratic Levy noise on the dynamic of an SIC contagious illness model: New framework, critical comparison and an application to COVID-19 (SARS-CoV-2) case, Chaos Soliton, Fract., 159 (2022), 112110. https://doi.org/10.1016/j.chaos.2022.112110 doi: 10.1016/j.chaos.2022.112110
    [32] D. Zhao, S. Yuan, Sharp conditions for the existence of a stationary distribution in one classical stochastic chemostat, Appl. Math. Comput., 339 (2018), 199–205. https://doi.org/10.1016/j.amc.2018.07.020 doi: 10.1016/j.amc.2018.07.020
    [33] M. Chen, H. Gao, J. Zhang, Mycoloop: Modeling phytoplankton-chytrid-zooplankton interactions in aquatic food webs, Math. Biosci., 368 (2024), 109134. https://doi.org/10.1016/j.mbs.2023.109134 doi: 10.1016/j.mbs.2023.109134
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(253) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog