
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(7): 18211–18235.
DOI: 10.3934/math.2024889
Received: 27 March 2024
Revised: 23 May 2024
Accepted: 27 May 2024
Published: 29 May 2024

Research article

Threshold analysis of an algae-zooplankton model incorporating general
interaction rates and nonlinear independent stochastic components

Yassine Sabbar1,* and Aeshah A. Raezah2

1 MAIS Laboratory, MAMCS Group, FST Errachidia, Moulay Ismail University of Meknes, P.O.
Box 509, Errachidia 52000, Morocco

2 Department of Mathematics, Faculty of Science King Khalid, University Abha, 62529, Saudi
Arabia

* Correspondence: Email: y.sabbar@umi.ac.ma; Tel: +212 663662995.

Abstract: The stochastic nature of ecological systems is fundamental to their modeling and
understanding. In this paper, we introduce a comprehensive algae-zooplankton model that
incorporates general interaction rate and second-order independent stochastic components. Our
model’s perturbation component encompasses both white noise and jump processes, enabling us to
account for various sources of variability and capture a wide range of potential fluctuations in the
system. By utilizing an auxiliary equation, we establish a global threshold for the stochastic system,
distinguishing between scenarios of extinction and ergodicity. This threshold serves as a critical
determinant of the system’s long-term behavior and sheds light on the delicate balance between
population persistence and decline in ecological communities. To elucidate the impact of noise on
the dynamics of algae and zooplankton, we present a series of numerical illustrations. Through these
simulations, we highlight how noise influences not only the extinction time but also the shape of
the stationary distribution. Our findings underscore the significant role of stochasticity in shaping
ecological dynamics and emphasize the importance of considering noise effects in ecological modeling
and management practices.
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1. Introduction and overview

Stochasticity is inherent in ecological systems, manifesting in myriad ways that shape the destiny
of their residents. Stochasticity, characterized by its inherent randomness and unpredictability, is a
prime example of this variability, playing a pivotal role in ecological dynamics [1]. The occurrence of
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stochastic events, such as unpredictable fluctuations in environmental conditions or chance encounters
with predators, introduces a layer of uncertainty that can profoundly impact the survival and evolution
of species [2]. For example, consider a population that, under deterministic conditions, would
persist indefinitely due to stable environmental factors and abundant resources. Despite apparent
resilience, the introduction of stochastic events can dramatically alter the population’s trajectory.
Sudden environmental disturbances, disease outbreaks, or shifts in predator-prey dynamics can swiftly
tip the balance, leading to population declines or even extinction [3].

Generally, the effects of stochasticity are not uniform across species or ecosystems. Some species
may possess traits or behaviors that buffer them against the impacts of random events, while others
may be more susceptible to stochastic shocks [4]. Additionally, the scale and frequency of stochastic
events vary spatially and temporally, further complicating their influence on ecological systems [5].
Understanding the interplay between deterministic and stochastic factors is crucial for comprehending
the resilience and vulnerability of ecosystems. While deterministic processes provide a framework for
understanding general patterns and trends, stochastic events inject the element of chance that can shape
the outcomes in unpredictable ways. Therefore, a holistic approach that considers both deterministic
and stochastic forces is essential for effectively managing and conserving biodiversity in a dynamic
and uncertain world [6].

The addition of random perturbations in the algae-zooplankton model is motivated by the inherent
variability and unpredictability present in natural ecosystems [7]. Environmental fluctuations, such as
changes in temperature, light, nutrient availability, and water quality, significantly impact the growth
and interactions of both algae and zooplankton populations. Incorporating random perturbations helps
capture these environmental variabilities. Additionally, immigration and emigration processes, which
are stochastic in nature, can influence population sizes through currents and other physical processes.
The interactions between algae and zooplankton are complex and influenced by random predation
events and changes in prey availability. Stochastic elements account for the noise and uncertainty
in real-world data due to measurement errors and sampling inconsistencies. Understanding how
populations respond to random disturbances is crucial for assessing their stability and resilience.
Therefore, incorporating random perturbations into the model provides a realistic and comprehensive
framework for understanding and predicting the dynamics of these populations in fluctuating
environments. In ecological modeling, various methods are employed to introduce variability into
ecosystems, each serving different purposes and mimicking distinct aspects of natural dynamics.
Among the most common techniques are white noise and Lévy jumps, which play crucial roles in
capturing different types of variability within ecological systems.

White noise is a stochastic process characterized by random fluctuations with equal intensity across
all frequencies. In ecological contexts, white noise is often used to simulate natural disturbances
driven by environmental changes [8]. These disturbances can include fluctuations in temperature,
precipitation, or resource availability, as well as disturbances caused by human activities such as
logging, pollution, or habitat fragmentation [9]. By incorporating white noise into ecological models,
researchers can replicate the unpredictability and variability inherent in natural ecosystems, providing
insights into how species and communities respond to environmental fluctuations over time [10].
Building on this approach, certain papers have explored the dynamics between algae and zooplankton
under white noise perturbations. For instance:

• In [11], the author introduced a novel approach to modeling the dynamics of algae-zooplankton

AIMS Mathematics Volume 9, Issue 7, 18211–18235.



18213

systems, incorporating stochasticity through the inclusion of random environmental perturbations
represented as white noise. His work yielded insights into the conditions for stochastic extinction,
persistence, and the establishment of an ergodic stationary distribution within the system.
• In [12], the authors presented a nutrient-algae model enriched with the incorporation of white

noise, aiming to capture the stochastic nature of ecological processes. Their study not only
provided insights into the necessary conditions for extinction, persistence, and ergodicity within
the model but also shed light on the dynamic interplay between nutrient availability and algae
abundance in fluctuating environments.
• In [13], the authors investigated the dynamics of a stochastic system involving toxin-producing

algae and fish, incorporating harvesting practices. Their study yielded valuable insights into the
system’s behavior, offering sufficient conditions for both extinction and persistence.
• In [14], the authors explored the dynamics of a stochastic model concerning algae-zooplankton

interactions, taking into account variations in algae cell size and zooplankton body size. The
authors derived criteria for both extinction and ergodicity within the model.

On the other hand, pure Lévy jumps represent a type of stochastic process characterized by
infrequent but intense changes in a system’s state [15]. Unlike white noise, which generates random
fluctuations of relatively constant magnitude, pure Lévy jumps simulate abrupt and extreme events
that can have significant impacts on ecological dynamics. These events may include rare but severe
disturbances such as wildfires, hurricanes, or disease outbreaks, as well as sudden shifts in population
dynamics due to predator-prey interactions or competitive pressures [16]. By incorporating pure Lévy
jumps into ecological models, researchers can explore the effects of these rare but influential events on
the resilience and stability of ecosystems, shedding light on how ecosystems respond to and recover
from extreme perturbations. Expanding upon this methodology, specific studies have delved into the
interplay between algae and zooplankton dynamics, incorporating the concept of Lévy jumps. For
example:

• In [17], the authors introduced a stochastic model of nutrient-plankton food chains, incorporating
Lévy jumps into their framework. They established necessary conditions for both the persistence
and extinction of plankton populations within the model.
• In [18], the authors introduced an ecological system subjected to high-order white noise and

quadratic Lévy jumps. They delineated the conditions governing the extinction and ergodic
behavior of the model, offering valuable insights into the long-term dynamics and stability of
the system under stochastic perturbations.

By integrating both white noise and pure jumps into ecological modeling frameworks, researchers
can capture a wide range of variability and complexity in natural systems. This comprehensive
approach enables scientists to investigate how different types of disturbances and environmental
changes shape the dynamics of ecological communities, helping to inform conservation and
management strategies in an ever-changing world. Additionally, understanding the interplay between
different sources of variability can provide valuable insights into the adaptive capacity of species and
ecosystems, aiding efforts to predict and mitigate the impacts of global environmental change.

In this paper, we present a general ecological model that incorporates two distinct sources of
jumps, each tailored to capture specific aspects of stochasticity within natural systems. Firstly, we
integrate second-order white noises, meticulously designed to account for the subtle yet impactful
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fluctuations that characterize small-scale variations in environmental conditions. These fluctuations,
although seemingly minor, can have profound effects on ecosystem dynamics, influencing everything
from population dynamics to community structure. Secondly, we introduce second-order pure jumps,
strategically employed to capture the abrupt and intense changes that typify heavy perturbations within
ecological systems. These jumps represent the sudden shifts and disturbances that can arise from
various factors, such as extreme weather events, sudden changes in resource availability, or outbreaks
of disease.

Crucially, we introduce a parameter ranging between 0 and 1, offering the flexibility to personalize
the perturbation characteristics and providing insight into both subtle and heavy variations. This
parameterization allows us to systematically explore the effects of different levels of perturbation
intensity on ecosystem dynamics, offering a nuanced understanding of how ecological systems respond
to environmental variability across a spectrum of conditions.

A notable feature of our study is the establishment of a global threshold delineating the boundary
between extinction and ergodicity within the model. This threshold plays a pivotal role in
distinguishing between two critical scenarios: The sustained persistence of ecological communities
(ergodicity) and their eventual decline and disappearance (extinction). By identifying and elucidating
this threshold, we offer valuable insights into the underlying mechanisms governing the long-term
stability and resilience of algae-zooplankton communities.

The remainder of this paper is organized as follows: Section 2 introduces the algae-zooplankton
model and its stochastic formulation. Following this, we present some preliminary concepts and
lemmas. In Section 3, we unveil the main theorems that establish the global threshold between
extinction and ergodicity within the stochastic model. Section 4 provides numerical illustrations to
examine the impact of noise on the dynamics of algae and zooplankton. Finally, we conclude with a
discussion of our findings and a consideration of our limitations.

2. Stochastic system and preliminaries

Drawing upon the model outlined in [14], we proceed to introduce a refined algae-zooplankton
system that builds upon and extends previous findings in the field. Our system encapsulates the
intricate interplay between algae y0 and zooplankton y1 dynamics, aiming to elucidate the underlying
mechanisms governing their interactions within aquatic ecosystems. The model under perturbation is
structured as follows:

dy0(t) =

(
ry0(t)

s1r2 + s2r + s3

(
1 −

y0(t)
L

)
−

β0y0(t)y1(t)
γy0(t) + y1(t)

e
{
− 1
ζ1

(r−ζ2u)2
})

dt +$00y0(t)dS 0(t),

dy1(t) =

(
αβ0y0(t)y1(t)
γy0(t) + y1(t)

e
{
− 1
ζ1

(r−ζ2u)2
}
− β1y0(t)y1(t) − d1y1(t)

)
dt +$10y1(t)dS 1(t),

y1(0) ∈ R+, y1(0) ∈ R+,

(2.1)

where r is the size of the algae cells, s1, s2, and s3 are some experimental coefficients, L is the significant
ecological carrying capacity, β0 is the peak consumption rate, γ is the saturated coefficient, ζ1 and ζ2

are the usage rate coefficients, u is the metric for zooplankton morphology, α is the transition rate of
y1, β1 is the toxic emission, d1 is the mortality rate of y1, and $00 and $10 represent the intensity of
noise for the independent standard Brownian motions S 0(t) and S 1(t), respectively.
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In the complex ecosystems of aquatic environments, the predation dynamics between zooplankton
and phytoplankton are closely tied to the size disparities among these tiny organisms. A key
principle recognized by ecologists is that larger-bodied zooplankton typically prey on smaller-bodied
phytoplankton [19–21]. However, as the ecosystem becomes more populated with multiple species of
both phytoplankton and zooplankton, each with varying body sizes, the predation dynamics become
increasingly intricate. In these multifaceted scenarios, interactions among planktonic organisms are
often complicated by mutual interference, resulting in complex webs of predation and resource use.
Consequently, the incidence rates that describe these interactions must take on specific forms to
accurately reflect the nuanced relationships at play. Understanding these specific forms of incidence
rates is crucial for elucidating the detailed mechanisms governing predator-prey interactions and
species coexistence within aquatic ecosystems.

In the model described in [14], the authors focused on the nonlinear interaction function β0y0(t)y1(t)
γy0(t)+y1(t) .

However, real-world scenarios and certain modeling requirements may necessitate a more versatile
approach. In order to accommodate a broader range of situations, this paper will explore a generalized
functional interaction function f

(
y0(t), y1(t)

)
. By doing so, we aim to encompass a wider spectrum of

epidemiological dynamics and provide a more flexible framework for modeling ecological competition
in various contexts. The generalized form of the system (2.1) is presented as follows:

dy0(t) =

(
ry0(t)

s1r2 + s2r + s3

(
1 −

y0(t)
L

)
− f

(
y0(t), y1(t)

)
y1(t)e

{
− 1
ζ1

(r−ζ2u)2
})

dt +$00y0(t)dS 0(t),

dy1(t) =

(
α f

(
y0(t), y1(t)

)
y1(t)e

{
− 1
ζ1

(r−ζ2u)2
}
− β1y0(t)y1(t) − d1y1(t)

)
dt +$10y1(t)dS 1(t),

y0(0) ∈ R+, y1(0) ∈ R+,

(2.2)

where f ∈ C2(R+ × R+,R+) is an uniformly continuous function such that

∂ f
(
y0(t), y1(t)

)
∂y1(t)

≤ 0 ≤
∂ f

(
y0(t), y1(t)

)
∂y0(t)

≤ ϑ,

for a given positive constant ϑ. This generalized function, as described under the aforementioned
conditions, includes several specific cases outlined in Table 1 (see, for example, [22–26]).

Table 1. List of some examples of the general interference function f .

Name Expression

Bilinear f
(
y0, y1

)
= y0,

Saturated f
(
y0, y1

)
=

y0

m0 + y0
, (m0 > 0)

Crowley-Martin f
(
y0, y1

)
=

y0

(m0 + y0)(m1 + y1)
, (m0,m1 > 0)

Beddington-DeAngelis f
(
y0, y1

)
=

y0

1 + m0y0 + m1y1
, (m0,m1 > 0)

Modified Crowley-Martin f
(
y0, y1

)
=

y0

m0 + m1y0 + m2y1 + m3y0y1
, (m0,m1,m2,m3 > 0)

Having expanded the incidence rate to a more generalized form, we are now poised to introduce our
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novel model, enriched with second-order perturbations [26, 27]. Consider the following system:

dy0(t) =

(
ry0(t)

s1r2 + s2r + s3

(
1 −

y0(t)
L

)
− f

(
y0(t), y1(t)

)
y1(t)e

{
− 1
ζ1

(r−ζ2u)2
})

dt

+p
1∑

i=0

$0iyi+1
0 (t)dS 0(t) + (1 − p)

∫
R2\{0}

1∑
j=0

ν0 j(ξ)y
j+1
0 (t−)D0(dt, dξ),

dy1(t) =

(
α f

(
y0(t), y1(t)

)
y1(t)e

{
− 1
ζ1

(r−ζ2u)2
}
− β1y0(t)y1(t) − d1y1(t)

)
dt

+p
1∑

i=0

$1iyi+1
1 (t)dS 1(t) + (1 − p)

∫
R2\{0}

1∑
j=0

ν1 j(ξ)y
j+1
1 (t−)D1(dt, dξ),

y0(0) ∈ R+, y1(0) ∈ R+.

(2.3)

Here, S k(t) (k = 0, 1) denotes two mutually independent Standard Brownian motions (SBMs) of
strengths $0i > 0 (i = 0, 1) and $1i > 0 (i = 0, 1), respectively. These SBMs are essentially defined on
a filtered probability triple (stochastic basis)

(
Ω,FΩ, (F{Ω,t})t>0,P

)
equipped with a filtration satisfying

the usual criteria [4]. yk(t−) (k = 0, 1) is the left limits of yk(t) (k = 0, 1). D̄k (k = 0, 1) are two
independent stochastic Poisson processes related to the measures mk (k = 0, 1) defined on a measurable
set R2 \ {0} as follows:

mk(A) =

∫
R2\{0}

∫
R+

α−αs−1
s e−t1A(tx)dtRk(dx), A ∈ B(R2 \ {0}), (2.4)

where 1 denotes the indicator function, αs ∈ (0, 2), and Rk is the Rosiński measure defined on R2 \ {0}

such that Rk(0) = 0, (k = 0, 1), with
∫
R2\{0}

(
||x||2 ∧ ||x||αs

)
Rk(dx) < ∞, αs ∈ (0, 2) (for more details,

please see [28]). Dk (k = 0, 1) are two independent compensated Poisson random measures such that
Dk(dt, dξ) = D̄k(dt, dξ)−mk(dξ)dt. νk : R2 \ {0} → R are the jumps size functions which are postulated

to be positive and continuous on R2 \ {0}, for all i, k = 0, 1. It is assumed that
∫
R2\{0}

ν2
ik(ξ)mi(dξ) is

finite. The variable p is a constant between 0 and 1. This is included in order to have the possibility
of personalizing the influence of the noise part (from a modeling perspective). If p = 1, system (2.3)
simplifies to a model featuring solely second-order white noise, effectively simulating continuous and
Gaussian variations commonly observed in ecological systems. Conversely, when p = 0, system (2.3)
transforms into a model characterized by unexpected jumps with heavy tails, resulting in abrupt and
drastic changes in species dynamics.

Based on the theoretical framework outlined in references [15, 29], it becomes evident that the
system described by Eq (2.3) possesses a unique positive global solution. This observation not only
confirms the ecological validity of the model but also establishes its mathematical robustness and well-
posedness.

As outlined in the introduction, the central focus of this paper revolves around delineating the
global threshold that delineates the balance between the sustenance and extinction of zooplankton
populations. To address the intricacies posed by the new stochastic system (2.3), we propose a new
approach based on the ergodicity of an auxiliary equation closely resembling the equation of y0. Based
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on the stochastic comparison theorem [30], we present the following equation:

dỹ0(t) =

(
rỹ0(t)

s1r2 + s2r + s3

(
1 −

ỹ0(t)
L

))
dt + p

1∑
i=0

$0iỹi+1
0 (t)dS 0(t)

+(1 − p)
∫
R2\{0}

1∑
j=0

ν0 j(ξ)ỹ
j+1
0 (t−)D0(dt, dξ),

ỹ0(0) = y0(0) > 0.

(2.5)

Based on Lemma 2.2 in [31], it is evident that Eq (2.5) maintains its well-posed nature. Additionally,
ỹ0(t) emerges as a stochastic process endowed with the following properties:

(1) P
(
ỹ0(t) − y0(t) ≥ 0

)
= 1.

(2) If

d̃0 =
r

s1r2 + s2r + s3
−

p2$2
00

2
−

∫
R2\{0}

(
(1 − p)ν00(ξ) − log

(
1 + (1 − p)ν00(ξ)

))
m0(dξ) > 0, (2.6)

then there exists a unique ergodic stationary distribution η̃0 for Eq (2.5); and

lim
t→∞

1
t

∫ t

0
ỹ0(s)ds ≤

Ld̃0(
r

s1r2+s2r+s3
+ L(1 − p)2$00$01

) .
For analytical coherence, it is imperative to maintain the assumption of positivity for d̃0 throughout
this study. Additionally, we rigorously define the following quantities, crucial in delineating the global
threshold within the framework of system (2.3):

θ0 = αe
{
− 1
ζ1

(r−ζ2u)2
} ∫
R+

f
(
y, 0

)
η̃0(dy),

θ1 = d1 +
p2$2

10

2
+

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m0(dξ).

3. Global threshold of system (2.3)

As elucidated earlier, the crux of ecosystem examination lies in accurately demarcating the
threshold that distinguishes between population persistence and decline. Therefore, the paramount aim
of the forthcoming theorems is to tackle this pivotal inquiry head-on, while simultaneously enriching
our comprehension of algae-zooplankton system dynamics with additional insights and refinements.

Theorem 3.1. Suppose that θ0 ≤ θ1. Under this condition, for any initial positive data (y0(0), y1(0)),
the stochastic system described by Eq (2.3) asymptotically tends towards a state of exponential decline
and

P
(
lim
t→∞

y1(t) = 0
)

= 1.
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Proof. Utilizing Itô’s formula, we readily obtain

d log y1(t) =

(
αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
− β1y0(t) − d1 −

p2

2

 1∑
i=0

$1iyi
1(t)

2

+

∫
R2\{0}

(
log

(
1 + (1 − p)ν10(ξ) + (1 − p)ν11(ξ)y1(t)

)
m1(dξ)

− (1 − p)
∫
R2\{0}

(
ν10(ξ) + ν11(ξ)y1(t)

)
m1(dξ)

)
dt + p

1∑
i=0

$1iyi
1(t)dS 1(t)

+

∫
R2\{0}

log
(
1 + (1 − p)ν10(ξ) + (1 − p)ν11(ξ)y1(t−)

)
D1(dt, dξ).

In accordance with the stochastic comparison theorem [30], we deduce that

d log y1(t) ≤
(
αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
ỹ0(t), 0

)
− β1y0(t) − d1 −

p2

2

 1∑
i=0

$1iyi
1(t)

2

+

∫
R2\{0}

(
log

(
1 + (1 − p)ν10(ξ) + (1 − p)ν11(ξ)y1(t)

)
m1(dξ)

− (1 − p)
∫
R2\{0}

(
ν10(ξ) + ν11(ξ)y1(t)

)
m1(dξ)

)
dt + p

1∑
i=0

$1iyi
1(t)dS 1(t)

+

∫
R2\{0}

log
(
1 + (1 − p)ν10(ξ) + (1 − p)ν11(ξ)y1(t−)

)
D1(dt, dξ). (3.1)

By integrating the above inequality from 0 to t, we acquire

log y1(t)
t

≤
α

t
e
{
− 1
ζ1

(r−ζ2u)2
} ∫ t

0
f
(
ỹ0(s), 0

)
ds − d1 −

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m1(dξ)

+
1
t

∫ t

0

∫
R2\{0}

{
log

(
1 +

(1 − p)ν11(ξ)y1(s)
1 + (1 − p)ν10(ξ)

)
− (1 − p)ν11(ξ)y1(s)

}
m1(dξ)ds

+
1
t

p
∫ t

0

1∑
i=0

$1iyi
1(s)dS 2(s) −

p2

2

∫ t

0

 1∑
i=0

$1iyi
1(s)

2

ds


+

1
t

∫ t

0

∫
R2\{0}

log
(
1 + (1 − p)ν10(ξ)

)
D1(ds, dξ) +

log y1(0)
t

+
1
t

∫ t

0

∫
R2\{0}

log
(
1 +

(1 − p)ν11(ξ)y1(s−)
1 + (1 − p)ν10(ξ)

)
D1(ds, dξ). (3.2)

We let M0(t) =

∫ t

0

∫
R2\{0}

log
(
1 + ν10(ξ)

)
D1(ds, dξ). Then, we get

〈M0(t),M0(t)〉 = t
∫
R2\{0}

(
log

(
1 + ν10(ξ)

))2
m1(dξ) < ∞.
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Referring to the strong law of large numbers, we derive P
(
lim
t→∞

1
t

M0(t) = 0
)

= 1. Now, we select

0 < %1 < 1 and consider the following quantities:

M1(t) = p
∫ t

0

1∑
i=0

$1iyi
1(s)dS 1(s) −

p2

2

∫ t

0

 1∑
i=0

$1iyi
1(s)

2

ds,

M2(t) = p
∫ t

0

1∑
i=0

$1iyi
1(s)dS 1(s) −

p2%1

2

∫ t

0

 1∑
i=0

$1iyi
1(s)

2

ds,

M3(t) =

∫ t

0

∫
R2\{0}

(( (1 − p)ν11(ξ)y1(s)
1 + (1 − p)ν10(ξ)

)
+ log

(
1 +

(1 − p)ν11(ξ)y1(s)
1 + (1 − p)ν10(ξ)

))
m1(dξ)ds,

M4(t) =

∫ t

0

∫
R2\{0}

log
(
1 +

(1 − p)ν11(ξ)y1(s−)
1 + (1 − p)ν10(ξ)

)
D1(ds, dξ).

To continue, we employ the exponential inequality designed for martingales, we obtain

P

{
sup

t∈[0,T1]

(
M2(t) − M3(t) + M4(t)

)
> 2%−1

1 log %2

}
≤ %−2

2 , for all %2 > 0.

Thanks to the Borel-Cantelli lemma, we establish the presence of %2(ω) for all ω ∈ Ω, ensuring the
validity of the following inequality:

p
∫ t

0

1∑
i=0

$1iyi
1(s)dS 1(s) + M4(t) ≤ 2%−1

1 log %2 +
p2%1

2

∫ t

0

 1∑
i=0

$1iyi
1(s)

2

ds + M3(t),

verifies for any %2 satisfying %2 ≥ %2(ω) and P
(
t ∈]%2 − 1, %2[

)
= 1. Consequently,

M1(t)
t

+
M4(t)

t
≤

2%−1
1 log %2

t
+

p2%1

2t

∫ t

0

 1∑
i=0

$1iyi
1(s)

2

ds −
p2

2t

∫ t

0

 1∑
i=0

$1iyi
1(s)

2

ds

+
1
t

∫ t

0

∫
R2\{0}

(( (1 − p)ν11(ξ)y1(s)
1 + (1 − p)ν10(ξ)

)
− (1 − p)ν11(ξ)y1(s)

)
m1(dξ)ds

≤
2%−1

1 log %2

%2 − 1
−

p2(1 − %1)
2t

∫ t

0

 1∑
i=0

$1iyi
1(s)

2

ds

≤
2%−1

1 log %2

%2 − 1
−

p2(1 − %1)$2
10

2
.

We compute the upper limit on both sides of Eq (3.2), and then we get

lim sup
t→∞

log y1(t)
t

≤ αe
{
− 1
ζ1

(r−ζ2u)2
}
lim
t→∞

1
t

∫ t

0
f
(
ỹ0(s), 0

)
ds − d1

−

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m1(dξ) + lim

t→∞

1
t
φ(t)

≤ θ0 − d1 −

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m1(dξ)
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+ lim
%2→∞

2%−1
1 log %2

%2 − 1
−

p2(1 − %1)$2
10

2
.

Therefore,

lim sup
t→∞

log y1(t)
t

≤ θ0 − d1 −
p2(1 − %1)$2

10

2
−

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m1(dξ).

By considering the arbitrary nature of 0 < %1 < 1, one can deduce that as %1 approaches 0,

P

(
lim sup

t→∞

log y1(t)
t

≤ θ0 − θ1 < 0
)

= 1.

Put differently, for any arbitrarily small positive quantity θ̃ satisfying θ̃ < min{0.5, 0.5(θ1 − θ0)}, we
can infer the existence of %3 = %3(ω) associated with Ω%3 such that P(Ω%3) ≥ 1 − %3, where log y1(t) ≤
−0.5(θ1 − θ0)t for all t ≥ %3 and ω ∈ Ω%3 . As a result, y1(t) ≤ exp(−0.5(θ1 − θ0)t) and

P

(
lim sup

t→∞
y1(t) ≤ 0

)
= 1.

This, coupled with the positivity of the solution (y0, y1), suggests

P
(
lim
t→∞

y1(t) = 0
)

= 1.

This indicates that the exponential decrease in the population of y1 implies its almost certain complete
eradication. With this, the proof is concluded. �

Corollary 3.1. (case of second-order Brownian motions) If p = 1, and

αe
{
− 1
ζ1

(r−ζ2u)2
} ∫
R+

f
(
y, 0

)
η̃0(dy) ≤ d1 +

$2
10

2
,

then, the extinction of the population y1 occurs almost surely.

Corollary 3.2. (case of second-order jumps) If p = 0, and

αe
{
− 1
ζ1

(r−ζ2u)2
} ∫
R+

f
(
y, 0

)
η̃0(dy) ≤ d1 +

∫
R2\{0}

(
ν10(ξ) − log

(
1 + ν10(ξ)

))
m0(dξ),

then, the extinction of the population y1 occurs almost surely.

Theorem 3.2. Suppose that θ0 > θ1. Under this condition, for any initial positive data (y0(0), y1(0)),
the stochastic system described by Eq (2.3) asymptotically tends towards a stationary state and

P

(
lim inf

t→∞

1
t

∫ t

0
y`(s)ds =

∫
R2

+

y`η(y0, y1) > 0
)

= 1, ∀` = 0, 1,

where η(·, ·) is the unique ergodic stationary distribution associated with system (2.3).
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Proof. Utilizing the Itô formula for the function F0(t) = log
(

ỹ0(t)
y0(t)

)
yields:

LF0(t) ≤ −
r

L(s1r2 + s2r + s3)

(
ỹ0(t) − y0(t)

)
+

1
y0(t)

e
{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
y1(t)

−
1
2

p
1∑

i=0

$0iỹi
0(t)

2

+
1
2

p
1∑

i=0

$0iyi
0(t)

2

+

∫
R2\{0}

{
log

(1 + (1 − p)ν00(ξ) + (1 − p)ν01(ξ)ỹ0(t)
1 + (1 − p)ν00(ξ) + (1 − p)ν01(ξ)y0(t)

)
− (1 − p)ν01(ξ)

(
ỹ0(t) − y0(t)

)}
m0(dξ).

Based on the properties of the function f , it follows that:

LF0(t) ≤ −
r

L(s1r2 + s2r + s3)

(
ỹ0(t) − y0(t)

)
+ ϑe

{
− 1
ζ1

(r−ζ2u)2
}
y1(t)

−
(
ỹ0(t) − y0(t)

) ∫
R2\{0}

{ (1 − p)2ν01(ξ)
(
ν00(ξ) + ν01(ξ)y0(t)

)
1 + (1 − p)ν00(ξ) + (1 − p)ν01(ξ)y0(t)

}
m0(dξ).

By virtue of the positive property of the solution, we obtain:

LF0(t) ≤ −
r

L(s1r2 + s2r + s3)

(
ỹ0(t) − y0(t)

)
+ ϑe

{
− 1
ζ1

(r−ζ2u)2
}
y1(t). (3.3)

Once more, employing the operator L on the second equation of (2.3) yields:

L log
(

1
y1(t)

)
= −αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
+ β1y0(t) + d1 +

1
2

p
1∑

i=0

$1iyi
1(t)

2

−

∫
R2\{0}

{
log

(
1 + (1 − p)ν10(ξ) + (1 − p)ν11(ξ)y1(t)

)
− (1 − p)

(
ν10(ξ) + ν11(ξ)y1(t)

)}
m1(dξ).

Consequently,

L log
(

1
y1(t)

)
= −αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
ỹ0(t), 0

)
+ β1y0(t) + d1 +

p2$2
10

2

+

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m1(dξ)

+ αe
{
− 1
ζ1

(r−ζ2u)2
}
f
(
ỹ0(t), 0

)
− αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
− αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), 0

)
+ αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), 0

)
+ p$10$11y1(t) +

p2

2
$2

11y2
1(t)

+

∫
R2\{0}

{
(1 − p)ν11(ξ)y1(t) − log

(
1 +

(1 − p)ν11(ξ)y1(t)
1 + (1 − p)ν10(ξ)

)}
m1(dξ).

Consistent with the positivity of the solution, we find

L log
(

1
y1(t)

)
≤ −αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
ỹ0(t), 0

)
+ d1 +

p2$2
10

2

AIMS Mathematics Volume 9, Issue 7, 18211–18235.
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+

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m1(dξ)

+ β1y0(t) + αϑe
{
− 1
ζ1

(r−ζ2u)2
}(

ỹ0(t) − y0(t)
)

+

(
p$10$11 + (1 − p)

∫
R2\{0}

ν11(ξ)m0(dξ)
)
y1(t)

+
p2

2
$2

11y2
1(t) + αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), 0

)
− αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
. (3.4)

Now, let us examine the following function:

F1(t) =
Lαϑ

r
(s1r2 + s2r + s3)e

{
− 1
ζ1

(r−ζ2u)2
}
F0(t) + log

(
1

y1(t)

)
.

By applying the operator L to F1, we obtain

LF1(t) ≤ −αe
{
− 1
ζ1

(r−ζ2u)2
}
f
(
ỹ0(t), 0

)
+ d1 +

p2$2
10

2

+

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m1(dξ)

+ β1y0(t) +

(
p$10$11 + (1 − p)

∫
R2\{0}

ν11(ξ)m0(dξ)
)
y1(t)

+
L(s1r2 + s2r + s3)αϑ2

r
e2

{
− 1
ζ1

(r−ζ2u)2
}
y1(t)

+ αe
{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), 0

)
− αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
+

p2

2
$2

11y2
1(t).

By rearranging certain terms, we achieve

LF1(t) ≤ −αe
{
− 1
ζ1

(r−ζ2u)2
} ∫
R+

f
(
y, 0

)
η̃0(dy) + d1 +

p2$2
10

2

+

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m1(dξ)

+ β1y0(t) +
p2

2
$2

11y2
1(t) + αe

{
− 1
ζ1

(r−ζ2u)2
}( ∫

R+

f
(
y, 0

)
η̃0(dy) − f

(
ỹ0(t), 0

))
+

(L(s1r2 + s2r + s3)αϑ2

r
e2

{
− 1
ζ1

(r−ζ2u)2
}

+ p$10$11 + (1 − p)
∫
R2\{0}

ν11(ξ)m0(dξ)
)
y1(t)

+ αe
{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), 0

)
− αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
.

Once more, let us examine this new function:

F2(t) = F1(t) + c?y1(t).

Here, c? denotes a positive constant that fulfills:

c? ≥
1
d1

(L(s1r2 + s2r + s3)αϑ2

r
e2

{
− 1
ζ1

(r−ζ2u)2
}

+ p$10$11 + (1 − p)
∫
R2\{0}

ν11(ξ)m1(dξ)
)
.
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Upon applying the operator L to F2, we acquire

LF2(t) ≤ −αe
{
− 1
ζ1

(r−ζ2u)2
} ∫
R+

f
(
y, 0

)
η̃0(dy) + d1 +

p2$2
10

2

+

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m1(dξ)

+ αe
{
− 1
ζ1

(r−ζ2u)2
}( ∫

R+

f
(
y, 0

)
η̃0(dy) − f

(
ỹ0(t), 0

))
+ αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), 0

)
− αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
+ β1y0(t) +

p2

2
$2

11y2
1(t) + c?αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
y1(t).

Then

LF2(t) ≤ θ1 − θ0 + αe
{
− 1
ζ1

(r−ζ2u)2
}( ∫

R+

f
(
x, 0

)
η̃0(dx) − f

(
ỹ0(t), 0

))
+ αe

{
− 1
ζ1

(r−ζ2u)2
}(

f
(
y0(t), 0

)
− f

(
y0(t), y1(t)

))
+ β1y0(t) +

p2

2
$2

11y2
1(t) + c?αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
y1(t).

Let c?? ∈ (0, 1), then we define a new function as follows:

F3(t) =
1

c??

(
yc??

0 (t) + yc??
1 (t)

)
.

By applying the operator L to F3, we get

LF3(t) = yc??−1
0 (t)

{
ry0(t)

s1r2 + s2r + s3

(
1 −

y0(t)
L

)
− e

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
y1(t)

}

+
(c?? − 1)

2
yc??−2

0 (t)

p
1∑

i=0

$0iyi+1
0 (t)

2

+

∫
R2\{0}

{(y0(t) + (1 − p)ν00(ξ)y0(t) + (1 − p)ν01(ξ)y2
0(t)

)c??

c??
−

yc??
0 (t)
c??

}
m0(dξ)

−

∫
R2\{0}

(1 − p)yc??−1
0 (t)

(
ν00(ξ)y0(t) + ν01(ξ)y2

0(t)
)
m0(dξ)

+ yc??−1
1 (t)

(
αe

{
− 1
ζ1

(r−ζ2u)2
}
f
(
y0(t), y1(t)

)
y1(t) − βy0(t)y1(t) − d1y1(t)

)
+

(c?? − 1)
2

yc??−2
1 (t)

p
1∑

i=0

$1iyi+1
1 (t)

2

+

∫
R2\{0}

((y1(t) + (1 − p)ν10(ξ)y1(t) + (1 − p)ν11(ξ)y2
1(t)

)c??

c??
−

yc??
1 (t)
c??

)
m1(dξ)

−

∫
R2\{0}

(1 − p)yc??
1 (t)

(
ν00(ξ) + ν01(ξ)y1(t)

)
m0(dξ)
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≤
r

s1r2 + s2r + s3
yc??

0 (t) −
(1 − c??)

2
$2

01yc??+2
0 (t) +

αe
{
− 1
ζ1

(r−ζ2u)2
}
ϑ

c?? + 1
yc??+1

0 (t)

+
αc??e

{
− 1
ζ1

(r−ζ2u)2
}
ϑ

c?? + 1
yc??+1

1 (t) −
(1 − c??)

2
$2

11yc??+2
1 (t).

We amalgamate functions F2 and F3 in the following manner:

F4(t) = h?F2(t) + F3(t).

Here, h? > 0 satisfies 2 +K? − h?(
>0︷ ︸︸ ︷

θ0 − θ1) ≤ 0, where K? = max
{
A?, 1

}
, and

A? = sup
(y0,y1)∈R2

◦,+

{ r
s1r2 + s2r + s3

yc??
0 (t) −

(1 − c??)
4

$2
01yc??+2

0 (t) +
αe

{
− 1
ζ1

(r−ζ2u)2
}
ϑ

c?? + 1
yc??+1

0 (t)

+
αc??e

{
− 1
ζ1

(r−ζ2u)2
}
ϑ

c?? + 1
yc??+1

1 (t) −
(1 − c??)

4
$2

11yc??+2
1 (t)

}
.

To guarantee the positivity of our Lyapunov function, we introduce this new function:

F5(t) = F4(t) − F4,

where, F4 represents the lower bound of function F4. When we apply the operator L to F5, we obtain

LF5(t) ≤ F6(t) + h?αe
{
− 1
ζ1

(r−ζ2u)2
}( ∫

R+

f
(
y, 0

)
η̃0(dy) − f

(
ỹ0(t), 0

))
, (3.5)

where

F6(t) = h?(
<0︷ ︸︸ ︷

θ1 − θ0) + h?c?αe
{
− 1
ζ1

(r−ζ2u)2
}
ϑy0(t)y1(t) + β1y0(t) + h?

p2

2
$2

11y2
1(t)

+
r

s1r2 + s2r + s3
yc??

0 (t) −
(1 − c??)

4
$2

01yc??+2
0 (t) +

αe
{
− 1
ζ1

(r−ζ2u)2
}
ϑ

c?? + 1
yc??+1

0 (t)

+
αc??e

{
− 1
ζ1

(r−ζ2u)2
}
ϑ

c?? + 1
yc??+1

1 (t) −
(1 − c??)

4
$2

11yc??+2
1 (t).

Utilizing the methodologies outlined in the proof of Theorem 3.2 in [31], along with the properties of
the function f , we can promptly verify F6(t) ≤ −1, ∀(y0, y1) ∈ R2

+ \ Hx = Hc
x, x > 0, where

Hx =
{
(y0, y1) ∈ R2

+| x ≤ y0 ≤ x−1, x ≤ y1 ≤ x−1
}
.

Alternatively, it’s evident that there exists a positive constant κ such that F6(t) ≤ κ for all (y0, y1) ∈ Hx.
Then, from (3.5), we derive

0 ≤
∫ t

0
EF6(t)ds + h?αe

{
− 1
ζ1

(r−ζ2u)2
}
× E

( ∫ t

0

∫
R+

f
(
y, 0

)
η̃0(dy)ds −

∫ t

0
f
(
ỹ0(s), 0

)
ds

)
.
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By virtue of the ergodicity property of the process ỹ, we obtain

0 ≤ lim inf
t→∞

1
t

∫ t

0

(
EF6(t)1{(y0,y1)∈Hx} + EF6(t)1{(y0,y1)∈Hc

x}

)
ds.

So,

0 ≤ lim inf
t→∞

1
t

∫ t

0

(
κP

(
(y0, y1) ∈ Hx

)
− P

(
(y0, y1) ∈ Hc

x
))

ds

= lim inf
t→∞

1
t

∫ t

0

(
κP

(
(y0, y1) ∈ Hx

)
− 1 + P

(
(y0, y1) ∈ Hx

))
ds.

Consequently,

lim inf
t→∞

1
t

∫ t

0
P
(
(y0, y1) ∈ Hx

)
ds ≥ (1 + κ)−1 > 0.

By employing the lemma of mutually constrained possibilities [32], we infer the existence of a unique
ergodic stationary distribution η(·, ·). Hence, incorporating the ergodic property into consideration, we
can firmly conclude that

P

(
lim inf

t→∞

1
t

∫ t

0
y0(s)ds =

∫
R2

+

y0η(y0, y1) > 0
)

= 1,

P

(
lim inf

t→∞

1
t

∫ t

0
y1(s)ds =

∫
R2

+

y1η(y0, y1) > 0
)

= 1.

This implies that the system asymptotically converges to the persistent state over time. Thus, the proof
is concluded. �

Corollary 3.3. (case of second-order Brownian motions) If p = 1, and

αe
{
− 1
ζ1

(r−ζ2u)2
} ∫
R+

f
(
y, 0

)
η̃0(dy) > d1 +

$2
10

2
,

then, the permanence of the populations y1 and y1 occurs almost surely.

Corollary 3.4. (case of second-order jumps) If p = 0, and

αe
{
− 1
ζ1

(r−ζ2u)2
} ∫
R+

f
(
y, 0

)
η̃0(dy) > d1 +

∫
R2\{0}

(
ν10(ξ) − log

(
1 + ν10(ξ)

))
m0(dξ),

then, the permanence of the populations y1 and y1 occurs almost surely.

Remark 3.1. From Theorem 3.1, we infer that the zooplankton population tends to extinction rapidly.
This rapid decline suggests that under certain conditions, the zooplankton cannot sustain its population
over time, likely due to insufficient resources, high predation pressure, or adverse environmental
factors. The extinction of zooplankton can disrupt the balance of the aquatic ecosystem, affecting
nutrient cycling and the food web structure. In contrast, Theorem 3.2 implies the persistence and
stationarity of both algae and zooplankton populations. This means that under a different set of
conditions, both populations are able to maintain stable levels over time, without the risk of extinction.
The persistence of these populations indicates a balanced interaction between the species, where
the growth rates of algae and zooplankton, along with other ecological factors, allow for long-term
coexistence.
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4. Numerical application and discussion

In this section, we carry out a series of numerical examples to validate the findings presented in our
study, utilizing the data outlined in [14]. We take r = 0.3, u = 0.25, s1 = 0.02, s2 = 0.02, s3 = 0.08,
L = (2.5; 3.5), ζ1 = 2, ζ2 = 0.5, α = 0.4, β1 = 0.2, and d1 = 0.6. About the dual incidence functions g1

and g2, we consider the following general nonlinear incidence:

f (y0, y1) =
β0y0

1 + k0y0 + k1y1 + k2y0y1
,

where β0 = 4.5, k0 = 0.16 , k0 = 0.11 and k2 = 0.012. To simulate the stochastic component, we
present a method for simulating jumps and tempered stable processes [28]. Firstly, we examine the
sequences {S 1, j} j>1, {S 2, j} j>1, and {S 3, j} j>1, representing independent and identically distributed (i.i.d.)
random variables taking values in the real numbers, following the distribution (2.4). Additionally,
we define {S 2, j} j>1 and {S 3, j} j>1 as i.i.d. sequences of uniform random variables within the intervals
(0, 1) and (0,T ), respectively. Furthermore, consider {S 4, j} j>1 and {S 5, j} j>1 as i.i.d. sequences of
random variables following an exponential distribution with a rate coefficient of 1. It is assumed that

all the aforementioned random variables are mutually independent. Then, we let {S 6, j} =

j∑
k=1

{S 5,k}.

Noticeably, {S 6, j} can be regarded as a Poisson point process on the interval R+ with random intensity
measure. In reference to the theory outlined in [28], if αs ∈ (0, 2), then

mt =

+∞∑
j=1

S 1, j1{S 3, j6t}

|S 1, j|


(
αsS 6, j

T ||ρ||

)α−1
s

∧

S α−1
s

2, j S 4, j

|S 1, j|


 ,

converges almost surely and uniformly for t within the interval [0,T ] to a Lévy process, where

||ρ|| =

∫
R2\{0}

|x|αsRk(dx). In practice, we can devise a method for generating a jump process with

specified parameters at discrete time instances ti. Here, tii∈[0,I] denotes a partition of the interval [0,T ],
characterized by uniformly sized sub-intervals and a mesh size ∆t = T/I, where I ∈ N. Subsequently,
we employ the following algorithm:

(1) Choose a specific time duration, denoted as T, and partition the time interval [0,T ] into I equal-
sized segments.

(2) Specify and fix a numerical parameter, denoted as N.

(3) Generate numerical replications or simulations of independent quantities S i, j, where i ranges from 1
to 6, with a sample size of N.

(4) Calculate the value of mt.
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Let us now direct our attention to the following system:



dy0(t) =

 ry0(t)
s1r2 + s2r + s3

(
1 −

y0(t)
L

)
−

β0y0(t)y1(t)e
{
− 1
ζ1

(r−ζ2u)2
}

1 + k0y0(t) + k1y1(t) + k2y0(t)y1(t)

 dt

+p
1∑

i=0

$0iyi+1
0 (t)dS 0(t) + (1 − p)

∫
R2\{0}

1∑
j=0

ν0 j(ξ)y
j+1
0 (t−)D0(dt, dξ),

dy1(t) =

 αβ0y0(t)y1(t)e
{
− 1
ζ1

(r−ζ2u)2
}

1 + k0y0(t) + k1y1(t) + k2y0(t)y1(t)
− β1y0(t)y1(t) − d1y1(t)

 dt

+p
1∑

i=0

$1iyi+1
1 (t)dS 1(t) + (1 − p)

∫
R2\{0}

1∑
j=0

ν1 j(ξ)y
j+1
1 (t−)D1(dt, dξ),

y0(0) = 2.5, y1(0) = 1.8.

(4.1)

By incorporating the ergodic property of Eq (2.5), we define the parameters θ0 and θ1 as follows:

θ0 =

∫
R+

αβ0ye
{
− 1
ζ1

(r−ζ2u)2
}

1 + k1y
η̃0(dy) = lim

t→∞

1
t

∫ t

0

αβ0e
{
− 1
ζ1

(r−ζ2u)2
}
ỹ0(s)

1 + k0ỹ0(s)
ds,

θ1 = d1 +
p2$2

10

2
+

∫
R2\{0}

(
(1 − p)ν10(ξ) − log

(
1 + (1 − p)ν10(ξ)

))
m0(dξ).

4.1. Case 1: Almost sure extinction of y1

Firstly, we consider L = 2.5, p = 0.5 and we take the noise parameters as follows: $00 = 0.02 ,
$01 = 0.01, $10 = 0.021, $11 = 0.012, ν00 = 0.01, ν01 = 0.009, ν10 = 0.02 and ν11 = 0.007. In this
case, we get θ1 = 0.0526 and θ2 = 0.07492. According to Theorem 3.1, it is highly probable that the
population y1 will become extinct. This outcome is visually exemplified in Figure 1, which provides a
numerical illustration of the aforementioned result.

Secondly, we take p = 1 and we establish specific values for the white noise parameters$00 = 0.02,
$01 = 0.01, $10 = 0.021 and $11 = 0.012. In this case, we get θ1 = 0.0526 and θ2 = 0.1894. As a
result, we have verified that the prerequisite outlined in Corollary 3.1 has been met and the extinction
of y1 occurs almost surely. This result is visually depicted in Figure 2.

Now, we set p = 0. The jump intensities are defined as follows: ν00 = 0.01, ν01 = 0.009, ν10 = 0.02
and ν11 = 0.007. Here, we get θ1 = 0.0526 and θ2 = 0.118. As a result, we have verified that the
prerequisite outlined in Corollary 3.2 has been met. This result is visually depicted in Figure 3.

Upon scrutinizing the aforementioned figures, a discernible pattern emerges: The extinction time is
contingent upon the nature of the noise. Notably, a significant presence of noise hastens the extinction
process considerably. This observation underscores the critical influence of noise intensity on the
dynamics of extinction within the system.
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Figure 1. Conducting numerical simulations for solving system (4.1) in the presence of
second-order noise. In this case, we take L = 2.5 and p = 0.5. The white noise parameters
are selected as follows: $00 = 0.02 , $01 = 0.01, $10 = 0.021 and $11 = 0.012. The jump
intensities are defined as follows: ν00 = 0.01, ν01 = 0.009, ν10 = 0.02 and ν11 = 0.007. Here,
we get θ1 = 0.0526 and θ2 = 0.118.
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Figure 2. Conducting numerical simulations for solving system (4.1) in the presence of
second-order white noise. In this case, we take L = 2.5 and p = 1. The white noise
parameters are selected as follows: $00 = 0.02 , $01 = 0.01, $10 = 0.021 and $11 = 0.012.
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Figure 3. Conducting numerical simulations for solving system (4.1) in the presence of
second-order jumps. In this case, we take L = 2.5 and p = 0. The jump intensities are
defined as follows: ν00 = 0.01, ν01 = 0.009, ν10 = 0.02 and ν11 = 0.007. Here, we get
θ1 = 0.0526 and θ2 = 0.118.

4.2. Case 2: Permanence and ergodicity of y0 and y1

We consider L = 3.5, p = 0.5 and we take the noise parameters as follows: $00 = 0.001 , $01 =

0.001, $10 = 0.004, $11 = 0.0012, ν00 = 0.001, ν01 = 0.001, ν10 = 0.01 and ν11 = 0.003. In this
case, we get θ1 = 2.1982 and θ2 = 0.9862. As per Theorem 3.2, there is a strong likelihood of the
population y0 and y1 persisting, alongside the existence of a stationary distribution. This assertion is
vividly illustrated in Figure 4.

We take p = 1 and we establish specific values for the white noise parameters $00 = 0.001 ,
$01 = 0.001, $10 = 0.004, $11 = 0.0012. In this case, we get θ1 = 2.1982 and θ2 = 1.3412.
Consequently, we have confirmed the fulfillment of the condition outlined in Corollary 3.3, ensuring
the almost certain persistence of y0 and y1. This outcome is graphically illustrated in Figure 5, providing
a visual representation of the verified result.

Now, we set p = 0. The jump intensities are defined as follows: ν00 = 0.001, ν01 = 0.001, ν10 = 0.01
and ν11 = 0.003. Here, we get θ1 = 2.1982 and θ2 = 1.2981. Henceforth, we have substantiated the
fulfillment of the prerequisite delineated in Corollary 3.4. This validation is visually elucidated through
the representation provided in Figure 6.

Expanding upon the insights drawn from the aforementioned figure, it becomes apparent that the
characteristics of the noise exert a discernible influence on the magnitude of variation. Specifically, we
observe a pronounced effect: as the intensity of the noise increases, there is a notable augmentation
in the amplitude of variation. This correlation underscores the pivotal role played by noise levels in
amplifying the variability within the system dynamics, thereby emphasizing the significance of noise
intensity in shaping the observed outcomes.

Plankton size is a critical variable because it influences various biological and ecological processes.
For example, smaller plankton may have faster reproduction rates but are more susceptible to predation,
while larger plankton might be more resilient but have slower population growth. By studying different
plankton sizes, we can observe how size-specific traits affect the overall population dynamics and
stationary distribution. In instances of persistence, we explore the influence of plankton size and the
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parameter p on the morphology of the stationary distribution, as illustrated in Figure 7. This detailed
analysis illuminates the interplay between plankton size and system parameters, providing insights into
how these factors shape the stationary distribution under varying conditions. By examining different
plankton sizes and adjusting p , we can observe the impact on population dynamics and structure,
ultimately gaining a deeper understanding of the conditions that favor particular plankton sizes and
how populations adapt over time. This comprehensive examination is crucial for predicting plankton
responses to environmental changes and for effective marine ecosystem management.
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Figure 4. A three-dimensional visualization showcasing the stationary distribution,
complemented by a two-dimensional contour plot illustrating the dynamics of system (4.1).
In this case, L = 3.5 and p = 0.5. For noise intensities, we take $00 = 0.001 , $01 = 0.001,
$10 = 0.004, $11 = 0.0012, ν00 = 0.001, ν01 = 0.001, ν10 = 0.01 and ν11 = 0.003.
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Figure 5. A three-dimensional visualization showcasing the stationary distribution,
complemented by a two-dimensional contour plot illustrating the dynamics of system (4.1).
In this case, L = 3.5 and p = 1. For noise intensities, we take $00 = 0.001 , $01 = 0.001,
$10 = 0.004 and $11 = 0.0012.
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Figure 6. A three-dimensional visualization showcasing the stationary distribution,
complemented by a two-dimensional contour plot illustrating the dynamics of system (4.1).
In this case, L = 3.5 and p = 0.5. For noise intensities, we take ν00 = 0.001, ν01 = 0.001,
ν10 = 0.01 and ν11 = 0.003.
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Figure 7. Numerical demonstration elucidating the profound impact of plankton size
variations and parameter p fluctuations on the intricate morphology of the stationary
distribution.
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5. Conclusions

The stochastic dynamics inherent in marine ecosystems are of paramount importance, shaping the
stability and resilience of these intricate environments. In this paper, we presented a novel nonlinear
algae-zooplankton model, that offers a comprehensive framework for understanding the dynamics
influenced by general interaction rates and second-order noise. Specifically, we distinguish between
white noise and jump components, allowing for a detailed examination of their respective impacts on
population dynamics.

Central to our investigation is the delineation of the global threshold that governs the delicate
balance between species extinction and persistence. Through rigorous analysis, in Theorems 3.1
and 3.2, we probed the intricate interplay of various ecological factors, shedding light on the
fundamental mechanisms underlying ecosystem dynamics.

In the numerical simulation section, we investigate the repercussions of noise on the long-term
behavior of algae and zooplankton populations. By systematically varying parameters and plankton
sizes, we unraveled the nuanced effects of noise intensity on population dynamics and stationary
distributions. Through visual representations and quantitative analyses, we provided insights into
how different types of noise shape the ecological trajectories of these crucial marine species, offering
valuable implications for ecosystem management and conservation efforts.

The analysis described in this paper can be extended to describe the dynamics of a mycoloop
model in aquatic food webs. This model involves interactions between phytoplankton, chytrids, and
zooplankton [33]. By incorporating additional hypotheses and exploring more complex interactions,
the model can provide deeper insights into the ecological processes governing mycoloop dynamics. We
aim to pursue this idea in our future work, further enhancing our understanding of aquatic ecosystem
dynamics.
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